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Neutron total cross section of sulfur: Single level to multilevel to optical model
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This paper is a further analysis of the high resolution total cross section of sulfur for 25—1100 keV
neutrons that previously were measured by Halperin, Johnson, Winters, and Macklin and evaluated by
single-level analysis. The usual procedure in reporting the results of high resolution neutron cross sections
has been to present the data and resonance parameters with corresponding neutron strength functions
resulting from some type of R-matrix analysis. Often the important nonresonant phase shifts are not
reported. In this paper, making use of both strength functions and phase shifts, we extend the analysis to
include an average nuclear potential (a spherical optical model). An optical model analysis not only
facilitates comparison with a broad spectrum of other nucleon-nucleus experiments, but also may provide an
incentive for microstructure calculations, Six average empirical functions, two each for s»„p»2, and p3/2
partial waves, are derived from the R-matrix analysis. From these we deduce optical model parameters, the
real and imaginary well depths for s- and p-wave neutrons, and the spin-orbit well depth for p waves. The
resulting real well is deeper for p waves than for s waves and for averages over partial waves at higher
energies. The depth of the imaginary wells are about half those deduced at higher energies. An interesting
feature of the analysis is that the multilevel curve including interference effects is produced from single-level

parameters including the phase shifts.

NUCLEAR REACTIONS S(n, n), E„=25-1100 keV, multilevel analysis of
g„«t{E), deduced R', strength functions for l =0 and 1, optical model parame-

ters for E=O and 1.

I. INTRODUCTION

The continued importance of the optical model
potential (OMP) as a link between experimental and
theoretical neutron physics is demonstrated by the
microscopic optical potential calculations appear-
ing in the recent literature, e.g., Bernard and
van Giai' ('"Pb), Brieva and Rook' (4'Ca), Jeu-
kenne, Lejeune, and Mahaux' ("C, "0, "Al, "Ca,
"Ni, "'Sn, and '"Pb), Mau and Bouyssy' ("Ca),
and O' Dwyer, Kawai, and Brown' ("Ni). As noted
by O' Dwyer et al. ,' the imaginary part of the OMP
describes particle-core excitations which can be
strongly dependent on the incident particle energy.
In this paper we present a spherical OMP analysis
of the low energy neutron total cross section for
"S+n. Using the cross sections and single-level"
resonance parameters reported by Halperin, John-
son, Qlinters, and Macklin, ' we produce an R-ma-
trix multilevel curve which describes the "S+n
total cross section in detail from 0.025 to 1.1 MeV'.
From this multilevel. curve we deduce the depths
of the real and imaginary OMP wells for scatter-
ing of s- and p-wave neutrons.

Two results from this work seem to indicate a
need for microstructure calculations. Firstly, our
absorptive (imaginary) potentials are approximate-
ly half as deep as required' for sulfur at higher
energies. This may be an indication that few par-
ticle-core excitations are available at low ener-

gies for "S+n. Secondly, for the assumed spheri-
cal OMP the real well depths are found to be l de-
pendent, perhaps an indication of nuclear deforma-
tion and associated collective state excitations.

Section II includes the essential formulas for the
single-level description and for the multilevel con-
version. Most of these are from standard refer-
ences on the R-matrix formalism. Using this con-
version and the level parameters' for those reso-
nances for which definite J' assignments were
made, we calculate a multilevel curve which gives
a very good description of the neutron total cross
section of sulfur. The procedure does require that
a nonresonant phase shift p~, be one of the single-
level parameters reported for each resonance.
'This phase contains information relative not only
to the conversion to multilevel parameters for the
given resonance but also to the interference of the
resonance with others of the same J', both those
observed and those outside of t:he energy region of
the measurements. It is in connection with the
outer levels that we introduce a linear smoothed
R function B, which is not familiar in high resolu-
tion work but is a standard concept' for an OMP.

Section III is an interpretation of the data in
terms of an OMP. An OMP, being an average po-
tential, describes averages rather than individual
resonances. Most published data relative to the
OMP consist of averages over resonances, but
high resolution data are needed if one wishes to
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study the effects of specific partial waves. His-
torically "the most significant high resolution
cross section data have been at low neutron ener-
gies where s-. wave scattering is dominant. From
such total cross sections on a given target one can
extract two average quantities; the s-wave
strength function is found from the average neu-
tron resonance widths and spacings while the
scattering radius, usually designated R, is found
from the phase shifts observed between reso-
nances. At low energies the s-wave scattering
radius is defined as R' = a,(1-R), where a, is the
chosen R-matrix boundary radius. In turn, two
QMP quantities can be deduced, "e.g., the depths
of the real and imaginary wells for an QMP of
given geometry.

In this paper, these familiar concepts for low

energy s waves are extended to a broader energy
region and to higher partial waves. The exten-
sion of the strength function is straightforward and
familiar; the broader region impr'oves our knowl-
edge of the strength because more levels are in-
cluded in the average and the higher energies al-
low higher partial waves to be investigated. The
extension of the analog for the scattering radius
is more subtle but has been discussed in the lit-
erature, e.g., Lane and Thomas. ' It involves a
second average function which accounts for the
phase shift which would be observed if all the
levels in the energy region under investigation
were removed. That phase shift, which could be
called phase-external, " is related in the R-ma-
trix formalism to a function R-external, which
is a sum over all outer levels, both nearby and
fax agrray. In the literature the R-external has
usually been designated R-infinity R~„with the
implication that only far away states contribute.
'That notation is appropriate if the measured in-
terval is small such that the effects of levels im-
mediately above and below tend to cancel, leaving
only the distant contributions. An extension of
measurements to a broader energy region with
more levels allows a better determination of R-
infinity, which i.s R-external near the center of the
interval. This follows since in the construction of .

R-external, the truly nearby levels within the re-
gion are subtracted exactly and the remaining le-
vels just outside the region are less important for
the cancellation. However, as the energy is moved
away from the center of the interval, the R-exter-
nal is changed by the imbalance of the contribu-
tions of nearby outer levels. Thus, R-external
must increase continuously within the interval.
'This energy dependence contains important infor-
mation"; in fact, it leads to our conclusion that the
s-wave absorptive potential is relatively small for
32S

II. ANALYSIS OF TOTAL CROSS SECTIONS

A. R-matrix formalism

4'zr 4 l ( rRzr) (2)

Here pr and P, are the usual hard sphere phase
shift and penetrability for I-wave neutrons at the
chosen boundary radius. [For simplicity in Egl. (1)
we have set the boundary condition B, equal to the
shift factor S, at all energies. ]

The 8 function is a sum over all levels of the
given J':

Jr( ) Q yxzl /( xJl

where y„~,' and E», are the reduced width and

eigenenergy, respectively, for the X'" level. We
replace this infinite sum by a finite sum over the
levels observed in the interval I of our mea-
surements plus an R-external for the outer region:

Rzr(+) =R'zr(E)+ g &wr'/(Exzr

The above expressions, corrected for experi-
mental resolution and Doppler broadening, could
be used with the aid of a sophisticated search rou-
tine to produce a detailed multilevel fit to our
measurements from 0.025 to 1.1 MeV. An alter-
nate procedure is first to fit each resonance sepa-
rately and then to convert to the multilevel des-
cription. For this purpose Erl. (2) can be rewrit-
ten' near a level XJl as

, I„/2
Q Jr (fl Jr + tan

0

where the non-resonant" phase shift is given by

gtrzr =br+tan '(PrR~g),

and where

—2Pryggg /dJ r

Z, = Z„„+P,Ro„r„/2,

R gr(&) =Rgr(&) rr,zr'/(& rgr ——&),

(6)

(7)

(6)

(9)

Qnly elastic neutron scattering is included in the
following R-matrix analysis of the neutron total
cross section of sulfur (95% "S)because the ener-
gies are below the inelastic threshold and the ab-
sorption widths are small relative to the neutron
widths of the prominent resonances that enter into
the analysis. Also, "Shas zero spin. 'Thus, the
R-matrix for "S reduces to a single-channel func-
tion R~, for each partial wave. The corresponding
total cross section is given by'

o~r = 4rrk-'(J+ g) sin'y~r,

where
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and

d Jf -—'1+ (PtRJl)

TABLE I. Multilevel R-matrix parameters and com-
pound excitation energies for S+ n resonances of defi-
nite ~ for boundary radius a,= 6.4 fm.

The RJ, is the R function for all but the AJl level.
These equations are exactly equivalent to the ori-
ginal multilevel phase in Eq. (2).

(keV lab)

2

(keV lab)
g

(keV)

B. Single-level analysis

The fitting by Halperin et al. ' of each resonance
involved Eqs. (1) and (5) without detailed reference
to other resonances as contained in Eqs. (6)-(10).
Each level was fit by least-squares adjustment of
five parameters: I'„, E„p' ~ plus two parameters
for a linear background. In a few cases two over-
lapp'ing levels of different J were fit simultaneous-
ly. 'The J and l assignments were discussed.

Some approximations of R J$ for other levels are
implicit in the fitting procedure. Firstly, the en-
ergy dependences of I'„and E, through RJ, are ne-
glected. Secondly, substitution of Eq. (5) into Eq.
(1) yields three terms involving the energy depen-
dence of RJ,: a Breit-Wigner term, an interfer-
ence term, and a background term. For the first
two terms the RJ, is in effect held constant, equal
to the value at E,. But the latter term, which is
proportional to sin'pz, and is the partial cross
section that would occur if the given resonance
were missing, is included in the linear back-
ground. Hence an important energy dependence for
R Jg is effectively included.

C. Multilevel description

The conversion from single to multilevel para-
meters requires a choice of boundary radius which
is essentially arbitrary but, according to the R-
matrix formalism, must be outside the polarizing
forces. We choose a, = 6.4 fm or 2.016A. '~', a
radius at which the real potential for the OMP as-
sumed in Sec. III is 2/~ of its central value. Table
I lists the multilevel parameters EyJ'f and y,J,' cal-
culated for this boundary radius using Eqs. (6)-
(10) and the reported' parameters for levels of
known Jl. Clearly, E„=E,and y„'=I'„/2P, when-
ever P,RJ,«1.

To complete the calculations of the multilevel
R function in Eq. (4) we require R-external,
R'z, (E). At each resonance, we first calculate Roz,

from the phase shift pz, in Eq. (6). That R func-
tion includes all but the level at E,. We then use
the level parameters to subtract the contributions
of the remaining levels of the same Jl in the inter-
val. The remainders are plotted in Fig. 1. Al-
though the points show fluctuations due to experi-
mental uncertainties, the actual Rz, (E) must in-
crease continuously with energy. This behavior is
in contrast to the deviations of yz, from a smooth
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curve, which result from nuclear level fluctua-
tions. (Plots of pz, were useful for parity assign-
ments. ') One could visually draw a smooth curve
for R'~, (E) to fit the points in Fig. 1 and then ad-
just this curve to achieve a final multilevel fit to
the data. However, our procedure is to introduce
a form factor for least-squares fitting of the points
and to show that the resulting multilevel curve
gives a good description of the cross sections. The
chosen form factor serves also to introduce the
OMP.
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FIG. 1. Experimental and empirical external R func-
tions and corresponding smoothed R. The points show
the experimental R~J&, the point in parenthesis represents
one member of a close doublet (see Ref. 6) that was not
included for fitting RJ&. The curves are the empirical
best fits to RJ& and corresponding linear R J& deduced
with the internal strengths equal to the observed values
from Fig. 1. Parameters are listed in Table II.

An analytic form factor is needed. If the actual
discrete levels are replaced by a continuous den-
sity of reduced width, i.e., the strength function
s«(E), then a smoothed real R function can be
defined:

R r(E)=pr J sr(E )s(E /(E ,E),''' .

«a

where Pr signifies the principle part. " The ex-
ternal B function is then

Erg�(E):

R (E) Pr fs, (E' )EE'/(E' —E),
I

p ~ I

0 02 0.4 0.6
E„(Mev)

0.8 1.0 1.2

plots of the summed reduced widths versus ener-
gy for partial waves, s,&„p,&„and p, ,». Also
shown are linear least-squares fits obtained using
weighting factors discussed by Halperin' and in
Sec. III. The strength functions, which are the
slopes of the curves, are listed in Table II and are
used to evaluate the above integral. We then fit
R«(E) from Eq. (12) by least squares to the data
of Fig. 1, under the assumption that Rz, (E) is lin-
ear with two adjustable parameters, i.e.,

Rzi(E) = nzi+ fIzsE . (13)

TABLE II. Paraxneters for the empirical external R
function. ~

FIG. 2. Integrated reduced widths for s- and p-wave
resonances. The step plots show the summations of ob-
served reduced widths and the solid straight lines are
best-fit ourves. The strength functions of slopes of these
curves are listed in Table II. The dashed curves are for
the best-fit optical model potentials; the corresponding
fits to R-external are shown in Fig. 5.

(12)
SJg p J) (MeV )

where the integral is over the measured interval I.
In Sec. III we use an OMP to generate R«(E) and

sz, (E) but in this sechon we use a more empirical
approach. To evaluate the integral in Eq. (12) we
need the average experimental strength function,
(y'//D)= s«(E). Figure 2 shows conventional step

S1 /2

Ps(2
P3/2

0.029
0.025
0.011

0.43
-0.010

0.088

0.018
0.041
0.11

~Equations g2) and {13)with integral limits 0 to 1.1 MeV.



2194 C. H. JOHNSON AND R. R. WINTERS

Figure 1 shows the fitted R«curves with corres-
ponding R~„and Table II lists the best-fit para-
meters.

Figures 3 and 4 show the resulting multilevel
curves for natural sulfur (0.95/q "S) calculated
from the equation

10

o'„„,= Q (0 95.o~, +0.05(r~,),
J'l

(14)

where o~, is calculated for "S from Eqs. (1), (2),
(4), (12), and (13) with parameters from 'fables 1

and II, and o« is an average approximation for the
minor isotopes for which 8« is replaced by B~,.
Eight d-wave resonances' are included; the non-
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FIG. 4. Continuation of Fig. 3.
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resonant d-wave cross sections are negligible.
Excluded from this curve are the minor reso-
nances of uncertain J', the effects of Doppler and
resolution broadening, and all resonances for mi-
nor isotopes. The small broad peaks near ener-
gies of 0.3, 0.36, 0.4, 0.8, and 0.85 Me& are
attributed to '4S. The multilevel curve gives a
good description of the data, including the broad
interf er ing resonances.

If for some reason a different boundary radius
were desired, it would be necessary to regenerate
Tables I and II from the single-level parameters. '
Essentially the same multilevel curve should re-
sult.

%e emphasize that, even though the use of the
single-level formalism with the subsequent multi-
level conversion gives considerable insight and is
often convenient (as it was in the present study), a
direct multilevel least-squares fit to the data
would certainly be feasible and would give the
same parameters. Suitable search parameters for
the R-external of Eqs. (12)—(13) would be the nz,
and Pz, for the smoothed R function. The strength
s« for the integral would be fixed at a reasonable
value deduced either from a preliminary analysis
of the resonances or from the literature. Gener-
ally the exact value for s~, is not critical because
it is highly correlated with P«.

FIG. 3. Experimental cross sections and multilevel
curve for neutrons on sulfur. The data from Ref. 6 have
been averaged over many energy channels wherever no
resonances were observed. The multilevel curve was de-
duced from the single-level analyses of Ref. 6. It.does
not include the effects of Doppler or resolution broaden-
ing, the minor resonances in S, and all resonances in
the minor isotopes.

III. OPTICAL MODEL ANALYSIS

If an average neutron-nucleus potential is as-
sumed, the neutron scattering matrix elements
U«can be calculated. If only elastic neutron
scattering is allowed, the matrix elements can be
expanded in terms of average complex 8 func-



NEUTRON TOTAL CROSS SECTION OF SULFUR:. . . 2195

tions':

U 2 Egg l ZfL*R
J'2

LrR
(15)

wher Li=Sr -Br+iPr Si is the shift factor evalu-
ated at the boundary radius, and B, is the boundary
condition. The boundary conditions must be the
same as used for the R-matrix analysis, namely
B,=S, at all energies and g, = 6.4 fm. Also the
assumed OMP must be negligible for x&a,.

The complex R functions can be written

Rzr =R~, +iwszr ~

where, as shown by Lane and Thomas, ' the s J$
corresponds to the strength function of the actual
fine structure averaged over many levels and R~,
is the smoothed R function defined by Eq. (11).

For, the average potential we use for each J' a
spherical optical model consisting of real Woods-
Saxon and spin-orbit terms plus an imaginary sur-
face term. In order to satisfy the requirement of
the R-matrix formalism, i.e., that our channel
radius g be truly outside the range of the nuclear
forces, we cut off the potential at a radius
y, =2.014' ' which is slightly smaller than a, .
Thus, our potential has the form, for r &r„

V'(r)= Vg(r)+ V„-
~ ~

—f(r)m, c) dr

where X„'(R'z,) and X„'(sz,) are the usual reduced
chi-squared estimators for fits to the R external
and strength function, respectively. The weights
for the fits to R external were the reciprocal of
the variances deriving from the variances for the
single-level phase shifts. However, the relatively
small experimental variances associated with the
reduced widths underestimate the uncertainty in
the estimate of s~, . Liou and Rainwater" discuss
this problem and provide estimates of the uncer-
tainty for s&, . The OMP and empirical least-
squares (Sec. II) fits to the integrated strengths
were weighted with the variance estimators of Liou
and Rainwater. For the OMP fitting, this weighting
largely removed the bias toward minimizing
X„'(s'z, ) which would result if the experimental
variances of the reduced widths had been used.
The best-fit values are listed in Table III. The
corresponding curves for the strengths are shown

by the dashed lines in Fig. 2. Figure 5 shows the
R'z, (E) and corresponding R~, (E). The multilevel
curves resulting from the OMP analysis are al-
most indistinguishable from those plotted in Figs.
3 and 4. The R~, (E) in Fig. 5 are essentially the

and

+ f4a, W,"„—g(r)D dy

V'(r)=0 for r& r„

0.6

0 4 ~O

J= /2

4=0
Re

J

where

f(r) =(1+exp[(r -Rg/a, ]}',
g(r) =(1+exp[(r —RD)/aDj} ',

=y g / andR0 0 D D

(17)

0.2

0.2
C-

UJ

K

R'J

Since the model with its seven parameters for
each l value is overparametrized for the present
study, we must fix some values at the outset. Our
choice is to fix all four geometric parameters at
the values deduced by Holmqvist' from a systematic
study of neutron elastic scattering in the energy
region of 1.5 to 8..1 MeV. These values are similar
to others in the literature" and are listed in Table
III. Our OMP calculations were done using the
computer code SCAT.'4

With this model we fit the observed R external
and strength functions by least-squares adjust-
ments of V', and WD for sy/2 waves and of Vp V p,
and &VD

' for py/2 and p, /, . The criterion for the
OMP best fits for each l value was the minimiza-
tion of the chi-squared statistic

0
R Jtt

I

(c)'
J=~/2

~I~ ~

R'

~ y-

-0.2'

0
I

0.2
I

0.4 0.6
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I

0.8 I.O l.2

FIG. 5. Optical model fits to the external g functions.
The figure is similar to Fig. 1 except that the curves are
deduced from the optical model potential.
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TABLE IO. Fixed and best-fit optical model param-
eters.

1.0

0.8
Fixed geometries

(fm)
Best-fit depths (MeV)

s waves p waves 0.6

xp= 1.21
ap= 0.66
tD 1 21
aD= 0.48

Vp= 53.8 + 0.4
3.0 + 1.3

&p ——62.4 + 1.1
&p ——13 + 3
WD(p~/&) = 2.6 + 1.1
WD(p3/2) =4.5 + 1.8

Q 4

02
+ (.5

+ f.Q

+0.5
Q

-0.5 '

same as in Fig. 1 but the Rz, (E) are different, par-
ticularly for s waves, as discussed below.

4
E„(MeV)

—1.0
-1.5

IV. DISCUSSION OF THE OPTICAL MODEL

A. A possible nonstatistical component for the 101-keV
resonance

The resonance at 101 keV contains more than
half of the total reduced width for the five s-wave
resonances and its width is about I%%uo of the 3s
single particle width. Moreover, Halperin et al. '
report that it has a non-negligible valency capture
component. If that one level were a nonstatistical
state, the observed average strength with this
level included would not properly represent the
strength function. Further information on the cor-
rect strength function is contained in the 8 exter-
nal because it depends partly on the strength just
outside the measured region. Furthermore, the
8 external has a relatively small uncertainty, par-
ticularly for s waves for which a small change in
R'(E) would produce an obvious misfit to the cross
sections. For the empirical s-wave fit in Sec. II
the nearly constant F7 requires that the external
strengths above and below the measured interval
be the same as the observed internal average.
In contrast, the OMP analysis in Sec. III requires,
as indicated by the dashed curve in Fig. 2, that the
outer strengths be about half of the internal aver-
age. Since the observed strength could be reduced
to the OMP value if the 101-keV resonance were
omitted, this OMP analysis indicates that the res-
onance is nonstatistical.

This prediction from the OMP is clarified by
Fig. 6, which shows s(E) and R(E) for s waves cal-
culated up to 8 MeV using constant well depths
from Table III. The energy of the 3s resonance is
a function of the assumed boundary radius, 6.4 fm,
and of the parameters of the real well; the spread-
ing width is a function of the imaginary potential.
Also shown is the fitted R'(E) from Fig. 5(a). It
deviates from R(E) towards both ends of the inter-
val, but the deviations are small because s(E) is
small, i.e. , only about half of the observed average.
The OMP s(E) can be increased to eclual the ob-
served average, without disturbing the average A,

FIG. 6. Predictions of R(E„) and g(E„) for the best fit
g-wave potential. The well depths are held constant with

p
= 53 ~ 8 MeV and WD = 3 ~ 0 MeV. The resonance energy

of 5.45 MeV for the 3s state depends on the 6.4 fm bound-
ary radius as well as the volume of the real well. The
interval of the measurement is only 0 to 1.1 MeV and the
external function Re shown for the interval is the same as
in Fig. 5.

by increasing WD about a factor of 2 and making a
slight adjustment in V, . But the R'(E) then devi-
ates more strongly from R(E) and the multilevel
curve is a poor description of the cross sections.

B. Real well I dependence

The real well depths are determined primarily
from the phase-external or corresponding A exter-
nal. A particularly interesting result of this
study is that the real mell for p waves is deeper
than for s waves by about 16%%uo. The s-wave depth
of 53.8 MeV is about as expected from other OMP
studies. For example, if our s-wave potential
depth is used with the isospin term" 24(N -Z)/A
MeV subtracted, it predicts the peak of the 3s
size resonance at A= 52, in good agreement with
the observed" maximum near A. = 55. At higher
energies (6, '1, and 8 MeV) Holmqvist' scattered
neutrons from sulfur and, using the present OMP
geometry, deduced a 50-MeV depth. (This repre-
sents an average for all partial waves. ) The dif-
ference from our 53.8-MeV for s waves could be
attributed to a linear term in an energy dependent
real well depth with coefficient 0.58 MeV ', a
reasonable value"'" for "S.

These comparisons suggest that our p-wave
well depth is unusually deep. But if the p-wave
depth were reduced to the s-wave value, the 2py/2
single particle state would become unbound by
about 500 keV and the strength would be much
larger than observed. In other words, the 2p size
resonance would be near A= 32. The deeper well
binds the p-states and, although this may not agree
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with other OMP studies, it is consistent with (d,p)
stripping measurements, which have shown that
most of the 2p strength is in the bound region.
Mermaz et al" measured "S(d,p) stripping for
18-MeV deuterons and deduced spectroscopic fac-
tors, some tentative, for four py/2 levels and six
p3 / 2 leve ls . The summed spectroscopic factors
were nearly unity, 1.01 for p, /, and 0.91 for p3/
and the energy centroids weighted by the spectro-
scopic factors were -2.4 MeV for p]/2 and -4.0
MeV for P, &,. (These quantities may have large
uncertainties. ) It is of interest to compare these
centroids with the eigenenergies for our p-wave
OMP. The real part of our OMP binds the 2py/2
state at -2.0 MeV and the 2P, /, at -5.7 MeV.

If the s-wave well were increased to the p-wave
depth of 62.4 MeV, the 3s resonance in Fig. 6
would move down to 2.5 MeV. Both R(E) and s(E)
would then be too large relative to the experiment.

It is reasonable to believe that another model,
say a nonspherical OMP, could remove the l de-
pendence in the real well. Given the 6.4 fm R-
matrix boundary, the model would be required to
reproduce the average strengths and external R
functions reported here.

C. Small absorptive potentials

The imaginary well depths of about 3 MeV for
both s and p waves are a factor of 2 or 3 smaller
than usually found in OMP studies. For example,
Holmqvist' found S'D = 6 to 10 MeV for neutron
scattering from sulfur at 6, 7, and 8 MeV. But a
small well depth may be reasonable at low ener-
gies if particle-core states are not easily reached.
In the theory' ' of the OMP the absorptive or imag-
inary potential arises from processes in which the
incident particle excites the core to states in which
the energy of the excited core-plus-particle is ap-
proximately equal to the incident energy of the
particle. A likely candidate for 2' particle-core
states near the energy region studied here would
be a d, /, particle coupled to the 1' excited "S
core consisting of a d, /, particle and d, /, hole.
The 1' or M1 strengths in the "S core have been
observed" at 8.13, 10.82, 11.14, and 11.62 MeV
with Ml strengths 2.8, 2.9, 18.9, and 9.7 eV, re-
spectively. Since very little of the reported M1
strength is contained in the range of excitation
energies 8.6-9.7 MeV of our work, a small 8'D

might be expected if states which de-excite by M1
transitions dominate. More detailed microstruc-
ture calculations of these and other particle-core
excitations should be made. Even without such de-
tailed calculations, we expect that the s-wave
imaginary well depth would increase significantly
over the next 2 MeV of excitation as the bulk of the
M1 strength is encountered.

E. Scattering radius

A real potential phase shift can be defined

g~z', t =
Q& + tan '(P,R z, ). (19)

In general this differs from the real part Pz',"of
the complex phase shift for the OMP. However, at
low energies where P,s~, is negligible and with the
boundary conditions B,=S, , these two real phases
become equal. It follows from the foregoing dis-
cussion that the low energy potential phase is in-
dependent of the assumed boundary radius a, . The
scattering radius is then given by

R'=k 'P""=a (1-R ). (20)

For the s-wave OMP we find in the limit E- 0, R'
= 3.80 fm. A compilation of low energy data"
gives R'= (4.1+ 0.2) fm, in good agreement with our
result.
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D. R-matrix boundary radius invariance

It is emphasized that the optical model para-
meters are expected to be independent of the as-
sumed R-matrix boundary radius, providing the
radius is outside the potential. We investigated
this by repeating the analysis using the same model
form factors but with the boundary radius a, in-
creased to 7.4 fm. The best fit OMP well depths
were unchanged.
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