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Wave-function formalisms corresponding to different channel coupling array transition operators of many-

body scattering theory are derived and discussed. The Kouri-Levin transition operators are seen to be in

typical Lippmann-Schwinger form and allow for the introduction of wave-function components in a
particularly straightforward way. The Baer-Kouri transition operators are not in the Lippmann-Schwinger
form and an alternate procedure is used to derive their corresponding wave-function components. In the
three-body case, the Kouri-Levin operators T,k obtained from the Faddeev-Lovelace choice of channel

coupling array are seen to lead to precisely the Faddeev wave-function components. The Baer-Kouri
operators are shown to lead to wave-function components obeying inhomogeneous equations. These
inhomogeneous equations are used to give an alternate explanation of the nonunitary amplitudes obtained in

recent calculations based on approximate forms of the Baer-Kouri operators.

NUCLEAR REACTIONS Many-body scattering theory, channel coupling array
wave-function formalisms, aspects of the bound-state type of approximation
method, explanation of some nonunitary numerical results of Baer and Kouri and

of Lewanski and Tobocman.

I. INTRODUCTION II. NOTATION

In this paper we investigate wave-function forma-
lisms for some of the channel coupling array'
(CCA) theories of many-body scattering. 2 8 Our
work is in part complementary to that of Vanzani,
who has discussed this topic for a number of n-
particle scattering theories not based on the CCA
method. In contrast to the approaches reviewed
by Vanzani, some of the CCA types of scattering
equations for transition operators are in matrix
Lippmann-Schwinger (LS) form, '0 which allows for
the introduction of wave-function equations in a
particularly transparent manner, and we discuss
examples of this case in some detail.

For those CCA types of equations not in LS
form, we introduce an alternate procedure for
introducing wave-function equations. This latter
procedure is found to lead to inhomogeneous dif-
ferential equations for the wave-function compon-
ents, rather than to homogeneous ones, as in the
LS case. The existence of such inhomogeneous
equations provides an alternate explanation to the
one given previously" for the occurrence of the
nonunitary results found in the recent numerical
calculations of Baer and Kouri' and of Lewanski
and Tobocman, t as we discuss in detail below.

The organization of this paper is as follows. In
Sec. II we introduce our notation. Transition
operator equations are stated in Sec. III. Wave-
function equations are derived in Sec. IV, and
approximations are discussed in Sec. V. Section
VI summarizes our work.

Our notation mostly follows that of earlier
work, and we provide only a brief summary
here. We consider a scattering system consist-
ing of n, nonrelativistic, distinguishable parti-
cles labeled 1.. .+, governed by a Hamiltonian
H and obeying the Schrodinger equation

(E -H) i4) =0. (2 l)

The particles can be observed in a variety of m-
cluster channels or partitions, 1 & m & n. Cor-
responding to these channels are partitions of H
into a channel Hami. ltonian H&, governing the mo-
tion of the noninteracting clusters in channel j,
and a channel interaction V~, which goes to zero
as the separations between all clusters in channel

j become asymptotic:

H=H; + V', 0&j &N. (2.2)

H, is the total kinetic energy operator, and V = V
is the sum of all interactions; j=0 thus refers to
the n-particle breakup channel.

The asymptotic states (4,(E)) of the system are
eigenstates of H& with total binding plus kinetic
energy equal to F. :

(E —H~)
i
4 ) (E )) = 0 . (2.3)

The ~4,(E)) are products of a bound state for each
cluster in the channel times plane wave states
describing the intercluster motion.

Resolvent operators G(z) and G,.(s) are defined
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as usual:

and

G,.(z) =(z Hq-) ',

(2.4)

(2.6)

Kouri-Levin (KL) and the Baer-Kouri (BK) opera-
tors.

l. KL operators T.k and T.kjk jk

These operators obey3'

and are related by the LS equations

G(z) =Gq(z) + G,(z)v~c(z)

=G,(z)+C(z)V'G, (z) . (2.6)

T~~(z) = V~W, q+ VJ Q W& G (z) T ~(z) (3.1)

When taken between states (4&(E)
~

and ~4„(E)),
matrix elements of the transition operators
Uz~" (z) defined by

U,", (z) = V'+ V'G(z) V',

U,', '(z) = V" + V'G(z) V'

(2.7)

(2.8)

3

V'=-V,-, +V,,=V, +V, =- ~,.V. ,
m=$

(2.9)

where 5~ =1-5,- . From (2.9) it follows that
V=V&+ V' and thus that IIy IIp+ Vj.

The two-particle transition operator t&(z) acting
in the three-particle Hilbert space obeys

f,(z) = V, + V,c,{z)f,(z)

=
V& + t~(z}co(z)V~

= Vg+ Vgc, (z)v),

(2.10a)

(2.10b)

(2.10c)

yield identical transition amplitudes for z =F + i0.
Equations (2.7) and (2.8) are in the "post" and

,
"prior" forms, '3 respectively. %e shall refer to
G(E +is ) and G&(E +is ) in the limit e -0+ as6" and 6&', the outgoing wave Green's functions.

The three-body problem (n=3) is of particular
interest, and we introduce an additional notation
for it. The pair of particles j and k will collec-
tively be referred to as i (the "odd man out" nota-
tion) and i, j, and k will be assumed in this case
to take on only the values 1, 2, and 3. The chan-
nel interactions are

~~a«) = W» V'+Q Tgm(z)c-(z}W-&V' ~ (3 2)

where l is a free channel index to be chosen as is
convenient. 2 They are related to the transition
operators U,"~' via'

U,',&(z) =g T, (z)c (z)G, '(z) (3 3)

U,
' '(z) =g G '(z)c ( )T,(z) (3.4)

If channel k( j) in Eq. (3.3) [Eq. (3.4)] is a two-
cluster channel, then in limit z -E+ iQ,

U&'„&(E+ i0)
~

4~(E))= T& (E+ iD)
~
4~(E))

(ey(E)
~

Ug, &(E+io) = (C, (E) ~Ty,(E+ io),
results that follow from I ippmann's identity, '
e.g.,

G'&C,' '
~4&,(E)}=(4&„(E))6„,.

Suppressing the complex energy parameter z
and defining the matrices T, I, 'U, and 'V by

(T)i& = TJ& (I}»=GJ6~».

(%&)~~ ——V~W, „, ('U) = W)& V~,
(3.6)

T= Z+ VQT (3.6a)

Eqs. (3.1) and (3.2) can be written in matrix nota-
tion as

and is related to V; by

(f) zG( )z=V,G, (z) (2.1la) T = 'V + TI 'U . (3.7a)

G,(z)t,(z) =G,(z)V, . (2.11b)
These latter two equations are in typical LS form
and as such can also be expressed as

III. TRANSITION OPERATORS

A. Channel coupling array case

T ='U+ TS'U (3.6b)

There are two distinct sets of transition opera-
tors that can be introduced, depending on how the
channel coupling array W is used to partition 6
over the channels in Eqs. (2.7} and (2.8). Follow-
ing Tobocman, ' we shall refer to these as the

T = 'U+ 'V ST . (3.7b)

From Eqs. (3.6a) and (3.7b) it is trivial to deduce
wave-function equations, as we demonstrate be-
low.

We next consider choices for W. For arbitrary
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n, the most studied case is that of the channel
permuting array (CPA), ' while for n=3, an addi-
tional coupling scheme, the Faddeev-Lovelace
(FL) choice of W, has also been used. ' We consi-
der each in turn, using only the right-hand forms
for T and T.

(a) CPA choice of W. Following Refs. 4 and 7,
Eqs. (3.6a) and (3.7b) become (3.11a)

G G~ ', the matrix elements of X» and Uyp and
also of X» and Uz~', are equal for j and 0 arbi-
trary rn-cluster channels.

Matrix versions of (3.10a) and (3.10b) are easily
written out with the aid of the matrix N, whose
elements are all unity' (N» 1,——all j and h):

X= VN +XS'U

T» ——V 5~„2+ V G),gT), (3.8a)
X=NV+ 'U SX, (3.11b)

T~g
——V g~g + V '

G),)T~,) ) . (3.8b}

When j runs over the set of N2 ——2" '-1 two-
cluster channels, ' Eqs. (3.8a) and (3.8b) are
minin1ally coupled. ' They are also asymmetric,
which can lead to time-reversal noninvariance
when approximations are made, although the cal-
culations carried out so far indicate that such ef-
fects are smaller than those due to channel coup-
ling.

(b) FL choice of W. Here we restrict ourselves
to the case n= 3. The T and T equations be-
come' '

and

3

7'»=~»va+Z~g V ~ 7'a
m

3

T»——Vj5~~+ V~ 5~ G T ~,
m=~

(3.9a)

(3.9b}

where the pair index notation is used. The opera-
tor 7}» defined by Eq. (3.9a) has been shown by
Kouri, Levin, and Sandhas'to be phase equivalent
to the Alt-Grassberger-Sandhas (AGS) transition
operator' [Eq. (3.16a)j. As noted below, this is
also true for the T» defined by Eq. (3.9b). In
addition, matrix elements of this T» occur directly
in the asymptotic form of the solution to the Fad-
deev wave-function component equations.

where V in these equations is a diagonal matrix
with elements V» ——5»V~. Since VN t'U, it is
clear that neither (3.11a) nor (3.11b) is in LS
form. Detailed forms for Eqs. (3.11) may be ob-
tained by using the CPA and FL choices of S,' as
we now demonstrate.

(g) CPA choice of W. The standard CPA
choice ' for pleads to

X(„—V +X( „-(G„-(V"1 (3.12a)

X)~——V + V~G), (X),( ). (S.12b)

X» ——Q5~ V++X) G V5 ~ (3.13a)

These are also minimally coupled sets of equa-
tions. While they do not suffer from time-rever-
sal noninvariance, approximate solutions to them
have yielded nonunitary results. ' ' ' An explana-
tion of this nonunitary feature, applicable to both
Refs. 1 and 12, has previously been given. ' We
present an alternate explanation based on the
wave-function formalism associated with Eq.
(3.12b) in Sec. V.

(b) FL choiceof W. Insertion of the FL choice
of W into Eqs. (3.10a) and (3.10b) yields for the
case n=3

2. BK operators Xk and X.kjk jk x»=Z v ~ &+2~A vGwx a. (s.lsb)

The operators X» obey

X» ——V~+ X~ G z W gV~. (S.loa,)

For the CPA choice of W(l =0), Eq. (3.10a) was
first published by Tobocman. The operators
X» are given by

These are precisely the equations derived by
Lovelace ' for the post and prior transition opera-
tors U,'-»'; hence X» of (3.13a) is to be identified
with the U~", , and X» of (3.13b) is similarly to be
identified with the U&~', as defined by Lovelace's
three-body equations.

X„=V'+P V~W,.G.X., (3.10b)
8. The AGS operators

Equation (3.10b) is a generalization of the original
two-channel Baer-Kouri equations. ' Since Hqs.
(3.10a) and (3.10b) are developed directly from
the U&~' without the intervention of terms such as

These are the only other operators of interest
to us in the present work, and we introduce them
because, as noted earlier, they provide interest-
ing connections to the X», X» sets and to the T»,
7~~ sets. The AGS operators U» obey'8 (recall
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that n=3 here)

U~»(z) =5~»GO '(z) +Q 5~ t (z)GO(z)U»(z)

(3.14a)

KL operators it will be simple to obtain wave-
function components. This is indeed the case and
we first review the relevant procedure for the
LS equation n = 2. The analog of (2.10a) for n = 2

ls

=K„G,-'(z) +g U,.(z)G, (z)t.(z)5., t(z) = v+ v(z —ufo) 't(z), (4.1)

U)»(z) —5)»G) + X~»(z) . (3.15b)

The relation between the U» and T» of Eq. (3.9a)
is given in Ref. 5:

lim T»(E+ ie) = lim U»(E+ te)Go(E+ iE) V».
6 p+ 6-p+

(3.16R)

The analogous relation for T,»of (3.9b) is.
lim T&»(E+ je) =lim V&GO(E+ie)U»(E+ie) .
S~py S P+

(3.16b)

These last four equations show that on-shell, the
exact matrix elements of these various operators
are phase equivalent. Nevertheless, the corres-
ponding wave-function formalisms need not be
and are not the same. Furthermore, use of an
approximation in one of the wave-function forma-
lisms will, in general, not lead to the same form
for each of the approximate transition operator
equations to which the wave-function equation
corresponds. This is, of course, not surprising,
since approximations can be viewed as off-shell
transformations. What may be surprising, how-
ever, are the particular approximate equations
themselves, a, point discussed in Sec. V.

IV. WAVE-FUNCTION FORMALISMS

A. Methods

The resemblance of Eqs. (3.6a) and (3.7b) to the
LS equation (2.10a) suggests that at least for the

(3.14b)

Use of (2.12a) and (2.12b) in (3.14a) and (3.14b)
allows one to express the latter equations in terms
of V G (z) or G (z) V rather than t (z) and Go(z).
Although it is straightforward to express (3.14a)
and (3.14b) as matrix equations, it is unnecessary
to do so in order to see that they are not in stan-
dard LS form. Nevertheless, they do possess an
equivalent wave-function formalism, viz. , the
Faddeev wave-function component equations, as
noted, for example, by Vanzani.

Alt, Grassberger, and Sandhas have shown that
their operators U» are related to those defined
by Lovelace, i.e., the X» and Xz~.

U„(z) =5,„G,-'(z) +X„(z) (3.15K)

where H=Hp+ v, with Bp the relative-motion
kinetic-energy operator and v the interparticle
interaction. The LS equation for the state vector
~k) =lim ~4"'& (i.e., the LS wave-function equa-
tion) is obtained from Eq. (4.1) by means of the
definition

v
i

+"'&-=t(E+ ie)
i
4(E)&,

where
~

C(E)) is a plane wave state with energy E,
the n = 2 analog of ~C &(E)& of Eq. (2.3).

Applying both sides of (4.1) to ~4(E)& for z = E
+i@ and using (4.2) yields

(4.2)

I

~'"&=
I
c(E)&+«+ i& —ufo) 'v

I

~"'& (4»
the well-known LS equation. ' That a similar
procedure can be applied to the T and T matrix
equations is a consequence of the occurrence of
'U('0) in both the driving term and the kernel term
of these equations. However, since the X and X
equations (3.11a) and (3.lib) are not of this form,
we may anticipate possible problems using the
LS type of method for these latter operators.

We shall consider in detail only the right-
hand form of the various operator equations,
since in left-hand form, e.g. , Eq. (3.6b)—one ob-
tains equations for the components (g~ rather
than ~g&. For the case of arbitrary particle num-
ber n, the various matrix operator equations take
the form

O(z) =a(z) + K(z) O(z), (4.4)

K(z) =E(z)e(z), (4.5)

where g(z) contains outgoing wave Green's func-
tions (in limit z -E+ i0). Equations (3.6a), (3.7b),
and (3.14a) are all of this form. If K does not
factorize or if instead of (4.5), one finds

K(z) = C(z) g(z), (4.6)

with C 'B WIWB 'C, I being the unit matrix, then,
in general, other methods for obtaining wave-
function equations must be sought.

Thus when (4.5) holds, then analogously to (4.2),
we define a column vector of state-vector com-
ponents g& via

where 0 stands for any of the transition operators,
B is the Born or driving term, and K is the kernel
term.

Of particular interest is the situation wherein
K(z) factorizes as
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B(E+ io} g&=O(E+ io) IC&, (4.7) 1|1»=1@&+«17».
where for future notational simplicity we have
omitted the necessary intermediate step of first
setting z = E+i e and writing Ig"'&, and then taking
the limit a -O'. The vector 14& is defined by

(4.6)

where k is arbitrarily taken to be the incident
channel (assumed to be a two-cluster channel un-
less otherwise stated). Correspondingly, we have

and the dependence of
I g&) on both E and the inci-

dent channel index k is suppressed.
From Eqs. (4.4), (4.5), and (4.7) we easily find

e&+ &(E+ io)B(E+io}
I e&

(4.9)

(4.10)

the desired result in general form. The defini-
tion (4.7) immediately allows one to determine
the transition amplitudes from the asymptotic
form of (4.10) in a coordinate (wave-function)
representation.

When Z(z) does not factorize, or (4.6) holds,
one must seek other procedures for introducing
wave-function components. The method we fol-
low here is to define components Ix& by

I
x& =

I
c'&+ & (E+'0}o(E+io}

I
4'& . (4»)

where g is given by (3.5). Substituting (4.4) into
(4.11) gives

I
x& = [I+ s(E+ io)B(E+ io)ll 4»

+ 9 (E+ io)z(E+io)o(E+ io)
I
c & . (4.12)

From (4.12) one can try to construct an integral
equation for Ix&. We apply this procedure below
to the operators X.

Once equations for
I

ttl& or Ix& have been deter-
mined, the next step is to relate the components
to the Schrodinger state 14'&. [One is, after all,
trying to solve the Schrodinger equation (2.1).]
Finally, one may introduce approximations smd

examine their consequences, a point we consider
in Sec. V. We now apply the procedures just out-
lined to the operators of Sec. III.

B. KLcase

We examine these operators first because they
are defined by Eqs. (3.6a) and (3.7b), which are
precisely in the form of Eq. (4.4). Hence their
corresponding wave-function components will
obey equations of the form (4.10). Thus for (3.6a)
we have

p& =
I
C'&+ «

I l&

and for (3.7b) we find

The components corresponding to different
choices of +' will be distinguished by superscripts.

I &~ &
=

I
c'4E}»~.+ Gl'&i Z 5~-I &-'&

m~&

(4.13)

which are the Faddeev wave-function component
equations, ' hence the superscript F. In addition,
(4.13) also defines the set of components corres-
ponding to the AGS operators. That this is true
even though Q(z) for the AGS equations is not equal
to 0(z) is shown by an easy calculation using Eqs.
(3.14a) and (4.7). Such a result might be expected,
given the multiplicative relationship (3.16b). No-
tice, however, that (4.13) follows only from the
right-hand equation (3.16) for T». Had the left-
hand form been used, the result would have been
equations defining the Hermitian conjugate to the
components corresponding to T» of (3.9a). These
latter components have quite different properties
from the

I
tt»z&, despite the fact that both the T»

and the T» are each multiplicatively related to
the U». We enlarge on this point in subsection
(b) below.

Equation (4.13) has two well-known properties 3:

(E-a) g I y,"&=0 (4.14)

Taken together these imply

(4.15)

Z l~~&-=l~& (4.16}

illustrating the well-known fact that in integral
form the Faddeev wave-function component equa-
tions do not admit spurious solutions, i.e.,

) ~0.
(b) The operators T. From Eq. (3.9a) we see

that B» of (4.7) is just '5»V~, so that the compon-
ents corresponding to the T» obey

16 &=5»14'a&+G~" 2 5~-~-I&-"& (4.17)

Despite the great similarity in structure between
Eqs. (3.9a) and (3.9b), their equivalent wave-
function components, given by Eqs. (4.13) and

J. FL eIIoice of W

We begin with this n=3 choice of W, Eqs. (3.9a)
and (3.9b), because of the interesting properties
of the corresponding sets of components.

(a) The operators T. From Eqs. (3.9b) and (4.7)
one easily finds that the components If&~~& corres-
ponding to the T» obey"
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(4.17), are totally dissimilar. As first pointed
out by Sandhas, ' these latter components are
each identical to the full Schrodinger state

~

4').
To prove this, one simply operates on both sides
of (4.17) by [G&'] '; a little rearranging then
y&elds (E—Ifo) ~)t)&")=Z„V ~)tI„"), showing that

~
)tz ") is independent of j. The .equation that re-

sults from utilizing this is the Schrodinger equa-
tion. A similar result holds for the components
corresponding to the T defined by a CPA (see be-
low) .

We thus see that in (4.1'7), the channel indices
on the ~)i)~ ") act essentially as a bookkeeping de-
vice: They remind us that Gf" governs the asymp-
totic behavior of

~

)t)& "). Unlike the
~
g&) of Eq.

(4.13), which do depend on the channel index and
have as bound-state sources only contributions
from the "tube" defined by the relative coordin-
ate in channel j becoming large, ' the ~)tz ) = ~4')

of (4.17) receive contributions from all asympto-
tic channels, and hence yield amplitudes for scat-
tering into all channels, not only j.

2. Channel permuting choice of 8'

(E II) Q ~

)t)CCA) —0
f

but now in addition to Z
~

)1)c& ")= (4), one can have
a spurious bound-state solution" of the form
Z ~)t~ /=0. This has not proved to be a serious
drawback for the bound-state applications for
which (4.18) has been used. ~ In addition, Eq.
(4.18) has the advantage over Eq. (4.13), for ex-
ample, in that it not only applies to an arbitrary
number of channels, but this set can also be trun-
cated in a simple fashion, thus permitting a.

variety of approximations to be studied. Both
sets, Eqs. (4.13) and (4.18), have been used for
numerical studies of model nuclear reactions.
Each of these sets of equations has the "in-princi-
ple" advantage that only the jth component yields
the amplitude for scattering from an initial two-
cluster state in channel k to a final two-cluster
(bound) state in channel j: Components ~fr ), m

4j, do not contribute to this amplitude, in con-
trast to the components, i.e., channel scattering
states, ' of Eqs. (4.17) and (4.20) below.

(I)) The T ojerators These operato. rs, which

(4.19)

(a) The T operators. In this case, the operators
are defined through Eq. (3.8b) and lead to compon-
ents obeying

~

Pcc ) —
~

O (E))g + G ) VJ
~

jccA) (4 18)

where the incident wave is in channel 1. As with
the components of Eq. (4.13), those of (4.18) also
obey

are defined by Eq. (3.8a), yield components super-
ficially similar to those of (4.19), viz. ,

~

SCCA)
~

@ (E))g + Gt ) VS
~

gCCiA) (4.20)

The similarity ends here, however, since (4.20)
defines channel scattering states having the same
properties as those of Eq. (4.17), i.e., they are
independent of the subscript j and are each equal
to the Schrodinger state ~4). This feature has
been discussed in Ref. 4; we now present a much
simpler demonstration of it.

First, we note that in the present case, Eq. (4.7)
takes the simple form

(4.21)T, ,(E+ i0)
~

4)(E))= V~
~

)1)cc)A)

where ~4)(E)) is now specifically assumed to be
an incident two-cluster state. From this latter
assumption, it follows that if both sides of (3.3)
are applied to

~

4,(E)) (k = 1), we get

U, ', )(E+ to)
i
4,(E))= T„(E+to)

i
4, (E))

VJ
~

SCCA) (4.22)

the second line being a. result of (4.21). But Eq.
(2.7) may be written as U,.)) ——V~GG) ', while ~4')
is given by

~4') = limG(E+ ie)G, '(E+is)
~

4,(E)) .

Putting these results into (4.22) thus yields

V)
~

~) —V~
~

)t)CCA)

l.e.)

(4.23)

(4.24)

C. BK case

We have presented the results in the previous
section in some detail, as they illustrate the ease
with which one can derive wave-function equations
when the transition operators obey equations of
LS type, e.g., (3.7). In contrast to this, (S.lib) is
not in standard I S form, and thus one encounters
difficulties in deriving associated wave functions.

a result that obviously holds for all j and is thus
independent of j.

That components based on the T operators are
in fact equal to

~

4) is essentially the reason for
the more complicated derivation presented in
Ref. 26 of the "true" wave-function components
for the BRS transition operators. It is also this
same fact that renders the

~

)t)~&cA) of (4.20) less
useful than those based on the T operators, should
one introduce approximations which include
breakup, rather than keeping strictly to bound-
state approximations. However, we do note that
since

~
/PA) —= 4), Eq. (4.20) is just the set uniquely

defining
~

4).
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(4.25)

We shall illustrate this using Eq. (3.12b), the
CPA version of (3.lib).

The matrix equation (3.11b) can be written as

X(z) =B(z) + C(z)g(z)X(z),

Ix"&= I~&(E)&+G& 'v I~&(E)&

+G,'«v lxV"& (4.31)

where B=WV and C = 'U. In seeking to apply rela-
tion (4.7), we may try to define components

I
&tI&

via either

xvl g&=x (4.26a)

or

VI &/&& =xl c& . (4.26b)

A
2

A

Tg( ——V G2T2g (4.27a)

Neither of these definitions leads to a satisfac-
tory equation for

I
&I&&, in the first instance because

Ã ' does not exist and in the second because a
proper plane wave term I4&& does not occur. To
remedy this, we shall derive components using
Eqs. (4.11) and (4.12) for which it suffices to work
out the two-channel case. Before doing so, we es-
tablish the validity of such a procedure by apply-
ing it to Eq. (3.8b) for T, for which we have al-
ready derived components.

In the two-channel case (3.8b) becomes

lxre=o2'«'- v') IC (E»
y G(+& v2 lxccA)

Equation (4.32a) can be simplified by using in it
Lippmann's identity, '

6&2 &(v'- v) le, (E)&=-lc,(E)&.

(4.32a)

(4.32b)

This gives

I~'"&=-l~&(E)&+~l 'v lx('"&

The presence of —
I
4,(E}& in (4.32b) and the

resulting implication that
I
x(cA&+

I
xc2cg cannot be

equal to I'0& because of the apparent lack in this
sum of a plane wave term suggests that the

I
jpA)

cannot be components in the same sense as the
l&tI& ") of (4.18). They are, however, very closely
related to the

I
&j&ccg of Eq. (4.20) in that

I
x $ is

related to I'I&& additively [recall Eq. (4.24)]. To
see this, we first display the equations uniquely
defining I4'& (Ref. 30); in the two-channel case,
those are, f rom (4.20) with N2 ——2 and

I
&1&p"& =

I
4&&,

V +V]T« (4.27b)

le&= lc,(E)&+GI'&v'le& (4.33a,)

where the dependence on E+ i0 is suppressed.
Now "define" components

I
&1&c&cg and

I
&tF2CA& via.

I
6'') = 5» I

~&&+ Gi'7'i&
I

~&& (4.28)

following (4.11). Substituting (4.27) into (4.28)
and then using (4.28) on the right-hand sides of the
resulting equations yields Eq. (4.18) for the two-
channel case, just as predicted. Hence the pro-
cedure is a proper one to follow, although in the
present instance it does not emphasize the essen-
tial LS structure of the equations.

We now turn to the operators of interest, defined
by Eq. (3.lib). For the two-channel case they
are

I~&=G,'&v'Ie&. (4.33b)

[I6'"&+ IC'&(E)&]=G2 'v IX""&

The identifications

ccA)

(4.34b)

(4.35a)

Next consider Eq. (4.32b). As an equation for
the sum lx)cg+

I
C,(E)), it becomes similar to

(4.20), i.e., similar to (4.33b). We therefore
form this combination in each of Eqs. (4.32a) and
(4.32b), yielding

Ix&'"&= Ic&(E)&+G&'v'[Ix2"&+ Ic&(E)&] (4 34a)

Xgg —V + V G2X2g (4.29a)

Ix"O= I~&- I~ (E» (4.35b)
X2) —V + V G)X(i ~ (4.29b)

The equations defining the corresponding "com-
ponents" IXcfA& are

I
xl'0 =

I
4,(E)&+G", x„

I

~,(E)& (4.30a)

I6CA& —G& &x lq (E)& (4.30b)

Substituting (4.29) into (4.30) and using (4.30) in
the resulting equations leads to

immediately follow on comparison of Eqs. (4.33)
and (4.34); (4.35) and (4.35b) are the desired rela-
tions.

These identifications notwithstanding, (4.33) and
(4.34) differ not only directly in their approaches
to solving the Schrodinger equation, but more im-
portantly in their response to approximations. We
examine this point in detail in the next section.

We end this section by remarking that the re-
sults just obtained [Eqs. (4.35a) and (4.35b)] are
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easily generalized beyond the case N2 ——2. For
an arbitrary number of channels 1V and incident
channel k = 1, one finds

-ccrc ~~) (4.36a)

~X", ')=~+&- ~C (E)» i» (4.36b)

This result arises from the cyclic nature of the
coupling in Eq. (3.lib), the Ã2 ——2 example of
which is (4.30).

V. APPROXIMATIONS

Analyses of collision data usually rely on some
form of empirical procedure such as the distorted
wave Born approximation, the impulse approxi-
mation, or a coupled channel approximation. The
successful application of such methods has made
their justification one of the several goals of
many-body scattering theory. Since some of
these empirical methods are based on wave-func-
tion a.pproaches, the need for approximate wave-
function versions of many-body scattering theory
is obvious. We consider the Faddeev wave-func-
tion components as an example.

In addition to their use in possible attempts to
justify empirical approximations, many-body
wave-function formalisms may also play the im-
portant role of elucidating the results of approxi-
mate transition operator calculations. To the
extent that they can provide insights into such
calculations, they provide a description of multi-
particle scattering complementary to that of
transition operator formalisms. We show in
Sec. VB how the BK wave function components

~

y~j A) can be used to understand certain nonuni-

tary numerical results based on approximations
to the BK transition operators X».

A. Faddeev wave-function components

The AGS operators U» defined, e.g., by Eq.
(3.14a) are probably the most widely used transi-
tion operators for analyses of three-body pro-
blems. They have the advantage over the Love-
lace and CCA operators of being symmetric and
reducing to relatively simple form when separable
two-body potentials or t-operator approximations
are used. Corresponding to the U» are the Fad-
deev wave-function. components

~
tt~). Neverthe-

less, while the path transition operator - wave
function leads to U»-

~
tt~), the reverse process

is
~
gg) Tgr and not

~
i/)g) U».

At first glance, this may seem to be a trivial
distinction to emphasize, since on-shell matrix
elements of f~~ and U» are equal. The aspect
of this which we stress is that under identical ap-

proximations, T» and U» will most likely differ
on-shell, and under any such approximation, the
ter~) equations will yield the approximate T»
amplitudes and not approximate U» amplitudes.
This point is pertinent for the traditional analy-
ses of atomic, molecular, or nuclear collisions
when three-body models are used, since such
analyses are, as noted above, based on wave-
function methods.

We illustrate this by using a particular bound-
state approximation which is often referred to
as the coupled reaction channel (CRC) method in
nuclear physics, "'"and as the coupled states (CS)
method in molecular physics and in atomic phy-
sics'3 (without the additional use of pseudostates).

The approximation procedure is as follows.
Consider only two-cluster partitions. Then the
channel Hamiltonian H~ can be expressed as

H~
——T~+ h~, (5.1)

where T& is the relative-motion kinetic-energy
operator and k& is the Hamiltonian for the inter-
nal states of the clusters.

The eigenstates
~
Q~(r)) of h, obey

l~, (r) -&,]~4,(r)&=o,

where e~(r) is the energy of the state and r de-
notes the set of relevant quantum numbers. Let
(~ Q&(r,))j denote the subset of the (~ Q&(r))) which
consist of bound interns. l states only [the former
are the states which occur in the ~4, (E)) of Eq.
(2.3)]. Now form the projection operators P&(r,)
and P)'.

P,(r,) =
~ y, (r,)&(e,(r,)

~

(5.2)

(5 3)

and

P=P P,(r,), (5.4)
7 Q.

where the prime on the r, sum in (5.4) means that
not all the bound states in channel j need be in-
cluded in the sum.

The CRC or CS approximation to the solution
~4') of the Schrodinger equation (2.1) consists in
replacing

~

4') in Eq. (2.1) by

[ 4)=g P,
f
4) =

) 4), (5.5)

projecting the result onto each (Q(r, )
~

in turn,
and then solving the resulting set of coupled equa-
tions for- the-unknown scattering coefficients
(Q~(r, ) ~4'), according to the usual outgoing wave
boundary conditions.

The corresponding approximations for the Fad-
deev components

~
g&), the CCA operators T»,

and the AGS operators U» are obtained as fol-
lows. In the Faddeev equations (4.13), one first
replaces

~

g~~) by P~
~

ttI~~) and G~" by G~" = P~G~";
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then one solves for the unknown scattering coefficients &Q&(r~)
I g&& from

&e,(r,)le~&=&0~(rd Ic' (@)&5~,+&0~(r,)lcl''v, +5, I' IP&.
1

(5.6)

The analogous approximations used in (3.9b) for T» lead to

&&mrs)17'.(~)
I &.(~~» =&&~(r~) I

v~
I &.(~~)»~. + &&A») I

v~ g '~-f'-G-(~) 7'-.(~)
I e.(~»& (5.7)

while the same approximations inserted into (3.14a) for U» yield

&& (») IU.(') I&.(~»&=&& (r ) l~ '(~) I&.(~»&5.+&& (») IZ 5 -v-~-(~) -U-.(~) I&.(~»&.
m

(5.8)

It is straightforward to verify our earlier re-
mark that Eqs. (5.6) and (5.7) produce the same
on-shell amplitude approximations, which are
not equal to the approximate on-shell amplitudes
arising from the AGS operators U». This should
not be unexpected, since it is only in left-hand
form that the approximate T operators would be
phase equivalent to the approximate operators

B. The CCA wave-function components

One of the interesting aspects of the GRC or CS
approximation (discussed in Sec. VA) is that it is
unitary. This follows essentially from the fact
that the coupled equations of the method are flux
conserving, i.e., there are no sources of or sinks
for the incident flux outside of the channels and
states coupled to the initial one. In general, how-

ever, one does not expect approximations to
transition operators to yield transition amplitudes
(and thus S matrix elements) which a,re unitary,
the simple Born approximation being a well-known
example.

Let us now consider the CCA transition opera-
tors defined by Eqs. (3.8) and (3.12) in light of the
these comments. Although they and their corres-
ponding wave-function components, defined, e.g.,
by (4.18) and (4.32), do obey coupled equations,
these coupled equations contain asymmetric coup-
ling terms rather than symmetric ones such as
occur in the CRC approximation. This suggests
that approximations to these CCA equations may
not yield unitary amplitudes. The fact that ap-
proximations to the KL equations have led to uni-
tary results while approximations to the BK
equation have not, thus requires explanation.

Before using the BK wave-function components
to analyze this, we first review the relevant cal-
culations and the original Kouri, Levin, Craigie,
and Secrest analysis. " Baer and Kouri' found
nonunitary elastic scattering amplitudes for
e +H scattering at energies below the n= 2

threshold using a symmetrized form of the two-

I

channel BK transition operator equations in the
approximation of Sec. VA, in which the P& are
formed from the 1s hydrogenic ground state only.
Subsequent calculations based on a symmetrized
form of the KL transition operator equations
using the same approximation yielded a unitary
amplitude, i.e., one of the form exp(i5) sin5. The
phase of the BK amplitude was found to be the
same as for the KL amplitude, viz. , 5.

Earlier work of Kouri and Levin had established
the existence of E or reaction operators related
to the KL transition operators by a Heitler damp-
ing equation; by contrast, no such relation exists
for the BK transition and reaction operators.
This fact was used to prove that in the one-state
approximation for the P, , the ratio of the BK and
KL amplitudes would be a real number, i.e., that
the amplitudes would have the same phase. " I ack
of unitarity of the BK amplitude was shown to be a
corisequence of the bound-state approximation for
the Pz. In effect, this means that use of P2 in
channel 2 is not the same as (equivalent to) use
of P, in channel 1: To achieve the effect in chan-
nel 2 of P& in channel 1, continuum states must be
used in P2. The cause of this behavior of the
BK operators is the fact that in Eq. (3.11b), for
example, the inhomogeneity NV is not repeated
in the kernel term 'US, in contrast to the KL equa-
tions, ' the latter, of course, did yield unitary amp-
litudes. An analogous incompatibility in apparently
equivalent approximations will be seen to be the
basis of our alternate explanation, using the inho-
mogeneous equations obeyed by the components

I
Pf") discussed below.
The Lewanski- Tobocman calculations involve

approximations using projection-operator expan-
sions applied to collisions in a system consisting
of two light and one infinitely massive particle,
the Hulburt-Hirschfelder model. Three sets of
calculations were done: those based on a boundary
matching procedure employing the Schrodinger
equation, those based on BK equations, and those
based on KL equations. The first of the three



2208 F. S. LEVIN 21

provided the benchmark against which the other
two could be measured. In addition, parameters
were changed to allow the two light particles to
be identical fermions, thus introducing Pauli
principle effects. A maximum of seven expansion
states were used in the calculations.

We consider the nonidentical-particle case
first. Within this case there are two subcases:
all three interactions either not equal or equal.
When they are not equal, the KL-based results
are found to converge more or less to the same
results as those based on the boundary matching
procedure, and also to be unitary. For this
same case of the three interactions not being
equal, the BK-based results are not only nonuni-

tary, they also do not converge to the same num-
bers to which the other two sets of calculations
tend to converge. The other distinguishable par-
ticle subcase, that of all three interactions being
equal, leads to the opposite results for the BK
based calculations. They are not only unitary, but
converge to the same numbers as the other two
sets of calculations do. This apparently para-
doxical situation is easily understood as soon as
one realizes that when all three interactions are
equal, the matrix elements of each of the channel
interactions V~ appearing in the BK equations,
when taken betweeen the same initial and the
same final states, are equal. Hence in this par-
ticular situation, the BK equations become a set
for which one may expect unitary results, as in
the KL case.

The second interesting case examined by Lew-
anski and Tobocman is that where the two light
particles are identical. In this case all three
interactions are equal, the three sets of calcula-
tions are all unitary (when the seven expansion
states are used), and all three converge to the
same limits. These results are easily under-
stood in terms of the preceding remarks.

More generally, one can apply the same argu-
ments as used in Ref. 11 to explain the nonuni-
tarity of the Lewanski- Tobocman BK results.
Since theirs was a two-channel calculation using
equations without a repeated driving term, the
inequivalence between the P& and P& approxima-
tions remarked on in connection with the Baer-
Kouri results similarly affects the BK results of
Ref. 12. Although the latter statement is correct,
it is perhaps not as straightforward to apply to the
I ewanski-Tobocman computations as to those of
Ref. 1. The alternate explanation based on the
lycfA) is, however, much simpler to apply, and we
examine it in the following.

In the two-channel case the
l
Xcf ) obey Eqs.

(4.32). These are easily converted into the dif-
ferential equations

(E —Hq)
l
P ) —v'

l
)( $ = v'

l
4g(E)) (5.9a)

(E-H~)
l
x%5- v'le") =(v'- v')

l
4 ~(E)&.

Equations (5.9) are inhomogeneous differential
equations. Subject to the boundary conditions of
(4.32), they will yield on-shell matrix elements
of the operators X», while if standing wave boun-
dary conditions are imposed, they will yield E
matrix elements.

Exact solutions of (5.9) will lead to unitary
amplitudes. Suppose, however, that one intro-
duces bound-state approximations via the projec-
tion operators P& of Sec. VA. One then wants to
determine the Pzl Pf") rather than the entire com-
ponent l)(~& $. Since (5.9a) and (5.9b) are equa-
tions for the channel 1 and 2 components, res-
pectively, the equations one apparently should
solve are the projections of (5.9a) and (5.9b) onto
P, and Pq'.

(E- g) glxg'')-PgV' ~lf~")=PgV'l@g( )& (5.10a)

(5.9b)

(E-H~)P~lxF"&-P~VP~lx2 l P1 11 (5.11a)

(E-H )P lx"y P,V'P, lx-"q=P n, (5.11b)

such that the sum of the complementary function
and the particular integral of (5.11) produces a
unitary amplitude, but then we cannot expect that
the right-hand sides of (5.10a), (5.10b), and
(5.lla), (5.11b) will be equal. In general, they
will be unequal, leading to nonunitary amplitudes
resulting from (5.10).

The reason for this behavior is the inequiva-
lence in approximating the left- and right-hand
sides of an inhomogeneous equation. In other
words, while the set (5.9) denotes an equality,
the set (5.10) does not form a consistent approxi-

(E—H, )Pp
l
)( c") —Pg V'P,

l

)(co~) =Pp(V' —V )
l
C,(E)),

(5.10b)

where we have used [P„H~j=0.
The solutions to (5.9) and (5.10) are each a

sum of two terms: the complementary function,
which satisfies the homogeneous equations and
the "particular integral, " which involves the in-
homogeneities. Although the sum of these two
terms will yield a unitary amplitude for (5.9),
i.e., when each P&

——1, there is no way to guaran-
tee that under the actual projection approxima-
tion the sum of the two terms forming the solu-
tion of (5.10) will also give a unitary amplitude.
That is, one can always postulate an approxima-
tion of the form
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mation to it. The consistent approximation
comes from first projecting (5.9) to yield

( -Hi) iIxi'"&- iv Ixr"&= iv'I~i(E)&

(E—H )Pi
I
xt'') —P~v'I xV') = P,(v'- v')

I

c i(E)& '
(5.12b)

Equations (5.12) are not yet in the desired form
since the entire term

I Pf "& still appears in the
second term on the left-hand sides. The next
step of the approximation is obtained by defining

Qi = 1-Pi and putting the Qi terms in the right-
hand sides:

(E—H)P Ix "& —P vP Ix ")

=»v Ici(@&+Piv'eiIF,"& (5.»a)

(E —Hi)Pi
I
xF"& —Piv'Pi

I
x"'&

=»(v'- v')
I
4'i(E)&+P~v Qi

I

x~'"& (5 13b)

Equations (5.10) are obtained from (5.13) by ne-
glecting the terms containing the operators Qi.
But since the inhomogeneous terms also occur on
the right-hand side of (5.13), retaining them in
full while neglecting the Q& terms cannot be ex-
pected to lead to unitary results. This is the
heart of the inconsistency. Thus the final step
leading to a consistent, i.e., a unitary, approxi-
mation will involve modifying the inhomogeneous
terms as well. Doing so will lead in principle to
equations of the form of (5.11), not (5.10). Un-
fortunately, there is in practice no specific pro-
cedure available for determining any such modi-
fication which is guaranteed to lead to unitary
amplitudes. Because the approximate BK transi-
tion operator equations used by Baer and Kouri
and by Lewanski and Tobocman have correspond-
ing wave-function components obeying equations
of the form (5.10) and not (5.11), we immediately
see that the amplitudes obtained from such ap-
proximate equations cannot be expected to be uni-
tary.

The lack of unitarity of the approximate BK
amplitudes of Refs. 1 and 12 illustrate these re-
marks quite concretely. Similar nonunitarities
and an acausal resonance behavior were found

in an entirely different e +8 calculation also
based on an approximate inhomogeneous equa-
tion. As noted in Ref. 35, caution is obviously
called for when using inhomogeneous equations
as the basis for approximations.

We have noted above that the approximate KL
operators did yield unitary results for e +H
scattering below the n= 2 threshold, . It is thus
interesting to compare the approximate KL wave-
function component equations, viz. ,

(E-Hi)PjI jl ")=Pivot"Pj, i I
jl ") (5.14)

with the inconsistent ones for the Pi I
Xic"&, Eq.

(5.10). Since (5.14) contains no inhomogeneities,
it contains no sources of or sinks for flux, im-
mediately leading to the conclusion that these are
flux-conserving equations, i.e., the resulting amp-
litudes will indeed be unitary. However, since
the channels are coupled asymmetrically, one also
expects time-reversal noninvariant amplitudes,
as found numerically. '

VI. SUMMARY

We have derived wave-function component equa-
tions for the CCA transition operators and dis-
cussed their properties in detail. In particular,
we have shown that the amplitudes arising from
an approximate solution of the Faddeev wave-
function component equations are the matrix ele-
ments of the KL operators T» and not the AGS

operators U». We have also shown that in dif-
ferential form, the BK wave-function component
equations are inhomogeneous, and we have used
this to give an alternate explanation of the non-
unitary character of amplitudes determined from
approximate solution of the BK operator equations.
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