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Alternative methods for the solution of static Hartree-Fock and related problems
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Alternative ways to the usual diagonalization procedures to solve the self-consistent nuclear Hartree-Fock
problem are discussed. It is shown that they are much faster than the conventional approach and
computationally much simpler. It is shown how they can be further improved. Finally all these new
methods are unified within the framework of a direct minimization of the total energy in the subspace of
Slater determinants. Results are given for medium-light deformed nuclei. I

jNUCLEAR STRUCTURE Alternative Hartree-Fock solutions. ]

I. INTRODUCTION

Certainly the Hartree-Fock (HF) approximation
represents a starting point for any microscopic at-
tempt to describe nuclear structure. In addition,
with the introduction of schematic density-depen-
dent interactions, this approach has recently
shown its validity in reproducing static ground
state properties of a wide range of nuclei. ' Con-
strained HF calculations, coupled to an evaluation
of the collective mass parameter in an adiabatic
time evolution, seem to give very promising re-
sults in describing large amplitude oscillations far
away from the stability region (fission modes,
yrast states, and so on). ' Therefore it seems
worthwhile to improve the numerical methods for
solving the HF problem in order to obtain faster
convergence and more reliable solutions, particu-
larly for the case of heavy deformed nuclei.

he usual approach is based on a linearization of
the HF equation which leads to a self-consistent
diagonalization of the HF Hamiltonian

h~(p) =T +rTV p+' Tr Tr p p,
ap

where T is the kinetic energy V is the antisym-
metrized interaction, and p is the one-body density
matrix of the nuclear system. The third term has
to be included when one uses density-dependent
forces.

The diagonalization method is actu3lly a quite
lengthy procedure for heavy elements where huge
matrices are involved. On the other hand this ap-
proach is based on a particular linearization of a
problem which is highly nonlinear, especially for
density-dependent interactions. 'This means that a
different linearization can lead to much faster con-
vergence. Finally, the reduction of the problem to

II. DIRECT ENERGY MINIMIZATION METHOD

Here we briefly discuss the method, and demon-
strate the possibility of including higher order
terms in the variation of the energy functional with
respect to the density matrix. The problem is to
minimize the total energy in the HF approximation

E(p) =TrTp+ —,
' Tr TrpVp (2.1)

in the space of the one-body density matrices with

the solution of a Schrodinger equation raises some
mathematical uncertainties in constrained cases
because of the unboundedness which occurs for
certain values of the Lagrange multipliers in the
H am iltonian. "

Recently two methods have been proposed to
overcome such difficulties which make no use of
diagonalization procedures. One, the "direct dens-
ity" approach, is based on a minimization of the
total energy through a steepest descent procedure
in the space of one-body density matrices. ' The
other, the "imaginary time" approach, is based on
a transformation of single particle wave functions
which resembles a time evolution with imaginary
time and which ensures a decreasing total energy
towards the minimum value. '

In this paper we show that the two approaches
are closely related in a general framework of a
direct minimization problem for the total energy
functional with different linearization options which
lead to different convergence rates, also connected
to the density dependence of the used schematic in-
teraction. We shall focus our attention on the HF
problem, but the extension of these methods and
of our conclusions to constrained cases and to the
Hartree-Fock-Bogoliubov problem is straightfor-
ward. '
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the constraints

P =P~

P =P~

Trp =&.
(2.2)

secure the validity of the approximation equation
(2.8), where we neglect higher order terms in the

y operator, we must keep

&=0, 1, . . . .
In our metric this means

'This means that if we start with a density matrix
po which satisfies the HF conditions [Eqs. (2.2)]
and if we operate with a unitary transformation

p pG (2 3)

="
p 2"- p.p

+ — hp .hp 4p + (2.4)

our problem reduces to a search for an Hermitian
operator y which secures a maximum energy de-
crease at each step.

We can introduce an expansion for the energy
variation

1 1

II [I!ff' P. Ill (-»[&'.of,',
which implies a large range of acceptable values
if we start with a density matrix corresponding to
a good trial mean field. Actually we have no prob-
lems in nuclear theory where spherical potentials,
with standard choices of depth and radius, give the
bulk of the self-consistent field. In any case, from
the inequality equation (2.11) it seems to be safe to
choose small values of g. A good prescription is
to take the smallest real positive solution of the
nonlinear equation

(2.12)

in a matrix space with scalar product

A B =(AIB) =- TrA'a.

Because of the very general result

(2.5)
Expanding p(X) to the second order in L we get a
definite expression for the best value of X (see Ap-
pendix A)

=& (p),
Bp

(2 8)
Tr(D„')

T ([D., I'.",ll[D..P.B ' (2.13)

where h~(p) is the HF Hamiltonian, Eq. (2.4) may
be rewritten as

1 8$~ =Tr h (p)+ — ~ bp

1 &8'h
+

I 2 +p (+p) ~p+ ~

6 ( g 2

= Trh, ( ff}PP+ ~ ~ ~ . (2 7)
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We remark that no further terms are needed for
linearly density-dependent forces (e.g. , of Skyrme
type). In any case, we have a definite way to con-
sider higher order terms.

Assuming the trial density matrix pG is not far
away from the solution, we can approximate
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We finally get

a& =-i Tr [&,ff po]X

and the choice4

X =~~[@es~po1 ~

(2.8)

(2.9)

(2.10)
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with g real positive, ensures a maximum energy
decrease of the truncated energy at each step. 'The
result is actually related to the approximation
equation (2.8). In this respect the choice of the A.

parameters requires some attention. In order to

FIG. 1. Total energy O.ower curves) and charge quad-
rupole moment (upper curves) of 36Ar as a function of
iteration number. HF lines are obtained with the usual
procedure, DD lines refer to the method described in
the text with the approximation equation (2.14).
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ff(P)= hJI(P) (2.14)

where D„—= [h',«', p„], with p„ the density matrix at
the nth iteration. , 'The approach has been proven
successful for a quite wide choice of the starting
density P0.

In Fig. 1 we show results of this method com-
pared to the usual HF diagonalization procedure
for the energy and quadrupole moment of the
ground state of "Ar. In effecting the comparison,
we have used the simple DD approximation

I

I

II
I I
I

I
I

I

I

I

I

24 Qg

i.e., we have neglected higher order terms in the
energy variation ("direct density" method of Ref.
4). The interaction used is of Skyrme II type. The
starting density matrix p0 is computed from a
spherical %'oods-Saxon potential with radius A
=1.35'.'~' fm, diffuseness g=0.6 fm, and depth V
= -70 MeV." The DD method seems to be slow-
er than standard HF, but this is not a serious dif-
ficulty because it is computationally much faster.

The introduction of second and third order
terms, with a Skyrme force, significantly im-
proves the convergence rate. This can be seen in
Figs. 2, 3, and 4 for the ' Ne and "Mg cases
(DDH curves), where a suitable extrapolation has
been used to compute the shift (see Appendix B)

&P =P,+j. PN ~

All the results have been obtained with a deformed
harmonic oscillator basis, ' but of course the meth-
od is not dependent on the choice of the represent-
ation.

In contrast to the HF case, both the binding ener-
gy and the charge quadrupole moment converge at
about the same iteration in the DDH method. In
terms of computation time the DD and DDH meth-
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FIG. 3. Total energy of Mg as a function of iteration
number with also the results obtained with higher order
terms (DDH line).

ods are very similar (the former being fractionally
faster) because of the two intermediate estimates
of the density being required in the DDH case.
However, the DDH method is much more stable
since an almost simultaneous convergence of the
binding energy and the nuclear shape is obtained.
Moreover, the DDH method is about a factor 4
faster than the usual HF.

At the end of this section we would like to make
two more points which are important in order to
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FIG. 2. Total energy gower curves) and charge quad-
rupole moment (upper curves) of Ne as a function of
iteration number. The DDH lines correspond to the in-
clusion of higher order terms.
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FIG. 4. The same as Fig. 2 for the charge quadrupole
moment.
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make connection with the imaginary time method
described in the next paragraph. First of all, let
us consider the changes of the single particle wave
functions during the iteration procedure. If we in-
troduce at each step the eigenstates of the one-body
density matrix

1,A
(n) ( n) (2.16)

with the same unitary transformation as discussed
previously, we can construct the eigenstates of the
(n+ 1)st density matrix

p( x'"') l)t'"'&

(2.17)

[1—t(h(""/2)] with t( =b, t/K a real positive param-
eter. If we add the orthonormalization procedure,
we finish with the transformation, ' valid for small
values of p. only,

l
y(n+1)) (1 gt (n+1/2))

l
y(n))

& A

+ (n)
p

(n+1/2) (n) (n) 3 4

that in the density matrix formalism becomes

l
y(n+()) —[] ~(I p )I (n+)/2)

l l
y(n)) (3 5)

On the other hand, the variation of the total energy
at each iteration step is given by'

E(n+)) E(n) ~ (( y(n+))
l

g(ne)/2)
l
y(n+)))

Moreover, while we do not keep track of the
single particle energies, which have no direct
physical meaning, we can easily compute the vari-
ation of the total energy at each iteration

( y( n)
l I ( n+ )/2)

l y
( n)) )

=-2p, Tr(AA') ~0, (3 6)

E""—E"-=aE = —X T r(D„D„'),

with D„defined in Eq. (2.13).

(2.18)
with

A =- p t)(n+'/2)(I —p„). (3.7)

III. IMAGINARY TIME APPROACH

l
y(n+1)) I/l y(n)) (3.1)

This method has been originally introduced as a
byproduct of time-dependent-Hartree-Fock
(TDHF) calculations and it is actually based on an
"evolution" method similar to that used to describe
a real time-evolving system. '

Inthe "true" TDHF we have aunitary transforma-
tion acting on single particle wave functions

The result is a nonpositive definite variation which
goes to zero at convergence, where

A =0 and hence [I)("+'" p l =0 (3.8)

IV. CONNECTION BETWEEN THE TWO APPROACHES

It is easy to show that we obtain very similar re-
sults, in fact identical in form, within the direct
energy minimization (DEN) framework. Indeed
the first order expansion of the unitary transform-
ation equation (2.17) gives

with lt/" &
= [ I - x(I - P.)@.((l l 4/& (4 1)

U=exp -z
)

(3.2)
For the total energy variation we get from Eq.
(2.18), using the cyclic property of the trace and
the idempotency p„' = pn,

where h'n+' " is an effective Hamiltonian chosen to
conserve exactly the total energy in a real evolu-
tion (Appendix 8 of Ref. 5).

Introducing imaginary time intervals

aT--zest (3 3)

and a suitable orthonormalization of the single
particle wave functions after every "time" step,
we get a fast convergence to the static solution,
provided we make a "small" choice of the magni-
tude of ht, actually chosen on empirical grounds.
This can be clearly seen from the total energy va-
riation shown in Eqs. (3.6)-(3.8).

From a first order expansion of the U operator
we can get a precise idea of the connection with the
previously described "direct energy minimization
method. "

At the first order we act on the single particle
wave function with an operator which has the form

E""—E"=/).E =-2X T r(BB') ~ 0,
where

B = p„h,(((I —p„),
so that at convergence

[" (P) P l=o.

(4.2)

(4.3)

(4.4)

with which imaginary time calculations have been

If we compare Eqs. (4.1), (4.2), and (4.4) with the
relations (3.5), (3.6), and (3.8) we see a striking
similarity between the two approaches. The sim-
ilarity can be strengthened by demonstrating the
equivalence of the Hamiltonians h.'""' and Jeff as
we now show for the case with the simplified dens-
ity- dependent two-body interaction, '

v, =(()(r, —r, )+ V( '2 ' lll(r, —r, ), (4.5)
2
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extensively done.
Now the Hartree-Fock Hamiltonian becomes

~F ~ + & ~Opn 16 t3pn2%2

hn+&/2 1 (h{n& +h{n+&&) 3 ( p p )
2t

F F 32 n+1 n (4.7)

We can compare now with the h.,«operator used
in the DEM method

where pn is the local density at the nth iteration.
In Ref. 5 it is shown that in this case the h""~2 op-
erator to be used in the imaginary time-step form-
alism is given by

need the construction of the whole density matrix.
We would like to close this section with a remark

related to the empirical observation' of obtaining
a faster convergence using an average HF Hamil-
tonian

h = -'(h{"& + h'""&) (4.12)

in the conventional HF method, with density inde-
pendent interactions. In this case, which corres-
ponds to f3 =0, the operator A. .« is just the average
Eq. (4.12), as can be clearly seen from Eq. (4.9).
This means that one is actually solving the equa-
tion

[h,ff(P), P] =0,
j eg(n) ~~2g(n)

h'"' =h'"'+ — Ap+ — (b p)'eff F 2 2 Q p
(4.8)

which, from the previous analysis, corresponds to
a minimization of the total energy with a better
linearization pr ocedure.

Because the HF Hamiltonian now is a function of
the local density only, and introducing

&p =
pn+1 pn ~

we get

h.ff=h&{"&+ z (x t. +{'{&, p„)(p„„-p„)

+ k &~(p..& P.)'-
=-,'(h~{"&+h~{"'»)—

32 (p„„—p„)'

g (n+ 1/2) (4.9)

=p.'+&p[3p.p., +(p.: p.)']-
=p.' +3p.p.,&&p+ (&p)' (4.10)

and if we neglect (hp)' terms in the variation Z""
—E", we get again a relation [Eq. (3.2)] with a

(4.11)

i.e., with a second order h, ff only.
In conclusion we can say that there is a perfect

equivalence between the two methods in the limit
of small values of ~. However, we remark that in
the DEM approach we are not bound to choose very
small values of this parameter, the only condition
being Eq. (2.11), which can allow a wide range of
choices. Moreover, we get a definite prescription
for finding the best parameter X at each iteration
step [see Eq. (2.12)]. All that, as expected from
general grounds, can improve the velocity of con-
vergence. However, we must remark that there is
a "numerical" price to pay: at each iteration we

The two Hamiltonians are exactly the same, order
by order, in the density shift ~p. Indeed we can
easily show that the term ~&, f, (p„„—p„)' in h""~'
comes from third order contributions in Ap to the
total energy variation. ' Actually if we expand

Pn+& P n
+ +P( Pn+ &

+ Ptl Pn+ &
+P n )

V. CONCLUSION

In this paper we showed that the "direct density"
(DD or DDH) and the imaginary time approaches to
solve static HF problems can be seen as two sides
of a general method based on a direct minimization
of the total energy in the space of the one-body
density matrices.

Many advantages can follow from this connection
and in general from the development of nondiagon-
alizing procedures to solve HF-type problems:

(i) We have now available methods which are
much faster than the conventional HF procedures.
In addition, for axially symmetric nuclei, charge
quadrupole moments and bin'ding energies are
found to converge simultaneously at about the same
iteration.

(ii) We have a definite way to generalize the ap-
proach to any density-dependent nuclear interac-
tion.

(iii) We can get a precise prescription on the
choice of the length of the "time step" following
Eq. (2.12).

(iv) We can easily extend the method to the
Hartree-Fock-Bogoliubov problem, which can be
seen as a minimum problem for the energy func-
tional in a generalized density matrix space. '

(v) In this framework of a general minimum
problem we can make use of several mathematical
tools to study constrained situations (shape, angu-
lar momentum, and so on).
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APPENDIX A: SEARCH FOR THE BEST X

With our choice of the X operator [Eq. (2.10)] the
X-dependence of the density matrix is given by

p&~& =g-&&np g»n
ff+ 1

g2
=P.-&[D. P.]+ 2 [D. [D..P.-]l

A.——[&. [D. [D..P.]]]+"
with

D„=[h',",'„P„].
Neglecting third order terms, the variation with
respect to A, is

~P = ~X= -[D„,P„]~Z+X[D„,[D„,P„]]~~.

Our nonlinear equation (2.12) becomes

~(„) 6p

which can be shown to be positive in the region of
validity of the whole method.

We can easily consider higher order terms in
Eq. (A1). In this way we get higher order equations
in g. The prescription is to choose the smallest
real positive solution. Condition equation (A2) en-
sures the existence of a solution of this kind. -

APPENDIX B: EXTRAPOLATION OF THE DENSITY.
MATRIX

Since h, ",ff is dependent on ~p =p„„—p„we must
evaluate the (n+1)-th density matrix through some
extrapolation procedure. We can follow several
ways to do it (Lagrangian, exponential, and also
linear), always obtaining convergence rates faster
than HF.

We get the best results, reported as DDH curves
in Figs. 2, 3, and 4 using a more involved predic-
tor-corrector method. ~p is estimated introducing
successively higher order terms during each iter-
ation as follows:

P.-IE(P.)-P!"i- IE (P. )+-' I' (P. )(P!"1-P.)

-P!"I-&~(P.)+ '4(P'."-i —P.)
+ l 4(P.)(P!"i—P.) -P..i

with solution

(A2)

Thus we make two intermediate guesses p„',', and

p„",&, for the new density matrix before obtaining its
best evaluation p„
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