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Proton-nucleus charge exchange measurements at 144 Mev as a test of one-pion exchange and
the partially conserved axial vector current
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We have measured the differential cross sections of the (p,n) reaction on Li, "C, and "N to the ground
state of the final nucleus (hJ = 1, ET = 1, Am = 0) and to the 7.77 MeV excited state of "0 at E~ = 144
MeV and 0'& 8„b& 20'. For the ground state cases, we treat the nuclei as elementary particles, which are
assigned the initial nucleus-pion-final nucleus coupling constants predicted using the partially conserved
axial vector current. The Born helicity amplitudes for one-pion exchange are presented along with a method
for including distortions in momentum space. The calculations which have no free parameters agree with
the data for Li and "C, but not for "N.

P

NUCLEAR REACTIONS Li(p, n), 2C(p, n), and ' N(p, n) at E& =144 MeV.
Differential cross sections measured between 0' and 20' gab). Initial nucleus-

pion-final nucleus coupling constants extracted.

L INTRODUCTION

In nuclear physics we have become accustomed
to the concept of a nucleon-nucleon potential which
has its fundamental foundations in the theoretical
premise of meson exchange. Our understanding of
this potential, while by no means complete, is
rather advanced. It is well known, for example,
that a realistic potential must contain both central
and noncentral components and must be momentum
dependent. There cannot be a simple correspon-
dence between components of this potential and
individual meson exchanges. However, since the
pion is the least massive meson, one-pion ex-
change must become dominant at large distances.
In fact, a comparison of the one-pion exchange po-
tential to a pheriomenological force which repro-
duces the nucleon-nucleon phase shifts, e.g. , the
Hamada-Johnston potential, shows that one-pion
exchange is dominant in the spin-isospin compo-
nent and the isovector tensor component at dis-
tances as small as the Compton wavelength of the
pion. ' Yet at these intermediate ranges, it is
necessary to introduce the exchange of scalar
mesons, both isoscalar and isovector, which rep-
resent the effective contribution of nonresonant
two-pion exchange. In order to account for the
other components of the central interaction at
shorter distances and to characterize the short
range repulsion, even the most sophisticated cal-

culations must become phenomenological. at small
distances. The understanding of the nucleon-
nueleon interaction in terms of meson exchange
is then largely successful, especially at large
distances or equivalently, at high partial waves.

%hen one considers the scattering of nucleons
from a nucleus, the complexity of the many-body
problem makes the ab initio description of the
nuclear force in terms of meson exchange un-
feasible. However, the transition of the nucleus
from one state of definite spin, parity, and iso-
spin to another imposes definite limitations on the
meson exchanges that can occur (assuming a single
interaction which may be valid at intermediate
energies). For nuclear transitions ot' J=O- J= 1,
T=0-T =1, and m =1—m=1, the meson exchange
must transfer one unit of angular momentum and
isospin without changing the parity. Thus, for
interactions of medium and long range, which cor-
respond to scattering in the forward direction, the
reaction may be dominated by one-pion exchange.
Qne-pion exchange is known to contribute to
n+P-'P +n charge exchange scattering where the
quantum number restrictions are not so severe.
There, one-pion exchange manifests itself in a
large forward peak. ' This peak is not reflected
in mbst nuclear inelastic scatterings, however, but
the quantum numbers of most transitions are in-
consistent with one-pion exchange. For the tran-
sitions with quantum numbers listed above, we

'
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may expect one-pion exchange in the forward di-
rection, producing a forward peak. In order to
test this hypothesis, we have measured the for-
ward angle cross sections for the (P, n) reaction
on 'I.i, "C, and "N to the resulting ground states;
these transitions all have 6J=1, AT =1, kg=0.

If the reaction at forward angles is dominated
by one-pion exchange, then one has an opportunity
to test the application of the partially conserved
axial vector current hypothesis (PCAC) to nuclei
in a novel way, as first suggested by Kim and
Primakoff. ' The proposal is to consider the initial
and final nuclear states as elementary particles,
specifying only the mass, spin, parity, and isospin,
and to introduce a vertex function which character-
izes the coupling of the initial nucleus, a pion, and
the final nucleus. By application of PCAC, one
can derive a relation similar to the Goldberger-
Treiman relation, which relates the initial nu-
cleus-pion-final nucleus coupling for a virtual
pion to the matrix element of the axial vector cur-
rent (N ~A (x) g). This matrix element is known
from the P decay of the final nucleus N' to the
initial nucleus N. In a similar manner, PCAC can
be used to relate the momentum transfer depen-
dence of the vertex function g„,„(q') to that of an
inelastic electron scattering form factor. Since
the axial vector matrix elements for the cases
considered herein are known (assuming 'Be-'Li
has the same matrix element as 'He-'Li), and
since the required inelastic electron scattering
form factors have been measured, then in prin-
ciple the one-pion exchange differential cross
section for p+N-n+N can be calculated.

It is useful to make a comparison between this
proposal and the more conventional procedure.
Present day nuclear inelastic scattering calcula-
tions in the intermediate energy range are typically
made with an effective interaction in the distorted
wave impulse approximation (DWIA). 5'6 The ef-
fective interaction is chosen to have (on-shell)
matrix elements which reproduce the nucleon-
nucleon scattering amplitudes in the intermediate
energy range. The functional form of the interac-
tion is usually taken to be a sum of Yukawa func-
tions e ""/gr; a slightly different functional form
is used for the tensor force. Generally there is
one term in the effective interaction with the
range and strength appropriate for one-pion ex-
change, with other terms representing interactions
of shorter range. The interaction is folded over
the entire nucleus using nuclear wave functions,
which reflect the structure of the states involved,
to produce an inelastic scattering form factor.
In certain cases the transition density measured
in inelastic electron scattering can be used di-
rectly. The scattering waves in the initial and

final states are generated from an optical poten-
tial which reproduces the measured elastic scat-
tering. The transition amplitude then is the inte-
gral of the inelastic scattering form factor and the
two distorted waves. Although this method incor-
porates one-pion exchange, the exchange is only
between individual nucleons, and there is no means
of introducing the initial nucleus-pion-final nu-
cleus vertex function. Thus, it is not possible to
test the application of the PCAC hypothesis to
nuclei.

We have chosen to use the one-particle exchange
model developed for particle physics applications' '
known as the absorption model to incorporate
initial and final state distortions. Since the Born
amplitudes for meson exchange are most naturally
expressed in momentum space, the absorption
model modifies the Born amplitudes to account for
initial and final state distortions in momentum
space. Since at high energy the elastic scattering
potential is primarily absorptive, the inclusion of
distortions merely reduces the magnitude of each
partial wave of the Born amplitudes. Hence, the
method is known as the absorption model.

Our calculational procedure, then, was to begin
with the Born helicity amplitudes for one-pion
exchange represented by the Feynman diagram
shown in Fig. 1. The proton-pion-neutron vertex
is known from pion-nucleon scattering, and the
initial nucleus-pion-final nucleus vertex function
at zero momentum transfer g~„„(0)was obtained
from PCAC. The dependence of the two vertices
on momentum transfer was obtained from PCAC
using in the nuclear case the inelastic electron
scattering form factor. Thus, the Born amplitudes

N

FIG. 1. One-pion exchange diagram for the reaction
P+N n+N' in the Born approximation.
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were completely determined. Initial and final
state interactions were inserted through the ab-
sorption model, although changes in the model
were made to make it more applicable to scattering
from a nucleus. Neglected in our calculations
are explicit two-step processes and exchange
terms arising from antisymmetrization between
the projectile and the target nucleons. Multistep
processes, however, are probably, mell accounted
for by use of an optical potential which reproduces
elastic scattering. " The exchange term may be
neglected for forward scattering at intermediate
energy for these transitions of low multipolarity.
It is easy to see in impulse approximation that the
exchange term is proportional to v(~k+k' ~), which
is much smaller than the direct term which is pro-
portional to v(~ k- k' ~).

" It is also the case that
we neglect all contributions from other meson ex-
changes (or equivalently, other components of the
effective interaction which would contribute upon
antisymmetrization). Again, for transitions of
low multipolarity and for forward scattering this
neglect should not be serious. One-pion exchange
does include the tensor component.

As our calculations are performed in momentum
space, they appear radically different from the
traditional nuclear physics calculations. In fact,
they are actually quite similar to the effective
interaction calculations of Petrovich, "which are
also formulated in momentum space. Petrovich
argues that the momentum space calculations are
useful as they can make direct use of information
obtained on the momentum components of the tran-
sition density from inelastic electron scattering.
(The argument is persuasive even though electron
scattering does not provide all of the transition
densities required for nucleon scattering. ) When

the traditional calculation is written in momentum
space, the parallel to our calculation becomes
clear. Our Born amplitudes with the nuclear ver-
tex function removed corresponds to the effective
interaction, and our nuclear vertex function cor-
responds to the transition density. The distor-
tions due to initial and final state interactions are
inserted in each method. The difference between
the two methods is simply that the traditional cal-
culation performs an integral over momentum to
account for the spatial extent of the nucleus, while
we approximate the integration by choosing a mean
value. It is shown below that our approximation
should be adequate; it does in fact produce a very
similar reduction in the differential cross section
compared to the Born amplitudes, as does the dis-
torted wave impulse approximation when compared
to the plane wave impulse approximation. "

It should be noted that our application of PCAC
to nuclei is rather different than its usual applica-

tion to elementary particles. There, the differ-
ences between the coupling to nucleons of virtual
pions and real pions can be ignored. %e make no
statement from our analysis, fr.om which we obtain

g„„„,(0), on the coupling of the nucleus to real
pions, g~, N( —m,'). This question has been raised
in other applications of PCAC to nuclei, namely,
muon capture, "'"radiative pion capture, "'"and
pion scattering. " In our application we assume
that PCAC is exact, or rather the Goldberger-
Treiman relation (as stated) is exact, and compare
our calculation to the measured differential cross
sections. Our proposal also differs from the
original suggestion of Kim and Primakoff, ' who

suggested an extrapolation of the measured (P, n)
differential cross section into the unphysical re-
gion, the pion pole. This procedure has its diffi-
culties even in application to nucleon charge ex-
change. Similarly, extraction of one-pion ex-
change from the higher partial waves of the (P, n)
differential cross section would be extremely
difficult. At the very least, a rather complete
angular distribution would be required for a par-
tial wave analysis; and although the forward scat-
tering appears to have a large component from
one-pion exchange, many other processes may
contribute to the scattering at larger momentum
transfers. " %e find rather good agreement be-
tween our assumptions of one-pion exchange and
the applicability of PCAC and our measured dif-
ferential cross sections. Although this agreement
does not uniquely justify our assumptions, it does
give them a certain amount of credence.

II. EXPERIMENTAL PROCEDURE AND RESULTS

A. Apparatus

The experiment mas carried out at the Indiana
University Cyclotron Facilty (IUCF). The experi-
mental area is shown in Fig. 2. The target assem-
bly was placed inside the chamber and just before
the pole faces. Steel cylinders were placed inside
and outside of the entrance beam pipe to prevent
the beam from being bent in the magnetic field be-
fore it hit the target. The main proton beam was
swept by the magnetic field into a Faraday cup
buried in the ma11, whereas the forward scatter-
ing neutrons emerged from the chamber through a
0.076 mm thick kapton window. Neutrons destined
to reach the detector had to pass through very
restrictive collimation, as shown in Fig. 3. The
vertical collimation was supplied by stacked lead
and concrete blocks, and the horizontal collima-
tion was provided by lead bricks stacked on carts.
This allowed the detector to view only the target.
The scattering angle was changed by moving the
detector, which was placed on a mobile hut. Angles
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FIG. 2. Floor plan of the experimental area.

from 4 beam left to 25'beam right could be obtained
and flight paths of 20 and 25 m were employed. A
beam energy of 144 MeV was chosen because it
was one of the maximum energies available at
IUCF at that time and because good elastic scat-
tering data for the 'I, i and "C existed at that
energy. "

The detector used is shown in Fig. 4. It consis-
ted of a sheet of plastic scintillator (charged par-
ticle identifier) followed by two NE 102 plastic
scintillator timing rods (45.V cm long and 4.44 cm
in diameter), which in turn were followed by a vat
of NE 213 liquid scintillator (50.8 cm long, 25.4
cm high, and 15.2 cm deep). The rods and vat
were viewed at both ends by phototubes. Timing
signals from each end of a rod were used to start
a TAC, which was stopped by the subsequent rf
pulse. The signals from the two ends of a rod were
then added in the computer. Since the rod was
thin, the resulting spectrum represented the time
between the projectile leaving the target and the
time it interacted in the rod. ,Pulse height signals
from both ends of each rod and both ends of the vat
were summed individually in hardware and were

VETO

t- TIMING RODS

PULSE SHAPE~ ENERGY CUTS

also stored. Timing signals from the charged
particle identifier and the rods were used to pro-
duce an analog routing signal, whose magnitude de-
pended on whether the detected particle was
charged or not (interacted in the charged particle
identifier or not), and on the rod with which it had
interacted. In this way, both neutron and proton
pulse height and time-of-flight spectra could be
observed. (Although the bending magnet turned
the main proton beam into the beam dump, it also
bent elastically scattered protons toward the de-
tector. The horizontal collimation could usually
be arranged to block these particles, but some
were always allowed to pass, providing a useful
diagnostic tool. ) Wrap-around, the contribution to

Neutrons
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=Mobile Stock of
Lead Sricks

NE 2I5
LIQUID

SC IN T ILL ATOR

FIG. 3. Schematic drawing of the neutron collimator. FIG. 4. Drawing of the neutron detector.
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the time spectrum originating from neutrons that
were so slow that they would reach the detector at
the same time as a faster neutron from a later
burst, was always eliminated by setting a soft-
ware threshold on the vat energy. The threshold
required to eliminate wrap-around depends on the
beam repetition rate (-30 MHz), as well as the
flight path. Since the higher the pulse height
threshold detection, the lower the efficiency, the
beam repetition rate was reduced by pulse select-
ing one out of four beam bunches (4 x 32 nsec) be-
fore main stage acceleration. Because of low
beam currents during the initial phase of the ex-
periment, the 'Li data were taken with no pulse
selection.

Two monitor counters, a plastic scintillator, and
an NaI crystal, were placed outside of the vacuum
chamber, downstream from the target, on either
side of the exit beam line. Kapton windows in the
chamber allowed protons elastically scattered at
about 7' to reach these detectors relatively un-
hindered. The plastic scintillator mas used as a
monitor of the target thickness, while the NaI
crystal was used to monitor the beam arrival time
relative to the cyclotron rf phase. Owing to in-
stabilities in the cyclotron, the time at which the
beam was extracted relative to a signal generated
from an rf crossing would drift. By stopping the
protons in the NaI crystal, measuring their time
of flight against the rf, and using the energy signal
to choose only elastically scattered protons, the
beam arrival time fluctuations were measured in
an average way by observing the shifts in the flight
time of the elastically scattered protons.

The signals that were monitored on-line and
stored in event mode were the time of flight of
both sides of the rods, the rod energy, the vat '

energy, the router, and the time of flight from the
NaI monitor. The latter was recorded asynchron-
ously to allow off-line corrections for beam arrival
time variations.

The targets used were natural carbon and 98.5%
enriched. 'Li; they were about 55 mg/cm' thick and
presented a 300 keg loss to the proton beam. The
full energy loss of the proton in the target is re-
flected in the resolution of the scattered neutrons.
A nitrogen target was obtained by using melamine

(N, C,H, ); the Q value for (p, n) on carbon is high
enough so that reactions on carbon do not inter-
fere with the "0ground state. The melamine tar-
get was about 70 mg/cm' thick, causing a 350 keV
loss to the proton beam.

B. Data reduction

The first step in the data reduction was to cor-
rect the time-of-flight spectra for beam arrival
time drifts. This correction was done by calcula-

ting for each 100 events recorded in the NaI moni-
tor the centroid of their time of flight. This cen-
tr oid was compared to an arbitrar y time re fer ence.
The corresponding events in the neutron detector
(which occurred in real time over the same period
of time as the monitor signal) were then shifted
in the opposite direction by the appropriate amount.
Depending on the mood of the accelerator, this
would give a 6% to 25% reduction in the FWHM.

The pulse height spectrum of the vat was calibra-
ted from the position of the elastically scattered
proton peak using the known light output for pro-
tons in NE 213. Thus the threshold required to
eliminate wrap-around could be determined, and
events with vat pulse heights below this threshold
were ignored. Using the router signal, the data
were then sorted into four time-of-flight arrays,
representing protons and neutrons in each rod.
Peak areas were then extracted by fitting Gaussian
curves on a quadratic background to the data. For
the 'Li and melamine targets, the resolution was
sufficient. to easily distinguish the ground state
peak from the first excited state. For the carbon
target, however, the first excited state was only
six-tenths of a FWHM away. Although better reso-
lution is desired, this resolution should give
reasonable results. Actually, there was no indica-
tion of the first several excited states being pres-
ent, and chi-squares/degrees of freedom near one
were obtained by assuming that they were absent.
Statistical errors were calculated by finding the
area for which the total chi-square was increased
by one. The results from the two rods were then

averaged.
Dead time corrections for the computer and

TAC's were made. The router pulses were scaled
as mell as stored by the computer, so that the
computer dead time could be obtained. Dead time
in only one of the TAC's manifested itself in a
poor resolution time spectrum superimposed on
the principal one. The ratio of these two was then
obtained from the proton spectra to determine the
TAC dead time. The total of these corrections
was always less than 10%.

The magnetic shielding before the target could
not totally prevent the incident beam from bending
before hitting the target, so the true beam direc-
tion 8, had to be determined. Consequently, cross
sections for 'Li were measured at the nominal
angles of 0, +1, and+2'. A function quadratic in

~6 —Ho~ was then fitted to the data, yielding 9o= —0.3
+0.3 . Thus, all nominal angles were increased
by 0.3'.

C. Normalization

The detector efficiency and solid angle were
calibrated by normalizing the carbon data to
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data taken with a liquid scintillator detector mea-
suring 12.7 cm deep and 12.7 cm in diameter.
This detector was calibrated for 130 MeV neutrons
in an independent experiment, "in which a tagged
neutron beam was produced using the reaction
P+'Li-n+'Be. A small correction for the neutron
absorption by air was also made. We estimate
that the normalization of all the data, including the
efficiency and target thickness, is +7'%%uo, the
errors indicated are statistical. Qur final differ-
entia]. cross sections for 'I, i are in excellent
agreement with the (n, P) data of Measday and
Polmieri obtained at 152 MeV." From charge
symmetry the two differential cross sections
should be equal.

D. Results

The forward angle spectra for the three targets
are shown in Fig. 5. For the case of mass 6 and

12, the ground state clearly dominates the spec-
trum, but this is certainly not true for the case of
mass 14. Indeed, in this case, the ground state
is extremely small, and the spectrum is domina-
ted by the 7.77 MeV (2'; 1) excited state of "O.
After corrections for the beam arrival time, the
time resolution varied from 0.85 to 1.0 nsec.
From the proton spectra we inferred that the
time resolution was mainly limited by the beam
itself. The corresponding energy resolution was
between 1.7 and 2.0 Me&.

The measured cross sections for the ground
states and oxygen excited state are shown in Fig.

They are all forward peaked, but the "0
ground state is much flatter than the others. The
excited state of "0 is almost identical to the mass
12 case, indicating that they may be produced by
the same mechanism.

III. THEORETICAL ANALYSIS

A. Scattering amplitudes

We first start by writing down the general form
of the Born amplitudes corresponding to the Feyn-
man diagram shown in Fig. 1,

Q' +Pl&

The indices of the helicity amplitude T~, , denote the
helicity of the spin-1 nucleus ~ and the initial and
final nucleon helicities (X and X'). The proton-
pion-neutron and initial nucleus-pion-final nucleus
vertex functions are represented by g~„„(q') and

g„,„,(q'), respectively, and are functions of the
four-momentum transfer squared, q'. Also, u (p)
is the Dirac spinor with helicity X and momentum

p, $i "l(p') is the spin-1 function (polarization vec-
tor) with helicity z and momentum p', $, is the
four-momentum transfer, and y, is the usual Dirac
operator. There are twelve different amplitudes
Tz.& but space reflection can be used to relate
six of them to the other six by'
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A set of six independent amplitudes are written
below in a form in which the angular dependence
and momentum transfer dependence are explicitly
denoted:
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FIG. 5. The 0.3 time-of-flight spectrum for (a) p

+ Li —n+ Be {b)p+ C n+ N and {c)p+melamine
n +X.

FIG. 6. The differential charge exchange cross sec-
tion for (a) p+6Li n+ Be (ground state), (b) p+ C

n+ 2N (ground state), (c) p+ 4N n+~40 {ground
state), and (d) p+ N-n+ 0 (7.77 MeV, 2' state).
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(Sa)

~E sin(8/2)T, =g~~„(q )g//~N(q )bg~ d ~/2 ~/2(8)+(z —y)
1 z —cos8

1 2 2 ~ 1/2 sin(8/2)
T++ Arm(q )gNw//'(q ) ~2 $ -d 1/2 1/2(8) +(z + 1)

z —cos8

(&b)

(3c)

T' - = g„.-(q')g&. & (q')~& bh
s in(8/2) cos'(8/2)

z —cos8b, /, cos (8/2)
T+- =g/rn(q')gNwp (q')

~g h, dl/2, ,/. (8) —(z —I)

sin (8/2) cos(8/2)

(3d)

(3e)

Our notation is similar to that of Refs. 7-9, which
consider g+P-P +n, which has the same spin
sequence and is described by one-pion exchange.
The angle 8 denotes the center of mass angle of
the neutron, and d'„/P(8) denotes the rotation func-
tion of order 2. The rest of the symbols are de-
fined in Table I. These helicity amplitudes then
represent the one-pion exchange Born approxima-
tion to the (P, n) reaction for 0'-1+ transitions.

B. Extraordinary terms

It is seen from Eqs. (3) that four of the Born
amplitudes contain an s-wave contribution in the
form of dz. 'q. These terms are referred to as the
"extraordinary" terms in the literature and must
be removed from the Born amplitudes before a
comparison can be made to experimental data. The
appearance of extraordinary terms is quite gen-
eral in one-boson exchange Born amplitudes, and

they are often removed. " There does not appear
to be a universal consensus on the justification for
this procedure. The fact that these tepms are
troublesome is easily seen by plotting the contri-
bution to the Born amplitudes of each partial wave,

TABI E I. Variables of Eq. (3) not defined in the text.

I

as is done in Fig. 7. Without the extraordinary
terms, the amplitudes are seen to be continuous
functions of the angular momentum. However, if
the extraordinary terms are included, then the
s-wave (j=-,') amplitudes become negative while
all other partial waves are unmodified, causing a

IO

Variable Def inition
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mn

mp

mar

1/p' for J=0 1 transitions and 1/p for
J= 1 0 transitions

f(E+m, )(E'+ m„))' '(pj(E+ m/}+ p'/(E'+m„})
y for J=0-1 transitions and —y for-J=1-0 transitions
(2EE' + m„—m„—mp )/2pp'
p'Ez/pE&~ for J=O 1 and pE~i/p'E„

for J=1-0
Center of mass energy of the nucleus with
spin 1

Mass of the nucleus with spin 1
Neutron mass
Proton mass
Charged pion mass

I I I I I

5 IO l5 20 25

FIG. 7. Plot of the partial waves of the nonzero one-
pion exchange amplitudes at 0', including the distorted
wave modification. A curve has been drawn through' the
discrete half-integer points to guide the eye. If the ex-
traordinary terms were to be included, then the only
difference would be that the j = 2 points would become
negative.
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discontinuity. In the elementary particle literature
it is noted that the extraordinary terms will violate
s-wave unitarity, an absolute constraint, and
thus their removal is justified. "' The argument
is also formulated with reference to the peripher-
al (high partial wave) nature of one-particle ex-
change processes that the Born amplitudes are sim-
ply inadequate for the lower partial waves. If one
transforms the Born amplitudes to coordinate
space, then the extraordinary terms become a 6
function in the relative coordinate. In the one-
pion exchange potential, this 5 function is called a
"contact" term. As one would expect, this term
is traditionally discarded in the coordinate space
formulation as well. " With respect to the nucleon-
nucleon one-boson exchange potential, the argu-
ment is put forth that the short range repulsion
prevents the contact term from contributing. More
complicated arguments also have been formula-
ted." Although it is certainly the case that one-
pion exchange cannot be the dominant contribution
at small distances, the removal of the contact
term has a rather simple justification for the
Born approximation. A repulsive 5 function ean
cause no contribution to the scattering amplitude
because the boundary condition on the wave func-
tion requires that it vanish identically for r =0.
Thus, if only Born approximation is considered and
not the solution to the Schrodinger equation, it is
more correct to neglect the 5 function completely.

It is perhaps worthwhile to digress and to men-
tion the relevance of these considerations for the
historical determination of the pion-nucleon
coupling constant from nucleon-nucleon scattering.
Two rather different methods have been applied.
Recognizing that one-pion exchange becomes
dominant at large distances, the phase shifts for
the high partial waves of intermediate energy scat-
tering (~ 450 MeV) should be totally determined by
the one-pion exchange potential. Thus, the mag-
nitude of the coupling constant can be fixed by a
best fit of the one-pion exchange potential to the
I.z4 partial waves. " In this manner the well-
known number g'/4v =14.6 is obtained. We have
argued that an analogous procedure would probably
fail in the nuclear application. The second method
follows the observation of Chew that the singu-
larity in the scattering amplitude (the pion
pole)" lies close to the physical region. The sug-
gestion was made that a rather modest extrapola-
tion of the differential cross section into the un-
physical region would provide the pion-nucleon
coupling constant. However, the Born amplitude
for one-pion exchange in n+P-P+n vanishes at
zero degrees (the effect of the extraordinary or the
contact term) and the ubiquitous charge exchange
peak in n +P —P +pg was obtained through the' inter-

ference of the one-pion exchange Born amplitude
and smooth background terms. It is surprising
then that the extrapolation procedure applied by
Ashmore et al."could obtain approximately the
pion-nucleon coupling constant, a result which
may be ascribed to a rather judicious choice of the
data set and the order of the extrapolated poly-
nomial. It is seen in the extrapolation performed
by Cziffra and Moravcsik" that nonsensical results
are obtained if the polynomial is either of too low
or too high an order. The suggestion has been
made that more optimal extrapolation procedures
can be employed"; we do not feel competent to com-
mentonthis suggestion. Instead, we continue with
the method described in the Introduction: Having in-
troduced the Born amplitudes, we modified them
to account for distortions introduced by the initial
and final state interactions, and chose vertex func-
tions consistent with the PCAC hypothesis.

Once the extraordinary term has been removed,
it is easy to see which of the amplitudes in Eq. (3)
is dominant. Since g is essentially zero, only
T', , 7', , and T', need be considered. These are
the amplitudes corresponding to the projectile
flipping its helicity. Of them, T, is dominant at
forward angles, which is easily seen by examining
their angular dependence.

C. Absorption model

It is not surprising that a method for doing dis-
torted wave calculations in momentum space was
developed in elementary particle physics, as
almost all of their calculations are done in mo-
mentum space. The method was developed because
of the discrepancy between one-pion exchange
Born approximation calculations and various ex-
periments in which one-pion exchange was firmly
believed to dominate the reaction. Historically,
in the first attempt to remove this discrepancy,
arbitrary vertex functions were introduced. How-
ever, in order to fit the data, these phenomeno-
logical functions had to be much stronger than
was thought reasonable. It was realized that the
effect of these form factors was to reduce the con-
tribution of the lower partial waves to the scatter-
ing amplitude. Consequently, a more natural way
of doing this was sought. With the realization that
the existence of scattering channels other than the
one being observed would reduce the amplitudes of
the lower partial waves and with the concurrent
application of distorted wave techniques in nuclear
physics, the absorption model was born. "

The absorption model includes distortions by
modifying each partial wave of the Born ampli-
tudes by a factor accounting for the effect of the
elastic scattering on that partial wave. A rather
simple form can be derived under the assumptions
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that (1) the particle wavelengths are small com-
pared to the characteristic ranges of the interac-
tions, (2) the entrance and exit channels are
strongly coupled to many inelastic channels, and
(3) the range of the exchange interaction is small
compared to that of other interactions. ' It must be
admitted that these assumptions are invalid in
nuclear physics; they are also of questionable
validity in particle applications. The form of the
modification in our calculation is

T Ki —LJ($/ i+&/2)&/2 y(S//-1 ,2/)& /2

+ (Si J+1/2)1/2 ~ (Si,i 1/2)1/2I TKIi (Born)

(4)
where Si&'(Sii'} is the elastic scattering S matrix
element for the incident (scattered) particle and
T„"j'(Born} is the jth partial wave Born helieity
amplitude, which is obtained from Tq. „(Born) by
the technique of Hogaasen and Hogassen. ' The
justification of Eq. (4} is given in the Appendix and
holds only for forward angles. It mill be noted that
Eq. (4) differs from that used in elementary par-
ticle physics in tmo mays. One may is that S is
taken to depend on the orbital angular momentum
l as well as j. The primary difference, however,
is that S is raised to the one-half power instead of
the first power, which accounts for the range of
the elastic and inelastic potentials being compar-
able in a nucleus.

'The S matrix elements were calculated from the
optical potentials for the target nuclei at 144
MeV, "using the optical model code SNOOP&. " The
potential for the final nucleus was assumed to be
that of the target, so the final S matrix elements
were calculated for a neutron with the appropriate
energy. The sensitivity of the (p, n) cross section
to uncertainties in the S matrix elements was esti-
mated for "C by calculating it for a potential opti-
mized to the differential cross section and to a
potential optimized to polarization data. X'he re-
sults differed by only 5%. The sensitivity could be
greater for 'Li, homeve r, since the potential is not
as well determined.

D. Vertex functions

As pointed out by Kim and Primakoff, ' the mag-
nitude of an initial nucleus-pion-final nucleus ver-
tex function at zero momentum transfer can be ob-
tained by applying PCAC to the nuclear states to
obtain a nuclear Goldberger- Treiman relation.
The original Goldberger-Treiman relation' was a
pr oportionality between the proton-pion-neutron
coupling constant g~,„(-m„2) and the axial vector
coupling constant measured in neutron P decay
g„(0). The nuclear relation, which we derive
below, is a proportionality at q' =0 between the
initial nucleus-pion-final nucleus vertex function

g„,„(q' =0) and the weak axial vector coupling
constant F„(q' =0), for the N -N+e'+v decay.
In this approach the nucleus is treated as an ele-
mentary particle in the sense that only the spin,
parity, isospin, and mass of the nuclear states
are explicitly specified. It has also been shown

by Kim" that the dependence of the nuclear ver-
tex function g„,„(q') for transitions dominated by
no change of orbital angular momentum can be
obtained from the inelastic electron scattering form
factor ii, (q'). Kim also shows that the corrected
Goldberger-Treiman relation for nucleons can be
used to estimate the dependence on momentum
transfer of the pion-nucleon vertex function g~,„(q').
The arguments go as follows.

PCAC, in the formulation of Gell-Mann and

Levy, '4 states that

where g, (x) is the weak axial vector current,
p(x) is the pion field operator that creates or
destroys a pion, m, is the pion mass, and a„
=0.939 is the pion decay constant, determined from
z- p, + v. If one treats the nucleus as an elementary
particle, then A (x) can only be constructed from
vector quantities pertaining to the nucleus as a
whole.

For 0' 1' transitions, one has

(N, IA (x) IN) =2(M M )'/' $ 'F (q')+q g 'q +(P"+P )$ "q e """" (6)

The symbols M„and I„.stand for the masses of
the nuclei N and N; $~"' is the usual spin-1 func-
tion with helicity v; F„(q'), F~(q'), and F„(q') are,
respectively, the axial vector, induced pseudo-
scalar, and induced tensor weak nuclear form fac-
tors; P" and P" are the momenta of & and N with
the momentum transfer q =P"-P"; and x, is the
position at which the current is evaluated. The

(K)q
(N.'Ie IN& = »." .g...(q'-). (7)

%ith the PCAC choice of the pion field, Eqs.

I

matrix element of the pion field, (N„' Ip IN), can be
broken into an expansion of terms represented by
the diagrams shown in Fig. 8. Evaluating only the
first term in the expansion gives
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+ ~ OO

we find that

g„„(q')=g„„(0)/[1+q'/(4. 92m,)']' . (15)

FIG. 8. Diagramatic representation of the two lowest
order terms of the pion field matrix element (¹I 4 I

N )
in covariant perturbation theory.

The dependence of the nuclear vertex function
g„„„(q')could be determined from Eq. (8) if the
two form factors, E„(q') and Fp(q'), were known.
The pseudoscalar form factor may be estimated
from the axial vector form factor. One has from
the impulse approximation" "

(5)-(7) can be combined to give

M ' —MF„(q')+,F (q')+ ", "' Fr(q')

F,(q') g (q')
(16)

g . (q')
(u„M„,)'~2 (q'+m„') '

As there is no evidence for the induced tensor
term, " it may be neglected. Evaluating Eq. (8)
at q' =0 then gives the nuclear Goldberger-Trei-
man relation

g (q') —m,'
g„(q') m,'+q' ' (17)

With this expression for F~(q2), it is then nec-
essary to know only the ratio g~(q2)/gA(q2) and
F„(q'). If the dependence on momentum transfer
of g„(q') and g», „(q') were identical, then we would
obtain directly from (11)

(0) N N F (0) (9)
However, from an analysis of neutrino scattering,
Kim" finds

IF.(0) I' =
3G' cos2g m 2(ffj

(10)

where the weak interaction coupling constant G
= 1.026 && 10 '/m»', the Cabibbo angle 8c = 0.257,
m, is the electron mass, and J„.is the spin of the
nucleus N .

A similar procedure can be applied to the nu-
cleon P decay. In this case, one obtains for nu-
cleons that

q' „a,m ' g„„(q')
gA(q ) 2 gP(q )

( ) q2 m 2
F

Finally, the value of g„,„.(0) can be obtained from
the ff, value for the P decay of N'-X, 22 since

g„(q') =g„(0)j(1+q'/45 8m,')'.. (18)

(19)

This difference increases the ratio of g~(q2)/gA(q2)
by a factor of 1.04." For Iq'I ~m,' this modifica-
tion and corrections to the impulse approximation
[Eq. (16)]are rather insignificant. "

The dependence on momentum transfer of the
axial vector form factor may be obtained from the
inelastic electron scattering form factor. In this
approximation we first note that from the impulse
approximation"

(q ) =&F (q )]'m2~g +&F (q )l

Evaluating this expression at q' =0, one obtains
a modified Goldberger- Treiman relation, namely

g,„.(o) = " ' g, (o). (12)

g» „(0)=17.8. (13)

From a dispersion theoretical analysis of pion-
nucleon scattering, it is known that the physical
coupling constant is"

(14)g», „(-m„')= 19.3.
Thus, choosing a simple functional form for
g», „(q') expected to be valid for —m,' & q' & m,',

Here and in the following, the weak nucleon form
factors have been denoted by g„and g~, and the
weak nuclear form factors have been denoted by
E„and F~. From the neutron I8 decay, » we obtain
g„(0)=1.239,"and thus

E„(q') F„(q')
F„(0) F„(0) (20)

Now the weak magnetism form factor can be rela-
ted to the transverse inelastic electron scattering
form factor iA(q2) measured in the scattering to
the analog state of &'. Using CVC" Kim shows
that

where F„(q') is a weak magnetism nuclear form
factor that contributes to the vector current in
the decay &'-&+e+v, and (gv+g„)/g„may be
taken to be independent of momentum transfer
[=(1+3.7)/1. 24]. For nucleon transitions in which
the initial and final states have no orbital angular
momentum, which is approximately the situation
for the cases of masses 6 and 12 considered here,
the orbital contribution vanishes. Thus, Eq. (19)
yields, for nuclei in which the spin contribution is
dominant,
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F (q') g(q')
F„(o) p, (0)

' (21)

For q' ~ m,' the inelastic electron scattering form
factor can be fitted by the dipole form, from which
Kim33 obtains

F„(0) (1+q'/M ')' '

where

M„' =2.0m,' for 'Li 'Be

and

(22a)

(22b)

gN N'(q ) 1 q /26m

g„,„(0) (1+q'/M„')' (23)

Without too much reflection one will recognize that
the important assumption in this argument is that
the nuclear vertex functions and the weak form fac-
tors all have dependence on momentum transfer
similar to (N Per e ' " g).

Although the assumptions that were introduced
to arrive at Eq. (23) are justified for 'Li and "C,
the justification is not so evident for "N. The
difficulty lies in the fact that although "N is a
1' nucleus, its total orbital angular momentum is
dominantly 1.=2 (see Ref. 15). Thus, in Eq. (19)
the orbital term {F„(q')},„,«„ is not negligible.
In fact, Goulard et aL take the extreme position
that the spin contribution {F„(q)}.„, is negligible
in obtaining the dependence of gN, &(q2) on momen-
tum transfer. However, their analysis was inten-
ded for use at larger q' than we are considering
since they assume that {F„(0)}„,„=0, which is
probably not exact. With no other guide to the
separation of {FN(q2)}»«and {F„(q')}„2«„,we use
Eq. (20) for F„, along with the functional form of
Goulard et al."for F„(q')/F„(0). We then obtain
for mass 14

(ZN2N'(q ) —(1 q2/26222 2)(1 ~ 2/222 2) e-0.282 l mw

AN2N'(

=2 6~ for

Now, taking Eqs. (8), (9), (16), (1V), and (22), we
obtain for gN, Ni(q2)

neglect higher order contributions. Thus, to the
extent that higher order contributions are similar,
the vertex function gN, „,(q'), as derived, is actually
an effective coupling for the initial nucleus chang-
ing to the final nucleus with a pion somehow being
produced. Thus, the cross sections predicted
with this vertex function should be more accurate
than one might initially expect. If one were to
attempt to determine from the P++- g +pf' data
the physical coupling constant gN, N (-m,2), then it
would be necessary to understand the differences
in the higher order contributions, both in the
charge exchange reaction itself and the PCAC
application.

LI ~SBegS
W

IO

JQ
m

IO =

gS
l2C~ lRN

-I
IO =

gS
l4N ~ I4p

—x334

E. Results

The comparisons between the predicted and ex-
perimental cross sections at 0' are especially
important since they are independent of the form
factors. The momentum transfer is approximately
zero, so that the magnitude of the cross section is
determined solely by the values of g2„„(0)and

gN, N (0), which are obtained from PCAC. [See Eqs.
(9) and (12).] In Table II the predicted values of

gN, N (0) and those extracted from the data are
shown, while in Fig. S, the predicted cross sec-
tions are displayed with the data.

The sensitivity of the theoretical predictions to
variations in the ingredients of the calculation is
shown in Fig. 10. It is clear that absorption is a
significant, yet not an overwhelming, modification
of the Born amplitudes. Furthermore, the tra-
ditional prescription for the absorption correction
yields results that are only half as large as those
obtained with our prescription, and they are much
lower than the mass 6 and 12 data. Our treatment
of distortions yields a reduction in the Born cross
sections similar to that given by a traditional

(24) ~IN
60 IO IO

If we were to follow the argument of Goulard et al. ,
the factor I +q'/m, 2 would be changed to q'/m, 2,

with the consequence that the P+ "N- z +"0cross
section would vanish in the forward direction.

It should be noted that Eqs. (8) and (11), from
which the magnitude of the vertex functions at q'
= 0 and their dependence on momentum transfer
were obtained, were derived by neglecting the
higher order terms in ~pg) and (n~Qg). How-
ever, it is the case that for P+N-~+pf' we also

(a)
I & I l"
5 IO I5 20

I I I

5 IO 15 20
I I I I

5 IO I5 20

FIG. 9. Comparison of our distorted wave one-pion
exchange calculation to the measured differential cross
sections in the reaction {a)p+ Li n+ Be {ground
state), {b)p+' C -n+ N {ground state), and {c)p+'4N-~+'40 {g ound state).
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DWIA calculation. " The validity of our approxi-
mation is discussed in the Appendix. The shapes
of the cross sections are seen to be rapidly falling
with angle; about one-half of this decline is due
to the form factor, with the rest being due to the
pion propagator. Finally, one sees that if the
extraordinary terms are left in the Born ampli-
tudes, then the results bear no resemblance to the
data.

th

b ( (o'
U m

lo
I

5
I

IO

I

15

ger n (g ) gag Nr (f )/{gpss(0)glair nr (0)}.

FIG. 10. Various calculations of the C differential .

cross sections. Detailed descriptions of the calcula-
tions appear in the text. The curves represent: (a)
Born approximation, including the extraordinary terms,
(b) Born approximation, excluding the extraordinary
terms, (c) DWBA, excluding the extraordinary terms,
with the distortion modifications made with the (S~

(S~) T~(S~&) prescription used in elementary particle
physics (Refs. 7 and 8), and (d) DWHA, excluding the
extraordinary terms, with the distortion modifications
introduced by the authors. Curve (e) represents the 8
or q2 dependence of the form factor product

IV. DISCUSSION AND CONCLUSIONS

As seen in Table II and Fig. 8, the agreement
between the theory and experiment is fair for 'Li
and "C. The 30% disagreement for 'Li (15% is the
amplitudes) could be largely due to the fact that

g„,~.(0) was determined from the F„(0)value of
the 'He I3 decay, since the F„(0)value for the un-
stable 'Be is unknown. Other contributions to the
discrepancy could come from the 7% normaliza-
tion error, uncertainties in the $ matrix, and in-
adequacies of the absorption model. It is also
possible that there are small contributions from
interactions other than one-pion exchange. At
any rate, the agreement that is achieved for 'Li
and "C is good evidence that these reactions are
dominated by one-pion exchange.

The ' N case is much different, however. Here,
the measured cross sections are a factor of 100
lower than for'Li, but they are still a factor of
300 larger than the values predicted from one-
pion exchange and PCAC. This is not a failure of
the model, however, as the model predicts ane-
pion exchange amplitudes, which in this case are
expected to be extremely small. These ampli-
tudes are so small, in fact, that other mechanisms
which are normally small effects, such as two-
step process and rho exchange, are no longer
negligible. Thus, the model is predicting that

TABLE II. The initial nucleus (N), pion (vr), final nucleus (N') vertex function gz„& (0) as
calculated from nuclear P decay, assuming the validity of the modified Goldberger-Treiman
relation. It is compared to gN~& (0) extracted from our 0.3' differential cross sections using
our absorption modified one-pion exchange model, assuming one-pion exchange dominance.

Target
N' N ft

(sec) {ref.j {PCACj
gNm N'(0)

{experimentj
(do/dO) /0.
(mb/sr)

n
6Li
f2 C
~ N

1.076 x 103
8.157x 1022b

1.315x 10
2.14 x 10

{42j

{44j
{15j

17.8
69.2
59.5
0.994

60.9
59.9
18.0

13
13.1
5.56
0.13

Extrapolation of 152 MeV data from Ref. 43.
The 6He ft value (Ref. 45) was actually used, since the value for the short lived Be was

not known.
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Ao'

d„=(2~ „)Ifl'

this gives )f, (0)(=6.27, jf„( )0)= 326, and

~fwN(0) ~=0.62. Thus, the measured cross sec-
tions may deviate from those of one-pion exchange
and, hence, those predicted by PCAC, by up to
20% for 'Li and 50% for "C. If the applicability
of PCAC to nuclei is to be tested better than this
with the data measured here, then the background
contributions will actually have to be calculated.

Since PCAC predicts amplitudes, we have found
it to be valid at the 25% level. Based on what one
has learned about PCAC in particle physics, was
this expected? Well, even if one firmly believes
in the validity of PCAC when applied to elemen-
tary particles such as a pion, one could imagine
various complications that could arise when it
is applied to a compound system as a whole. The
fact that these complications are so small is re-

(25)

these are the processes that will be measured. In
that sense, the fact that the cross sections are so
much smaller than the mass 6 and 12 cases is a
success of the model. Since this case is a mea-
surement of reactions such as two-step processes
and rho exchange, it provides an estimate of the
magnitude of such processes in light nuclei and
indicates the limits of one-pion exchange domin-
ance.

The inhibition of one-pion exchange in the
P + Ng + + Og reaction is due to the structure
of the two nuclei. The "Ng.&. nucleus is predomin-
antly a 'D, state, whereas the "0, , nucleus is a
combination of 'S, and 'P, states. " The "0 (7.77
MeV) state, however, is a J' =2' state, so it may
be 'D, . Such a state could be obtained from "N, ,
by a spin-flip transition, so one would expect it
to be dominated by one-pion exchange. There-
fore, the similarity of the experimental differen-
tial cross sections for the P+ "N-n+ "0 (7.77 MeV)
transition to those for the mass 12 case suggests
that it is dominated by one-pion exchange and that
the 7.77 MeV state of "O is predominantly a 'D,
state.

If the differential cross sections for 'Li and "C
mere due exclusively to one-pion exchange, then
they would provide a definitive test of the applica-
tion of PCAC to nuclei. However, if the "N cross
sections are interpreted as interactions other than
one-pion exchange, which could also occur in the
'Li and "C transitions, then the test is obscured.
One can estimate the maximum effect that this
background could have on the one-pion exchange
amplitudes by assuming only one independent
helicity amplitude for '4N and that this amplitude
interferes coherently with the primary amplitude
of one-pion exchange at O'. Using

markable. Furthermore, there have so far been
only two im pr ess ive tests of PCAC in the particle
physics domain, other than the Goldgerger —Trei-
man relation for which PCAC was created to ex-
plain. These are the Adler consistency condition,
which is a relation betmeen the nuclear coupling
constant and the pi-nucleon off-mass shell scat-
tering amplitude, "and the Adler-Weisberger sum
rule, which predicts the weak axial vector coupling
constant in terms of off-mass shell pion-proton
total cross sections. " Both relations are derived
using PCAC, and they appear to be valid to 10%
and 5%, respectively. The test that we have made
lends further credence to PCAC.

Since PCAC seems to be valid for nuclei, what
are its applications? Perhaps its most important
use would be to help unravel the nuclear force. In
most nuclear transitions, there are more pieces
to the interaction than one-pion exchange, and it is
a complex problem to disentangle and identify the
pieces. However, for transitions in mhich the
final state P decay to the initial state is allowed
and measurable, the pion contribution can be pre-
dicted from PCAC, thereby simplifying the prob-
lem.

In conclusion, we find that there are certain
types of nuclear reactions in which the nucleus
acts as a filter for the nuclear force, allowing
only one-pion exchange and reactions which are
usually a very small component of nucleon-nucleus
scattering in the forward direction at intermediate
energies. Of the three cases studied here, 'Li and
"C had large, sharply forward-peaked angular
distributions, whereas that for P + "N -~ + "Q, ,
was extremely small and gently forward peaked.
One-pion exchange calculations were made by
treating the nucleus as an elementary particle.
When the initial nucleus-pion-final nucleus coupling
constant was assigned the value predicted by PCAC,
the results were in fair and good agreement with
'I, i and "C, respectively, but they were a factor
of 300 lower than the "N data. If the "N data are
taken as a background level to one-pion exchange
for 'I i and "C, then we have tested the applicabil-
ity of PCAC to nuclei at the 25% level and found it
to be valid.
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scattering from a potential V is given by

T8 = u r Vry'r 'r, (A 1)

where u8 is a plane wave representing the final
state and X' is the solution of the Schrddinger
equation with potential V representing the initial
state. We wish to consider the case

APPENDIX: DWBA IN MOMENTUM-SPACE
V=V, +V2, (A2)

The goal of this appendix is to find a method of
modifying the Born amplitudes for inelastic scat-
tering to account for the distortions of elastic
scattering, without the need of complex calcula-
tions. It is hoped that the success of the absorption
model in elementary particle physics means that
this is possible, although we realize that the ab-
sorption model must be modified before it can be
applied to a nucleus. The form we use for includ-
ing distortions will be derived in the eikonal ap-
proximation, and the final form is by no means
exact. Although the derivation will be done in co-
ordinate space, the final result wi. ll be written in
terms that are easily transposed to momentum
space.

The general form of the scattering amplitude for
I

where V is the total nuclear potential and V, is the
potential corresponding to the inelastic transition
in question. We will make the DWBA approxima-
tion that the effect of V, on X' can be ignored.

In the eikonal approximation, one writes"
z

y'(r) =u (r)exp —— V, (b, z')dz', (A3)

then Eqs. (Al) and (A3) give

where V has been taken as being spherically sym-
metric, v is the velocity of the projectile, and
cylindrical coordinates have been used. If one
defines

z

d(b) =(ezu —— ( )zz')b'dz, (Ab)
V Average over z

z

u r Vy Y +V2t u r exp Vy Q, z dz dzd'b

Z bu b, z V, b, z +V, b, z u b, z dzd'b. (A5)

EbT ""bdb (A6)

where T8s"'(b) is the Born scattering amplitude
defined by

Since V, does not contribute to the inelastic scat-
tering, and since it is of no longer range than V,
it will not contribute to the last expression of Eq.
(A5). (If V were of longer range than V„ then its
effects would be seen after the inelastic scattering
had occurred, so they would have to be dealt with.
The absence of this effect is the major difference
between our calculation and those of traditional
nuclear physics and is a result of treating the
nucleus as an elementary particle. ) Thus, Eq.
(A5) becomes

I

use

E(b) =D(b)'~' (A8a)

OO

2
D(b) =exp —— V, (b, z )dz'.

v
(A8b)

(bib]u)=f ub(b, z)Z'(b, z= ) dzd b'
u*(b, z)u (b, z)D(b)dz d'b

However, the integral in Eq. (A8b) can be identi-
fied as twice the elastic scattering phase shift for
the angular momentum corresponding to the impact
parameter b. This is seen by calculating the
elastic scattering S matrix from Eq. (A3), using
Eq. (A8b):

T orb = T m (b)ge Sa (A7)

It would be useful if E(b) could be replaced by
something simpler than (A4). Since the value of
the integral over V, in Eq. (A4) for z =0 is one-
half of its value for z =~, it seems reasonable to Now, for small scattering angles,

(A9)

=(d]u) ef ub(b, z)u„(b, z)())(b) —1]dzd'b.
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(k-k') r =kz -k' ~ r
I I=kz —k zcos6) —k sin8x b

= (k —k')z —k'b sin8 cos (jb, (A10)

exact calculation would decompose the jth par-
tial wave into E =j + —,

' and l =j——,
' components, but

an unweighted average should be sufficient. Thus,
we write the scattering amplitudes as

and from Ref. 50,

J,(1cos8)= P, (cos8).

Equation (A9) then gives

(A11)

Sl/2~ Born
8e g 80/ j &

Sl/2 1['Sf,/+ I/2)1/2 + /Sf, f 1/2)1/2
4L

(A15a)

Letting b- l/k and fl Q~„-Eqs. (All) and (A12)
give

(p ~S —1 ~a) =41/25(k —k )g P, (cos8)[D(b) —1]l/k'

(2l + 1)P,(cos8)
2v'5(k —k')

k'

x [D(ilk) —1]. (A13)

Equation (A13), however, is the expression relat-
ing the 5 matrix to the phase shifts if one takes
D(l/k) =e"'1=S,.

Thus, transforming Eq. (A6) to angular momen-
tum space and using Eq. (A8a), one has

l Se, l (A14)

Actually, the 5 matrix depends on the total angu-
lar momentum j as well. Furthermore, Eq. (A14)
was derived assuming that the elastic scattering
potential was the same before and after the in-
elastic reaction. Since this is not true for (p, n)
scattering, one must take an average of the two
potentials. However, since the resultant 5 ma-
trices are very similar, the exact method of
averaging is unimportant. Also, the Born ampli-
tudes are easier to decompose in terms of j,
whereas the S matrices depend on j and /. An

(b(S-iln)=bsb(b 1 )f-s'

x [D(b) —1]bdbd(t/

=bs'b(b —b')I g, (b bsine)[i'i(b) —i]bdb.

+ ( Sff+ ,12/)1 2/+ (Sf,f -1/2) 1/2]f f (A15b)

where Sf ' (S/f') is the elastic scattering matrix
for the potential corresponding to the incident
(outgoing) projectile.

In order to get an idea of how accurate Eq.
(A8a) is, consider the case with the largest ab-
sorption, l=0. If Eq. (A4) is considered as an
average of a sum of terms where z ranges from
-R to R, and the terms are grouped into pairs of
+z, then the largest deviation from the average
would be expected to occur for the pair z =+R.
For z = -R, the term is 1, and for z =R, the term
is S,. A typical value for S„20 is e """.Using
this, one has

2(1 +S1/2 ()) 0 664 +20 255

(S1/2 ()) = 0 684 + 20 373

(A16a)

(A16b)

These terms differ in magnitude by about 13%.
Since they represent the worst case of the worst
case, the error in replacing (A4} by blS, may only
incur an error of 5% or less.

It is not clear, however, how much error one
makes in using the second relation in Eq. (A5).
It should be a reasonable approximation if V,A/v
is not too large.

One would also expect to have to satisfy the con-
ditions under which the eikonal approximation is
valid, "

i

k', (V(r)( ~ dy(r)
(A17)

For the cases considered here, this translates to

130 MeV»4. 2 MeV, 17 MeV»1. 4 MeV,

(A 18)
so the eikonal approximation is a reasonable one.
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