
PH YSICA L RE VIE% C VOLUME 21, NUMBER 5 MA Y 1980

Mass parameters in the adiabatic time-dependent Hartree-Fock approximation.
II. Results for the isoscalar quadrupole mode
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The formalism presented in the preceding paper is used to compute self-consistent adiabatic mass
parameters for the isoscalar quadrupole modes. Skyrme-like effective forces have been used. A detailed
study of the practical methods of calculation is made. A special attention is devoted to the problem of
numerical accuracy. Results are presented for both scaling and constrained Hartree-Fock paths. A
comparative discussion of the two corresponding sets of results is made. The method used to calculate self-
consistent mass parameters for the constrained Hartree-Fock path provides, as a byproduct, the non-self-
consistent cranking mass. This method (for self-consistent as well as cranking masses) is free of continuum
problems inherent to the application of the usual cranking formula. The effect of self-consistency is
extensively studied by use of a large set of Skyrme-like forces.

NUCLEAR STRUCTURE '2C, ~60 Ca 48Ca, 56Ni, 9 Zr, ~40Ce, 208Pb mass
parameters for isoscalar quadrupole collective motion calculated within time-
dependent Hartree-Fock approximation in adiabatic limit. Skyrme-like forces
used. Numerical accuracy discussed. Self-consistent results for both scaling
and constrained Hartree-Fock paths discussed. Validity of Inglis cranking

masses assessed. Influence of forces studied.

I. INTRODUCTION

In an accompanying paper, ' hereafter referred
to as I, a theoretical study of the adiabatic time-
dependent Hartree-Fock (ATDHF) approximation
was presented, where attention was focused on
the particular case of a collective path paramet-
rized by a single collective variable. The ATDHF
formalism allows then the calculation of the cor-
responding mass parameter throughthe solution
of the first set of Hamilton-like equations of
motion.

Two choices for the parametrization of the
path were discussed in detail. In the first choice,
the trajectory is given by the solution of a con-
strained Hartree-Fock (CHF) problem, i.e., is
fixed by the guess of a constraining operator.
In the second choice, the path is obtained by seal-
ing a static Hartree-Fock wave function. In this
second case, the computation of the mass is
straightforward. In the former case we have
shown that the inversion of the first set of Hamil-
ton equations providing the mass parameter can
be advantageously replaced by the solution of a
double CHF problem.

The content of paper I was rather general. No
particular form was assumed for the effective
nucleon-nucleon interaction and, except for the
illustration of some specific points, no explicit
mention was made of particular excitation modes.
In the present paper, we apply the formalism of I
to the study of isoscalar quadrupole Q» vibrations.

As effective interactions, we shall use Skyrme
forces, which have been quite successful for the
description of many static nuclear properties. ' '

In Sec. II we summarize the method of the cal-
culation, and give some of the necessary formu-
las for the case where Skyrme forces are used
and some symmetries assumed for the ATDHF
solutions. Section III is devoted to the discus-
sion of several numerical problems, including
the convergence of the mass parameters with
respect to the size of the truncated basis on which
we expand the CHF orbitals. The results of our
calculations are presented, and their physical
significance discussed in Sec. IV.

II. CALCULATION OF QUADRUPOLE ADIABATIC
MASSES WlTH SKYRME-LIKE FORCES

A. General outline of the calculations

For the two choices of the path we have con-
sidered, we present the practical method of cal-
culation of the mass parameter.

The quaChuPole sealing Path. In this case, we
perform a static Hartree-Fock (HF) calculation,
providing an.equilibrium one-body reduced den-
sity operator p„. The corresponding radius and
quadrupole moment are called x„and q„. If the
effective interaction is gauge invariant with re-
spect to the isoscalar excitation operator Q» (we
will see in Sec. IIB that it is so for the Skyrme
forces in use in this work), the scaling mass

2l 2076 1980 The American Physical Society



/

MA'S S PARAMETERS IN THE ADIABATIC. . . . II. 2077

parameter is given as a function of the quadru-
pole moment q=(Q») by

M ()=sc 'V ~r2 + 4q
(2.1)

where r is deduced from q through the following
equations up to first order in the scaling param-
eter P:

Ar' = (2Ar„' —q„). (I-2u)'

'+
3(1 2 )4 + 5t qst) l (2.2)

(1 —2 p)2
q = (q., —mr. ,')

(2.3)

The CHF path with the external field Q». The
calculations are performed in two steps. We first
get the adiabatic path p, (q) from a CHF calcula-
tion for the time-even constraining field (-XQ»)

[W, -~q„,p,]=0, (2.4)

where 5', is the Hartree-Pock Hamiltonian built
from p, . The path p, (q) is parametrized by the
variable q= Trg»p, corresponding to the Lagrange
multiplier X.

When this is achieved, one can compute numeri-
cally the matrix 8po/Bq, and therefore calculate
the "momentum" operator P generating the dy-

namics [see in I Eq. (4.5) and the related discus-
sion). This time-odd operator enters in the
double CHF equation, equivalent to the first
ATDHF equation [see Eq. (2.24) of I]:

[Wo+ W, —XQ~~- qP, po+ p~] =0, (2.5)

M(q) =»(Pp, )/q (2.6)

This formula is of course valid for a self-consis-
tent as well as for a non-self consistent (Inglis
cranking) operator p, .

B. The effective forces

As for phenomenological effective forces we use
Skyrme-like forces which, in the r representation,
write

where Q~» is the antidiagonal part of Q» [Q»
=p g»(1- p,)+ (1-po)Q»p, ], and where the veloc-
ity parameter q must be chosen small enough to
ensure the linear respons. e.

This CHF equation is solved iteratively by tak-
ing as a first guess for the solution the time-even .

density p, obtained by solving Eq. (2.4} with the
same value of the Lagrange multiplier X. At the
first iteration, we get a time-odd density p,
which is the non-self-consistent response of the
system to the time-odd perturbating field (-qP);
this p, ' is therefore calculated in the Inglis crgnk-
ing approximation.

Once p, is determined, the mass parameter is
given by

with

V,„(r„r,) = t,(1+x,d', )5(r)+ ~t,(1+x,d', )(P "5(r)+ 5(r)P']

+ t,(1+x,6',)P' ~ 5(r)P + ixuoa (P' x @(r)PQ+ —,
' t,(1+x,6',)(p(R)] 5(r) (2.7)

R =(r, + r, )/2,

p =(v, —v, )/2i (P being the complex conjugate of P acting on its left-hand side)

o =o, + o2 (o,. being a Pauli spin matrix acting in the i subspace}

6', = (I + oo, )/2 .
Notice that, due to the presence in V,~(r„r,) of 5(r, —r, ), there is no need to introduce other exchange
operators than 6', .

These forces depend on 10 parameters. Most of the time we consider in this work forces such that x,
=x, =0 and x, = e =1. For this class of forces an extensive study of the parameter adjustment has been
done in Ref. 5. It has been found that imposing only a good reproduction of nuclear matter (or equivalently

magic nuclei) saturation properties is not sufficient for a complete determination of the parameter set.
The remaining freedom is associated with the well known fact that nuclear matter saturation can be ob-
tained either by a velocity-dependent interaction, or by a density-dependent interaction, or by a mixture
of these two types of forces. One may thus characterize saturating Skyrme forces by their effective mass

in nuclear matter, i.e., by their velocity dependence. By adjusting the parameters to static properties
of nonmagic nuclei, one obtains a small range of acceptable values for m*. The SIII force, for which m*
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=0.76 (in units of the nucleonic mass m}, gives a particularly good fit to a large number of experimental
data. '

For a Slater determinant
f

g& the expectation value of the Hamiltonian H:

H = T + V.„+V„„„ (2.8)

where T is the kinetic energy operator and V„„,the Coulomb interaction, can be written as the integral of
a Hamiltonian density

(P[11[P)=JPP(r)P x' (2.9)

The Hamiltonian density X is defined by' '
h2

PP(r)=p x+ x1 ((1+xx )P* —(x, +x)Q (P')*+xx P —x Q (P ))'
+ —,

' t
f
(1+ /~, ) [P7 —g

'+ —,
' (v P)'] —(~, + /)g [p'~' —(7')' + g (&p')']

+ ~~,[p ~ - ((J„„))'+—,'((v, p.))'] —~Q[p' 7'- ((J.'„))'+~((v„p',))'lil

+ ,' t,
f
(1+ ,'—x,)[P~ —j~——,'(v—p)']+ (x, + ~) g[p'7' —Q ')'- -', (vp')']

a

+ xx, [p ~ r ((p ))'——.—'((P„p„))']+x E[p' i' —((p'„„))*——'((p„p„'))']}
a

+ x'x 1,P
[
(1+ xx, )P' —Q[(x, + —,')(P')*]+ xx P' — xg( 'P)*)

- Vp+ ga' Vpa + VXp y + V&&pa ga +3C (2.10)

The six density functionse appearing in Eq. (2.10)
are defined in terms of the one-body density
matrix p, =(J"&)'- (J"&)'+ (J"&)' (2.13)

p(r, o; r', cr') = gg,*(r', o')g,.(r, o}, (2.11)

(where the &I),. 's are occupied orbitals) by

p(r)= gp(r, o;r, o),

p(r) =Qp(r, o; r, o') (o '
f

o
f
o&,

T(r) = QV ~ V'p(r, o; r ', &r)];

7(r) =g V V'p(r, o; r ', o')];, &o'
f

&r
f
o&,

cy, O

j(r)=—.Q(v —V )P(r, o;r, o)J; -„

J „(r)=—.g(V„— '„Vp}(r, o; r', o'}J;.;
fy fy/

x &(r' fo„fo&, (2.12)

where the indices p, v label the spherical compo-
nents of the vectors p, V and cr. The Hamil. tonian
density (2.10) involves two tensorial products,

I

p(r) =g p'(r) (2.15)

((v„p„))'= ([v p J
&'&)' ([v p]&'&)

+ ([v &8 p]&'&)'

(v' p) +-,'(vx p)

+(IV~ p]"')'. , (2.14)

where J"' and [VSp]&" are the irreducible com-
ponents of rank i of the tensors 4 and V Sp. In

Eq. (2.10) the vector component J"' of J has been
noted J [it is r'. /v2 times the spin-density J of Eq.
(11) in Ref. 2]. To be consistent with the phe-
nomenological determination of the force param-
eters made in Ref. 5 we shall neglect in X (r) the
contribution of the tensors of rank 1 and 2 to
((J„„))'. The superscript q in Eq. (2.10) indicates
the charge state (which cannot be confused with
the collective variable q); the total (neutron+ pro-
ton) densities (2.12) are therefore given by
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and by similar formulas. Finally, the Coulomb
energy density is written in terms of the proton
density p~(r) as

e'

Let us now investigate the implications of the
symmetries (i), (ii), and (iii) on the two step de-
termination of p, and p, + p, . We first prove that
the equations

[p'(r)]"' ' (2.16)
3 &3&' '
2 (vj

and

[V,R",]=[V,Rf]=[V,PO]=0

[Q20l R3]—[Q»s Rs] = [Q2ps Pp] =0
y

(2.20)

(2.21)
where the last term is a local approximation, due
to Gombis, " of the Coulomb exchange contribu-
tion.

In relation with the discussion made in I about
the scaling path, we notice that the central and
the spin-orbit parts of the Skyrme force are in-
variant for isoscalar gauge transformations (see
Appendix A). This holds in particular for the de-
scription of isoscalar quadrupole modes with
Skyrme forces presented in Sec. IV.

C. Symmetries

Let us associate to a particular collective mode,
an operator Q which possesses some symmetries.
It is reasonable to assume that the ATDHF solu-
tion shares the same symmetries. Because the
numerical calculations of Sec. IV correspond to the
isoscalar operator Q=Q», we shall now assume
that p has the following symmetries:

(i) the axial symmetries

and

[p., R*.]= [p., R:1= [p., P.]=o

[p„R",]= [p„R.']= I.p„P.]= o

(2.22)

(2.23)

Indeed, Eq. (2.22) follows from the symmetry
assumptions and from the well known theorem
on consistent symmetries (see, e.g., Ref. 11)
applied to the Hamiltonian H —XQ». Further-
more, from the definition of the operator P [see
Eq. (4.5) of I], we have

[P,R"]=[P,R;]=[P,P,]=0. (2.24)

This is because P, being an algebraic function of
p, and Bp,/Bq, has the same symmetries (2.22).
If we now apply the theorem on consistent sym-
metries to the Hamiltonian H —XQ„—qP we ob-
tain

imply the existence of a solution of the A TDHF equa-
tions such that

Rs(e) exe

R"(8)= e'"&

for both spin and space variables,
(ii) the parity symmetry P„
(iii) the reflection symmetry

U P 84%'(l2+s2)
2 0

(2.17)

(2.18)

[p, R",]=[p,R;]=[p,P,l=o (2.25)

and then Eq. (2.23).
The symmetry properties of p greatly simplify

the numerical calculations. Indeed, it can be
shown (see Appendix C) that Eqs. (2.22) and (2.23)
imply

with respeA to the 1-3 coordinate plane.
Notice that if one defines the operators U, and

U, as in Eq. (2.18}, the symmetries (i) and (ii)
imply the symmetry under U, . Since

U~U2U3 = P0, (2.19)

the symmetries (i}, (ii), and (iii) imply the sym-
metry under U, . If one assumes that the sym-
metries (i) and (ii) are satisfied and that-p is time
even (e.g., po in our case), one can show (see
Appendix B) that p commutes also then with U„
and therefore with Uy.

(2.26)

where j~ is the 8 component of the current j in
cylindrical coordinates. The vanishing of J~&'„&,

combined with the dropping of J~&'„& and J~&~&, sup-
presses any contribution of ((Z„„))'to X.

As a consequence of Eq. (2.26), the introduction
of a time-odd constraint P requires only two new
density functions j„and j, to those needed in the
"ordinary" static CHF calculations of the type
discussed in Refs. 3 and 4. This illustrates the
considerable simplification brought in by the
symmetry requirements.

D. The Hartree-Fock Hamiltonian

The doubly constrained HF equations are obtained by the minimization of the quantity

E= x r d'x - x ",0
—j P — e, , r 'd'x (2.27)

with respect to the variations of the occupied orbitals g, . The expression (2.27) contains the total energy
defined by Eq. (2.10), the energies corresponding to the external fields Q» and P, and constraining terms
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ensuring the norm conservation of each occupied orbital. Considering only the CHF solutions with the
symmetries which have just been discussed, one obtains' the following equation for an orbital (j),. of charge

2
—r „rrU'(r)-(W'(r) (r&&r)r W(r)-r~ (;(r)+J' U'"(r, r') ((r')d r ='0'.

a

In Eq. (2.28), the effective mass m,*(r) is given by

k2
+ -', [t,(1 + & ,) + t.(1 + —.' .)]p '. [t,(—,' -+ ,)-t,(-.' —+ .)]p ,

the central field U'(r) is

U'(r) = t, [(1+—,'x, )p —(x, + —,')p']+ -', [3(1+ ,'x,)t, ——(1+~x, )t j V2p

+ —', [3(,+ x,)t, + ( ,'+ x,)t,-]V'p'+ —,
' [(I+ ,'x, )t, +—(I+', x,)t,]7-

—'[(-'.+,)t, -('+ .)t, ] '+ —,'. t.((I+-.' .)(2+ )(P) '-( .+-,')[ (P) "(P')'+2(P) P'])

(2.28)

(2.29)

(2.30)

the spin-orbit field W'(r) is

W'(r) = &w,(VP+ Vp'),

the time-odd field W', (r) is

(2.31)

W'(r) =—.[P(r) ~ V+ V ~ I'(r)]
2i

with

I'(r) = —gt, (l + ~x,) + t,(1+~x,)]j(r)
+ ~[t,(-,'+ x,) —t, (~+ x,)]j'(r), (2.33)

and the external (non local) field U,„,(r, r') is

U'*'(r, r') = —(r
~

XQ"„+qI'
~

r ') . (2.34)

To solve the set of coupled equations (2.28), we
expand each orbital g,. on a truncated set of eigen-
functions of the axially symmetric harmonic os-
cillator. We shall discuss in Sec. III the numeri-
cal problems related to this truncation. Notice
that these basis states fulfill the symmetry re-
quirements of Sec. IIC. The expansion of the (t,.'s
converts the solution of Eqs. (2.28) into the diag-
onalization of a Hermitian complex matrix which
is performed by the usual Jacobi method. " To
construct the Hamiltonian matrix, we perform a
numerical integration for the kinetic energy, U'
and W', following the methods of Ref. 3. These
methods have been extended to include the time-
odd field Wf (see Appendix D). For the contribu-
tion of the external field U'*', due to its nonlocal-
ity, we have computed its matrix elements in the
harmonic oscillator basis. This is easy for P
since we know how to express p, and Bpo/8q on
this basis. For Q,"„we need to compute the
matrix elements of Q2'0 in the expansion basis

which is readily performed according to the
methods developed in Ref. 13.

Notice that even though the HF states belonging
to a subspace 0' (0 being the third component of
the total angular momentum and ))' the parity) are
not complex conjugates of the states belonging to
the subspace -0', their respective contributions
to the different density functions are equal. This
is due to the imposed symmetries, as shown in
Appendix B, and leads to an important simplifica-
tion, in the computation of the various terms of
Eq. (2.28). It may be also worth recalling that
the formalism has been developed in I for two-
body density-independent forces; introducing the
most general two body density-dependent or three-
body forces would result in a more involved ex-
pression for the operator W, . However, the
density-dependent part of the Skyrme interaction
contributes only to WD once the symmetries which
we have imposed are properly taken into account.
For this reason, the expression (2.22) of paper I
for W, remains correct for Skyrme-like forces.

III. SOME COMMENTS ON NUMERICAL PROBLEMS

For both choices of the adiabatic path, one has
first to solve a static HF equation (with, or with-
out a time-even constraint). In the case of the
CHF collective trajectory, one must solve a
second CHF equation, with a double (time-even
plus time-odd) constraint. This is done, as
already indicated in Sec. IID, by expanding the
CHF orbitals on a truncated basis of axially
symmetrical harmonic oscillator states. We
would like to discuss the numerical checks which
have been performed to test the stability of our



21 MASS PARAMETERS IN THE ADIABATIC. . . . II. 2081

results with respect to the choice of the truncated
basis.

For "ordinary" (time-even) HF calculations of
equilibrium states, such a study consists mostly
in making sure that the HF energy, the rms and
the first multipole moments are reasonably well
converged. For spherical nuclei, the "exact"
calculation (in the coordinate space) allows us to
know the degree of accuracy obtained for a given
basis size, and to choose accordingly the number
of oscillator shells. Let us notice that for spher-
ical nuclei the scaling mass M„(q), completely
determined by the values of r„[see Eels. (2.1) to
(2.3)], can be obtained from the exact r code for
spherical nuclei, and is therefore given with an
excellent accuracy. In CHF calculations of de-
formation energy curves, the physical energies to
be considered are relative energies. The conver-
gence therefore is ensured whenever increasing
the basis size results roughly in a shift of the
deformation energy curve as a whole. This is
illustrated by Fig. 1 which shows for the ' C
nucleus a reasonable convergence with nine oscil-
lator shells, the truncation error for the equilibrium
energy being only 300 keV.

AQ the previous check do not ensure the conver-
gence of the operator 8p,/8q entering the time-
odd constraining operator P. In this respect we
have carefully studied the influence of the choice
of the basis on the resulting mass parameters.
The variation of the "C mass parameter at q=O

I
(

I I I I
/

I I I I
t

I I I I

F (q)(MeV)

-80-

I l I

)O3x M/m (fm~)

12

0

10.5-

0 0 0

10. I I

4 6 8 10
FIG. 2. Mass parameters of C at spherical equilib-

rium, as functions of N. The dots represent self-con-
sistent masses MCHF, and the open circles correspond
to cranking masses MIGR'

with respect to the basis size is shown on Fig. 2.
One sees that between 9 and 11 harmonic oscilla-
tor shells, both the self-consistent Mc» and the
Inglis cranking M,CR mass parameters do not
change more than by 1%. This study has been
carried out with the same oscillator length for
all basis sizes. Let us now investigate the com-
bined effects on M«F of the oscillator parameter
and the basis size. As is well known, 4 the optimal
basis parameters (i.e., those minimizing the po-
tential energy E[p,]), may significantly change
with the basis size. That is why on Figs. 3-5
we have plotted over a wide range of oscillator
lengths the "0, 'Ca, and "Ni mass parameters
obtained at q=O for basis including 5, 7, 9, and,
11 oscillator shells. It has been found, for 9 or
11 oscillator shells, that the mass parameters
are almost constant in a rather large interval
of oscillator lengths around the optimal values.
Moreover, the results obtained with 7, 9, or 11
oscillator shells are found to be very close, as
already seen in the case of "C presented on Fig. 2.

One could think that all of this lengthy numerical

-90-
qP, /3()~ )

-0.5 0 0.5 120-

N-6

I

1g0 10 M/rn {Fm 2)

N-10

"60

SIK

FIG. 1. Deformation energy curves of C calculated
with SIII for 7 and 9 oscQlator shell basis. The "exact"
result (obtained with an'r-space code) for the spherical
configuration is represented by a dot. It is to be noted
that in this figure, as in the following, N denotes the
maximum total number of quanta in the harmonic os-
cillator basis.

.60 ~ 6S

FIG. 3. Variations of the adiabatic mass MCHF of 60

with the oscillator constant b = (tIIcgli}I ~I, for different
basis sizes.
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I

10 M/rn
(r~-2) 48'

5IH

Bq. dq(dq+ dq') " '
—dq

dq+
( ~ ) po(qo+ dq ) . (3.1)

0.8-

.50
I

55
I

~ 60
I

65 ~(f~-)
FIG. 4. Same as Fig. 3, for Ca.

analysis could have been avoided bydirectly solv-
ing the double CHF equation in configuration
space, as was done in Ref. 14. It must be re-
marked, however, that, in the present state of
the art, such a solution in r space has only been
achieved for a simplified Skyrme-like force with-
out spin-orbit and without velocity-dependent
parts. The first simplification prohibits a de- .

tailed description of dynamical properties for
spin-unsaturated nuclei as "C and '6Ni. The
second restriction has the important consequence
that the ATDHF mass reduces in this case to the
Inglis cranking mass. Indeed, as shown by Eqs.
(2.32) and (2.33), the time-odd HF potential W,
arises for the Skyrme force only from its veloc-
ity-dependent part.

Let us now discuss the numerical evaluation of
the operator Bpo/Bq for a given basis size. It has
been computed from three CHF calculations of p„
corresponding to the values q, - dq, qo qo+
of the collective variable. For this purpose we
have used a standard 3-points Lagrange formula: E

X
~X
C)

10-- 2C

In order to get reliable estimates for Bp,/Bq
one must choose the magnitude of the differences
dq, dq' in the collective variable not too small to
yield significant numerical differences and not too
large to guarantee the validity of the local quad-
ratic behavior. The reliability of our choice for
dq, dq' has been check by computations where
these differences have been multiplied by 2 and —,'.
In all cases the adiabatic mass parameters were
found equal up to insignificant numerical differ-
ences.

The value of the collective velocity q should
not be chosen too large (large enough though to
secure numerical reliability) in order to ensure
the linear response character of the solution.
In Fig. 6 we have shown some quadrupole mass
parameters as functions of the ratio of the adia-
batic collective kinetic energy x [Eq. (2.32) of I]
to the absolute value E of the ATDHF energy [Eq.
(2.38) of I]. One sees that the linear response is
obtained for a large range of collective velocities
q. In this figure, the arrows correspond to a
crude estimate of the maximum collective veloci-
ties obtained in the nuclear ground state due to
the quadrupole zero point motion. It is seen that
for such maximum collective velocities, the linear
response approximation is roughly valid.

It can also be noted that the smallness of q is

1.4—

9--

16O

0.8—

N-8
N =10

55 ~ 60 b(p 1).65

FIG. 5. Same as Fig. 3, for Ni.

I

-10
I

-5 0

FIG. 6. Variation of the adiabatic mass MCHF of ~ G
and of 0 with the collective velocity j. The lower
(upper) curve of C corresponds to A /3=-0.56 (0)
fm whereas for 0 the calculation has been perform-
ed at q =0. The choice of the abscissa (corresponding
in fact to a linear plot in j) is discussed in the text to-
gether with the meaning of the arrows.
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TABLE I. Parameters of the SIII and SVII forces. For both interactions, ~ =1 and m = 1.

to
(MeV fms) {MeV fxn') {MeVan') (MeV fm')

S'0

(MeV f~')

-1121
-1096.8

400
246.2

-583.33
-148

14000
17626

0.482 25
0.62

0.35 -0.9875
0

necessary for another reason; solving the double
CHF problem does perturb the path given in Eq.
(2.4) by terms of second order in j. This comes
from the effect of p, in the time-even part of Eq.
(2.5) (see the discussion in Sec. IV of I). In the
~ Ca nucleus and for 5j=0.1 MeVfm for instance,
this modification of the path leads to relative
variations of ATDHF energies, radii, and quad-
rupole moments smaller thin 10 ', 10 ', and 10 ',
respectively, over a wide range of deformations.

The preceding discussion leads to the conclu-
sion that our method is capable of yielding mass
parameters with a very good accuracy. This i4
not surprising, since we calculate a nuclear
polarizabiiity (linear response to the external
field P) by solving a Schrodinger equation only
for occupied states. Computing mass param-
eters by perturbation techniques would require a
description of unbound states, which are poorly
represented in the oscillator basis. "

numbers A. , we have plotted in abscissa through-
out this paper, a "reduced" quadrupole moment
qA.

"' ' in order to remove the trivial A depend-
ence. In our HI' (i.e., without pairing correla-
tions) calculations, the range of deformation has
been extended as far as the occurence of single-
particle level crossings has permitted.

Figure V shows that ~ Ca is much stiffer against
quadrupole deformation than "0 and "Ni, whereas
the "C nucleus appears to be very soft. Indeed,
the distortion needed to gain 1 MeV is four times
larger in "C than in ~ Ca. Notice the existence
of a spherical equilibrium configuration for "C
with SIII, while a very shallow valley centered
around a negative q value is obtained with SIV.
Therefore, by mere inspection of the static
deformation energy curve one would infer a
strong dependence of the "C ground state intrin-
sic deformation on the effective force. Vfe will

IV. RESULTS E(q }(MeV}

In this section we present numerical results for
the isoscalar axial quadrupole mode. Various
effective forces have been used: (i} the SII*, SIII,
SIV, and SV forces proposed in Ref. 5, (ii) a
force called SVII, linearly extrapolated from the
preceding to give a nuclear effective mass m*
equal to the nucleonic mass m, (iii) a force called
SIII* with the same m+/m ratio as Sill but where
spin-stability properties have been slightly mod-
ified to improve some spectroscopic properties
of the interaction, " and (iiii) the two forces SGO

[with the exponent n of Eq. (2.7} equal to either ~
or to I] proposed in Ref. IV. The parameters of
all these forces can be found in Hefs. . 5 and 1V,
except for those of SID* and SVII which are given
in Table I.

Deformation energy curves obtained by CHF
calculations in the vicinity of the spherical con-
figuration are displayed on Fig. 7. The SIII force
has been used for "C, "0, ~Ca, and "Ni, and the
SIV force also for "C and "O. In the "Ni case we
have repeated the calculation with SIII* but the
resulting energy curve cannot be distinguished
from the SIII curve. To facilitate the compari-
son of curves corresponding to different nucleonic

-120—

-125—

16O

SIK-
S~---

40C

SIK

- 478-

- 481-

I

—0.5

56'. SE
(sm"

~q A "(Frn')
0.5

FIG. 7. Deformation energy curves of C, 0, 4 Ca,i2

and Ni. SIV results are represented by dashed lines,
and SIII results by solidlines. The SIII and SIII forces
lead, for 56Ni, to the same curve.
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FIG. 12. Same as Fig. 9, for 58Ni.

(4.1)

The main contribution to Eq. (4.1) comes from
the particle-hole excitation between the two 0'

states stemming from the 1p' ' and 1p' '
spherical subshells as seen on Fig. 13. The
minimum value of the corresponding particle-
hole energy e» occurs roughly at the same defor-
mation as the bump in M,~„. Moreover, the
quantity I/e~' roughly behaves, as a function of q,
like M,~R which implies that the matrix element

P1I2

2C

SE
1/2

-20—

smaller than the barrier radius. In our case the
behavior of the mass parameter can easily be
explained. We first mention that in this case the
Inglis cranking and self-consistent masses closely
follow each other with an almost constant discrep-
ancy of -1-2% with the SIII force, and of -3-4%
with the SIV force. This allows us to restrict the
discussion to the Inglis cranking mass:

in the numerator of Eq. (4.1) does not depend
strongly on q.

The spin-orbit splitting of the P shell results in

an exchange (on the oblate deformation side of

Fig. Ip) of the two "asymptotic" [110]and [101]
Nilsson 0'= —,

' states, which is responsible, as
we have seen, for the structure of the mass
parameter. This kind of effect can thus be ex-
pected for all closed sub-shell nuclei which are
not spin saturated. This is indeed the case for

Nl as seen on Fig. 12 where a similar structure
as in "C takes shape. Unfortunately, due to the
presence of level crossings, it has been impossi-
ble in this case to span the same range of defor-
mation.

When requantizing the collective Hamiltonian
with some quantization prescription one would
therefore expect a concentration of the collective
wave function around the deformation where the
mass exhibits a maximum. This generates in the
"C ground state an oblate deformation of purely
dynamical origin. For "C and "Ni, the Bohr
Hamiltonian is far from an harmonic oscillator
one, which invalidates any small amplitude approx-
imation.

As seen from Figs. 9 and 10, the mass param-
eters calculated for "C and "0with SIII and SIV,
respectively, are very close. In particular the,
same ground-state deformation of "C is found
for both forces. In "¹i,SIII and SIG* yield also
adiabatic masses in very good agreement (one
expects, however, more important differences
for isovector modes).

On Table II we present the quadrupole mass
parameters calculated" at q =0 with SGI for both
scaling and CHF paths. To facilitate the com-
parison between different nuclei we have multiplied
the mass parameters by A' '. As expected, the
"reduced" scaling masses are found almost con-
stant with A. Indeed, since they correspond to an
irrotational flow motion, their variation with A
must go as A ' '. In contrast, the "reduced" CHF
masses display a significant A dependence. For
magic light (i.e. , spin-saturated) nuclei they are
equal to (or slightly larger than) the correspond-
ing scaling values; for nonmagic nuclei they are
much larger. This is easily understood in terms
of random phase approximation (RPA) sum rules
(see Sec. VI of I}. For nuclei with static equilib-
rium at q= 0, we know for the scaling mass
M (q=0) that

k2 1
M„(q=O) =—

2 m, (Q„}' (4.2}

I

0 0 ~qA ~(pm')

FIG. 13. Single-particle HF levels of C around the
Fermi surface as functions of the collective variable.

whereas for the CHF mass Mc„F(q = 0),

5' m, (@20)
cHF(q } 2 [ (q )]2

' (4.2)
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TABLE II. Mass parameters of various nuclei at spherical equilibrium, in reduced units
MA5, for the CHF and scaling paths, calculated with SIII.

12C AGO "Ca 48(a 58Ni 40+e 208Pb

~CHF «0) 5&3
m

(fm "2)

0.65 0.13 0.13 0.60 0.72 0.32 0.17 0.25

Mzc (@=0) „A5(3
m

(fm-')

0.13 0.12 0.13 0.13 0.14 0.14 0.14 0.14

As mentioned in I these masses satisfy

M,„,(&=0) M„(q=o), (4.4)

M/~ x '10 (('rn~) ~CHF
O &&cR

3.5—

25—
0

0
2Q8Pb

which is verified in our calculations (see Table II).
oreover, the large discrepancies between. McHF

and M~c, whenthey occur, are- clearly related to
a distribution of the quadrupole strength between
"0-Se"and "2-@g"particle-hole excitations.
This is obviously the case for open-shell nuclei.
For heavy magic nuclei, the spin-orbit coupling,
as is well known, introduces in the hole states,
intruder orbitals from the next shell (which gives
rise to low-lying states in the HPA spectrum). On
the contrary, the two masses are roughly equal
for light magic nuclei, where 0-h& excitations
are forbidden by the Pauli principle.

CHF MICR (4.5)

to be a monotonous function of (m/m* —1). This
is illustrated in Fig. 14. AM decreases with
m+/m for "0 and "'Pb; one notices also that 4M
=0 for SVII, for which m* =m. As seen on Fig.
15 for "0, AM/Mzc„ is also an increasing func-
tion of (m/m*- 1) and varies between 0 and 50%
for all considered Skyrme forces. Since the ef-

~~/g (i)
ICR

50—

Restricting ourselves from now on to the CHF
path, we shall compare the exact adiabatic mass
M cap with its non-self-consistent (Inglis cranking)
approximation M,c~. In fact, it is mainly for this
purpose that various Skyrme forces all yielding
the same saturation properties but having differ-
ent effective masses m* have been used. By in-
spection of Eg (2.29. ) defining m* and Eqs. (2.32)
and (2.33) defining W, (r), one sees that for iso-
scalar modes (assuming moreover that p'=p/2
and j'= j/2) the time-odd self-consistent field
W, (r) is proportional to (m/m* —1). One expects
therefore the difference hM

009- 0

0.38 0.47 0.58

S SE S2Z 5 II'

0

076

5III

16O

~/'rn
1

SKI
I

0.32
I

072
I

113

(my~'-&)

1.63

FIG. 14. Mass parameters of 2 Pb and 60 (at spheri-
cal equilibrium) as functions of the interactions char-
acterized by their effective mass. The dots represent
self-consistent masses McHp, and the open circles cor-
respond to cranking masses M~&R.

FIG. 15. Relative discrepancy between self-consistent
(~cHF) and cranking (MggR) mass parameters, as func-
tion of the interactions [characterized by the function
(m/m -1)of their effective mass na ], for 0 at
spherical equilibrium.
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TABLE IH. Relative discrepancy between self-consistent (McHq) and cranking (M&ca) mass
parameters for various nuclei at spherical equilibrium, calculated with SIII.

12( 16p 40ca 48ca Ni 90gr i40ce 208pb

EM/MAR (q= 0)
(%)

13 10 16

TABLE 1V. Self-consistent (McHF) and cranking
(Mica} mass parameters of 0 at spherical equilibrium,
calculated with the SGO forces (characterized by the ex-
ponent n of p in the density-dependent term).

Mrm/m
(fm 2)

McHF/m
(fm 2)

1.06

1.01

1.28

1.22

21%

21%

fective mass in nuclear matter is expected'" to
be of the order of (0.6 —0.8)m, one is led to
assess a validity of -15-30% to the mass param-
eters calculated with the Inglis cranking formula
(at least for the isoscalar quadrupole mode).
This is illustrated by Table III where hM/M, ca
is given for various nuclei calculated (at q = 0)
with SIII.

For "0, we have calculated M«F and M,c„
with the two forces SGO of Ref. 17, corresponding
to different powers of p (n = 1 and ~) in the den-
sity-dependent force, both having the same effect-
tive mass m*/m =0.64. Results displayed in
Table IV show that hM/M, ca is the same for the
two forces. Moreover, these interactions lead,
for M«F, to the same value as the other Skyrme
forces (see Fig. 14}; also, the result for M,c„
would take place in Fig. 14, on the straight line
joining the points. These results and the result
in "Ni with SIII* show that the value of m* is
the relevant parameter to characterize the degree
of validity of the Inglis cranking formula. (Indeed,
in this respect, the dependence of the path po and
of the currents j' [see Eqs. (2.32) and (2.33)] on

the choice of the interaction does not seem to
play any role.)

It has been found in extensive calculations (with
SIII and SIV for "C, "0, and "Ca) that rhllf is
roughly constant with q. This seems to indicate
that, at least for the isoscalar quadrupole mode,
the effect of self-consistency is merely to shift
upwards the curve M,oa(q).

We come now to an interesting feature which
can be observed for "0 on Fig. 14 and which is
the quasiconstancy of Mc»(q = 0) with respect to

m*, in contrast to the strong variation of M«„.
Indeed, why M,c„is an increasing function of m*
is easy to explain, since to increase m~ amounts
to contract the single-particle spectrum, and
hence to decrease the energy denominators in Eq.
(4.1). The explanation of the quasiconstancy of
Mc»(q=0) is somewhat more subtle. Take the
magic "0 nucleus; in this case the quadrupole
strength is concentrated in the narrow giant reso-
nance and the sum rule inequalities [Eq. (6.4}]of I
become

m, (Q„) m, (Q„) m, (Q„)
t(@2o) m-a+no) m-3( 4o)

' (4.6}

On the other hand, it is known" that for Skyrme
forces

m, (Q») o-(m+) ', (4.V)

and also that m, (Q») is almost constant with m+
(which comes from the force parameter adjust-
ment to a correct saturation density}. Therefore,
Eq. (4.6) leads to

m, (@so)oo m+,

m, (Q,o) oo(m+}, (4.8}

which shows, according to Eq. (4.3), the inde-
pendence of Mc„p on m*.

This argument, which was developed for "0, can-
not be applied to "'Pb where the quadrupole strength
is more fragmented and indeed a slight but signi-
ficant dependence of M«F on m+ is found in this
case (see Fig. 14}.

V. CONCLUSION

In the present works (papers I and II), we have
carried out a theoretical study of the ATDHF
formalism when it is restricted to a single collec-
tive trajectory, assumed to be known, together
with a practical application to a specified collec-
tive motion, the quadrupole mode.

Two possible choices for the adiabatic paths
have been considered. For the standard scaling
path, we have found an analytical solution of the
first set of Hamilton equations, which directly
provides the mass parameter. To be able to
compare the scaling mass with the CHF one, we
have chosen the same collective variable in the
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two cases, which restricts the scaling transfor-
mation to small amplitude motions. In the CHF
path case, we have developed a method to calcu-
late the mass parameter, which reduces to a
doubly constrained HF problem. This method
avoids difficulties in dealing explicitly with the
continuum part of the HF spectrum (as encoun-
tered in perturbation series), since it is equiva-
lent to the solution of the Schrodinger equation
for bound states. As shown by our numerical
applications, the resulting values of the mass
parameters are quite reliable, even if the solu-
tion is performed in a truncated harmonic oscil-
lator basis.

This doubly constrained HF form of the first
ATDHF equation is reminiscent of the starting
points of other approaches to collective motion.
In some of these, one chooses a time-even con-
straining operator Q defining the path (as we do),
but there is no unique prescription to define the
time-odd constraint P generating the dynamics.
In our case, the operator P is unequivocally defined
(except for irrelevant diagonal matrix elements)
by the first Hamilton equation of motion. For
any kind of path, the "coordinate" Q and the "mo-
mentum" P satisfy weak quantal canonical rela-
tions and their expectation values with respect to
the time-dependent wave function are classically
conjugate.

Numerical calculations of mass parameters have
been performed for the two paths, with Q2O as
scaling or constraining operator. Several inter-
actions of the Skyrme type have been used. We
have in particular focused our attention on four
points: (i) distinction between small and large
amplitude motions, (ii) comparison of the two
choices of the path, (iii) for the CHF path, com-
parison between the ATDHF and the Inglis crank-
ing masses, and (iv) influence on the results of
the choice of the interaction (among a family of
saturating Skyrme forces).

As is well known, the scaling path leads to the
irrotational hydrodynamical value for the mass
parameter. In reduced units (MA, '~'), this mass
at equilibrium has almost the same value for all
spherical nuclei (indeed, it is proportional to
the inverse square of the nucleus radius). The
scaling path is appropriate for the description of
giant resonances, since it provides the excita-
tion energy E3= (m, /m, )'~', which is almost in-
sensitive to the low-lying part of the spectrum.
On the contrary, the CHF path does contain in-
formation on the shell structure; this is illustrated
by the value —,'h2m J(m, )' of the inertial param-
eter, 'which is dominated by the low energy states.
Consequently, the CHF path, with Q» as the con-
straint, is more appropriate to describe low en-

ergy collective excitations. For doubly closed
shell nuclei it happens, however, that this path
is capable of describing the giant resonance. In
this case, which is a case of RPA harmonic
vibrations, the CHF mass parameter is roughly
constant with respect to the deformation, and
very close to the scaling mass.

For non-spin-saturated nuclei (see the results
for "C and "Ni), the CHF mass parameter ex-
hibits a strong structure with respect to the de-
formation. This is incompatible with a small
amplitude motion, and is a signature of the occur-
rence of anharmonic effects.

A systematic study of the results at the equi-
librium spherical state shows that the ATDHF
mass parameter is nearly independent of the
choice of the Skyrme interaction. For light doubly
closed shell nuclei, this quasiconsistancy can be
proved analytically in terms of sum rules. On
the contrary, the cranking mass is very sentitive
to the interaction, and this sensitivity appears
therefore to be a spurious effect due to the lack of
self-consistency. In this respect, all the tests
carried out with a large variety of Skyrme-like
forces lead to the conclusion that the relevant
parameter is the effective mass m* in nuclear
matter. For "reasonable" values of m+ (as in
SIII), the self-consistent and cranking inertial
parameter differ by 15—30Pp.

However, one should not extrapolate these re-
sults to other kinds of collective excitations, and,
in particular, to rotational spectra. Relaxing
some symmetries would give rise to new terms in
the time-odd field 8'„ leading possibly fo a quite
different value of the ratio (McaF —Mzc„)/M~c„.
Moreover, it. would remain to investigate the
effects of the other parametrizations of the effec-
tive interactions.

In the present work we have ignored the ques-
tion of determining microscopically the adiabatic
path. To solve this problem one would encounter,
as in "exact" TDHF calculations, the difficulty of
finding (or even averaging over) initial conditions.
Some attempts to determine the collective paths
have been proposed. 23 25 But in practice, they
involve a considerable amount of difficulties. In
our opinion it is not clear that such approaches
are more valuable than extracting the path from
TDHF solutions in the adiabatic limit. ' It should
also be stressed that, up to now, the numerical
applications of all these methods are restricted
to effective forces which are not as elaborate as
those used in this paper. (In particular, the inclu-
sion of the spin-orbit force is needed to describe
low energy collective motion).

The method presented here and illustrated by a
lot of numerical calculations is both practicable
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and microscopically well founded. In many re-
spects however (the choice of the path, the ab-
sence of pairing correlations, the single collec-
tive variable reduction, etc. ) there is room for
further improvements.
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APPENDIX A: GAUGE INVARIANCE OF THE SKYRME
FORCE WITH RESPECT TO ISOSCALAR. SPIN-

INDEPENDENT OPERATORS

(1) Definition. Given any wave function
~
Qg

and a Herinitian operator Q defining a new wave
function

~
P& by

=e'~ (Al }
the interaction V is said to be gauge invariant
with respect to Q if

(4'
~

V
( e, &

= (4 )
V

(
4» =(4,

(
e 'c Ve'c

) y, & . (A2)

A sufficient condition for that„is

as can be readily seen by expanding the exponen-
tials. It may be noted that if

~
Q, &, V, and Q are

all time-even objects, the less restrictive condi-
tjoIp7

(A4)

is sufficient, the expectation value of time-odd
operators vanishing for time-even states.

(2) The Central Shyr&ne force Let us r.estrict
ourselves for the moment to the central part of the
two-body Skyrme force. If the spin-independent
operator Q commutes with the spatial part of the
central force, the whole central force is obviously
gauge invariant (including the exchange terms).
That is why we can limit ourselves to the gauge
invariance property of the spatial part of the

central force, the following proof being partially
borrowed from Refs. 21 and 28.

The velocity-independent part
I

V(r„r,)= C+Df '
2

' 5(F, —r)
I»

(A5)

of the Skyrme force fulfills obviously the condi-
tion (A3). We are then left with two interaction
terms

V$ Q(P&g 5&& + 5)JP&y ) (A6)

and

V» —Q (P jj 5,$P g&) (A7)

with the notation

5,~
= 5(r, —r~),

P])——P] —P),
S-

PJ=-~~ ~

g

(A8)

where 5&"~ is the nth derivative of 5. Moreover,
upon defining

A A.

(A10)

one gets readily

[q» 5|y'1=o ~

(All�)

It is now possible to prove that if V, commutes
with Q, V, does it also, since

I

[P&~ 5. . +5))Pn &q»]= 2P))5)~P ~+ [P)(&5&~ ], q—».
J

= 2[P)~5,~Po, q»] —(2hP[5P~&, q»]

= 2[P,)5,~P,q, q»] . (A12}

To demonstrate that V, commutes with Q, one
first notes, using Eqs. (A9) and (All), that

[Pq)5 vP(s& q»] = [P&g& [P(s& q»]5&s],.
Now since

(A13)

The definitions (A6) and (A7) of the velocity-de-
pendent parts of the Skyrme force differ from
Eq. (2.7) by the replacement of P' by P, which is
irrelevant for our purpose here [the same remark
holds for Eq. (A17) below].

From now on we will restrict ourselves to a
one-dimensional problem since V, and V, involve
only scalar products. It is easily seen that

[p 5)n&] 5 &n»&&
25
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, 2A—.qk&'& if Z=0i
[+$jy qg] —( 28 (y)

&0 otherwise,

one gets

(A14)

APPENDIX B: WAVE FUNCTIONS AND IMPOSED
SYMMETRIES

Consider a one-body reduced density matrix p
commuting with J, and P„and define occupied
states of p which are eigenstates of J, and Pp with
eigenvalues 0 and w. Their wave function in
cylindrical coordinates can be written as

y(r, o) = P (r, z)e' '~ -)

Partially resumming the (j, k) and (k, j) contribu-
tions, one sees that [V„Q]vanishes since P»
=-P» and q~&'&5» —q&&'&5». As seen in Eq. (A10),
we have considered an isoscalar operator Q. An
isoeector operator Q would have been defined as

where

+ 0'(r, s)e" '~+ &, (Bl)

(B2)

&aqua
k

(A16)

(A17)y„= (P„x6,~P„) (o, +o,).
Using Eq. (A9), the x component of P,&

x5,&P,&

writes

2I
(P;gxb»Pu}" = ;( l!6—4 fdb'l~-» (A18)

where P;& is the z component of P,&
and 5,'& the

first partial derivative of 5,&
with respect to y.

From Eqs. (A14} and (A18) one gets

P,, &6,)P,) ",qk

= -4@'Q(5 "q"+ 5 "q") (A19)
jk

where qk is the first partial derivative of qk with

respect to z. Collecting the contributions from
the pairs (b, j) and (j, b} leads to the vanishing of
the commutator (A19). A similar demonstration
for the y and z components would achieve the

proof of the gauge invariance of V„with respect
to isoscalar operators Q.

(4) The Coulomb force Since the Co.ulomb
force is velocity independent, it is gauge invar-
iant with respect to isoscalar operators. It is
trivial to show that this is also true for isovector
operators.

with, e.g. , qk= 1 forprotons, q, =-l for neutrons,
and the previous proof could have been repeated up
to Eq. (A15), the cancellation of the (j, k) and (k, j}
contributions occuring only for g„=q&. As a result,
the velocity-dependent Skyrme force is generally
not gauge invariant with respect to isovector op-
erators Q, as already noted in Refs. 7, 21, and 29.

(3) The sPin orbit force. Let us consider the
interaction

and where the kets
~

a& are the eigenstates of s, .
Let us define for each y, a state p=U, y which

is another occupied state of p with the wave
function'

q(r, c)= 0 (r, e)e *' '~+ &

—P"(r, z)e '~ '~ —
& .

It is an eigenstate of J, and P, with eigenvalues
-0 and m.

Let us introduce also the state q deduced from
y by time-reversal conjugation |':

q(r, ~)=-0 (r, s)*e '"'~-&

+ P"(r, z)*e ' '~+&. (B4)

Time-even densities. If in addition to the J,
and P, symmetries we assume that p is even
under time reversal, there exists a represent-
tion which is such that the functions P and Q'
are real and therefore

APPENDIX C: THE SYMMETRIES OF THE SOLUTIONS
INDUCE THE VANISHING OF SOME DENSITIES

First we show that the spin- vector density
matrix p vanishes when the symmetries (i), (ii),
and (iii) defined in Sec. II C are assumed. Any
vector P will be represented by its cylindrical
coordinates V» (k = r, 8, z} defined from the Car-
tesian representation V„V„V,by

(B6)

Hence, since p commutes with e it commutes also
with U2.

Consequence of the U, symmetry on density
functions. It is easy to check that the wave func-
tions y and y and defined in Eqs. (Bl) and (BS)
give the same contribution to the spin-scalar
density functions p, r, j„, j„and V ~ J.
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v =-'(v e "+v e")

v, =-', i(- v,e "+v e"),
Vg

——V3,

where

(Cl)

one easily gets

p„"'(x,x') = —p„(x, x') .
0 comPonent. A similar proof for p~ gives

p,"'(x, x ') = —pe(x, x ') .

(C13)

(C14)

V, =V, +iV, .
Let us denote by p&'& the density matrix

p(~) U p

From the symmetry properties

[p, U, 1=0,
and therefore

p~(»=p„, t =r, e, z.

(C2)

(C3)

(C4)

(C5)

p &'&(x, x '}=g (x, g
~
g,pg,

~

x', g '& (g '
(
g,

~

g& .

From

(C15)

z comjonent. In this case we consider the
action of U, on p, . The operator I'„e"'2 trans-
forms (x, z, 8) into(r, z, —8). Due to the axial
symmetry the radial part of p, does not depend
on 8 and therefore

pa '=-pay u=~, e, z. (C6)

To prove the vanishing of pwe will show by ex-
plicit action of a suitably chosen U, transforma-
tion that

0'20'g(T2 = -0'g
P

one gets readily

p&'&(x, x') = -p, (x, x') .

(C16)

(Cl I)

where

&c(g'ig„io &, (cv)

U =I' e"'3zo
3 0 3

x(x') stands for x, z, 8(r', z', 8'}.
The P,e"&~ operator transforms (r, z, 8) into
(r, -z, 8). Since the density matrix is invariant
under this transformation, its radial part is even
with respect to z and therefore

r comPonent. Let us consider the action of U,
on p„

p &3) (x, x '}=g(r, z, 8, o
~

U; p,U~ r', z ', 8', g'&
OO

Extension to other density functions. The pre-
ceding arguments can easily be extended to
demonstrate the vanishing of the kinetic energy
spin-vector density T, the scalar part of the J„„
tensor, and the j~ component of the current vec-
tor j.

APPENDIX D: THE MATRIX ELEMENTS OF V) IN THE
HARMONIC OSCILLATOR BASIS

(1) Notation. A normalized basis vector is
defined by two oscillator constants c, and c, and

by a set of 4 quantum numbers n„n„jt., Z,
eigenvalues of the numbers of quanta in the z
direction and in the x0y plane, the z component
of the orbital and spin angular momenta (divided
by 5), respectively. One generally introduces

)r»(x, x')=g(x, rr(rr r,rr(x', rr )( ')rrrr, )rr). '

Defining

fcr& =cr, /g&

and similarly

Jcr'& =g, Jcr'&

leads to

(C8)

(C9)

(C10)

q „„,(r) = y„'(r)(„(z)y,(8) .
The radial wave function (for A & 0) writes

q'=N'c Mrq'r2e "r2I."(q)

with

(D2)

(D3)

n=-,'(n, —
~
A~)

and defines the current basis vector by c( =—{n„n,
A, Zj. In cylindrical coordinates (r, 8, z) the
corresponding normalized spatial wave function
can be expressed as the product of three wave
functions:

p&'&(x, x') = g (x, cr
~

p(x', &r'&(cr'(g, g,g, )&r&.
OO

(C11)
Since and

1 1/2
~A

(n+ A)! (D4)

0'30'qO'3 = -(T„, (C12) 2 2'g = C ~
f' (D5)
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(D6)

L~(x) being the usual Laguerre polynomial. " The
longitudinal wave function writes

P„=M„Mc,e t t'H„(k),

where
V, q&„(f)=M„c,~t~e t '2H„(r), (D10)

To deal with first derivatives of the g's we intro-
duce as in Ref. 3 new polynomials H„and L~
defined by

M„=(v m2"gn, &)
't' (D7) V„g„(r)=N~c, 'M2q& '&t'L„'(q). (Dl1)

and Using standard relations for H and I polynomials
leads tof= c,z,

H„(x) being the usual Hermite polynomial. "
The angular wave function writes

H„(P}= CH„(0) —H„„(g),

L„(q)= 2(n+ I)L„'„(q)

(D12)

1
4=~2 (D9) —(2n+ A+ 2 —q)L~(q) . (D13)

(2} Current. The k component of the current vector j can be written in terms of the basis wave func-
tions y and y , as

(D14)

Using the Hermiticity of p and the reality of V,&p (r)qr, (r) (A =A, due to the axial symmetry and the

spin scalar character of p) one gets

j„(r)=-,'g Im(p, )[V„y (r)9&+.(r) —y (r)v, y*,(r)].

From the definition relations (D10) and (Dll) one obtains

C Cj „(f,q) = ' ' e« "&g jim(p .)M„M„,N~N~5~~. q&~ '&t'H„(g)H„, (g)[L~(q}L~(q) —L~(q)L~(q)])

(D15)

(D16)

and

2

j,(g, &})= ' ' ' "'QJLI (p, .)M„M„,N„N„". 5, , q'L„'(&})L„',(q)[' „(g)H„,(g) —H„(g)H„', (e)]) . (Dl7)

(3) The matrix elements. From the preceding expressions for j'„and j; one gets, according to Eq.
(2.33), the components P, and I; of the fields P(r}. Now, integrating by parts the second term of

(c&
~

W,
~

o &
=—.(o P' V + V I'

~

o '&, (D18)

the matrix element to be computed becomes

(n
~

W,
~

u'& =—. fy*(r)I'(r) V9 .(r) —[Vp*(r) I'(r)V, ,(r)jd'r,
2i

(D19)

that is, with our notation,

(n
i
W,

i
o. '& =-Z5„„.t&,M„M„,N„N„, c,'c,

x e "g~dq e "dg

~ (c,H.(&)H. (&)f,(&1 l)&} "'[L.'(n)L."(n) —L„'(n)L'(n)]

+ c.L„'(n)L.'(n)1, (n, C) [H.(&)H„(C) —H„(C)H„(&)]k. (D20)
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