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The angular momentum effects in deep inelastic processes and fission have been studied in the limit of
statistical equilibrium. The model consists of two touching liquid drop spheres. Angular momentum

fractionation has been found to occur along the mass asymmetry coordinate. If neutron competition is

included (i.e., in compound nucleus formation and fission), the fractionation occurs only to a slight degree,
while extensive fractionation is predicted if no neutron competition occurs (i.e., in "fusion-fission" without

compound nucleus formation). Thermal fluctuations in the angular momentum are predicted to occur due

to degrees of freedom which can bear angular momentum such as wriggling, tilting, bending, and twisting.

The coupling of relative motion to one of the wriggling modes, leading to fluctuations between orbital and

intrinsic angular momentum, is considered first. Next the effect of the excitation of all the collective modes

on the fragment spin is treated. General expressions for the first and second moments of the fragment spins

are derived as a function of total angular momentum and the limiting behavior at large and small total

angular momentum is examined. Furthermore, the effect of collective mode excitation on the fragment spin

alignment is explored and is discussed in light of recent experiments. The relevance of the present study to
the measured first and second moments of the y-ray multiplicities as well as to sequential fission angular

distributions is illustrated by applying the results of the theory to a well studied heavy-ion reaction.

NUCLEAR REACTIONS Studied angular momentum fractionation along mass
asymmetry mode. Investigated effect of collective rotational modes on frag-

ment spins. Equilibrium statistical treatment.

INTRODUCTION

Slowly, but unerringly, the study of heavy-ion
reactions has brought problems involving angular
momentum to the forefront of investigation. The
untangling of the complex time evolution problems
associated with heavy-ion reactions requires a
good understanding of the relevant degrees of
freedom and, to the extent to which angular mo-
mentum is involved, of the amount of angular mo-
mentum these degrees of freedom can carry. The
importance of angular momentum in recent
studies is illustrated by the work on gamma-ray
multiplicities, ' gamma- ray angular distribu-
tions, ~ and alpha. ' and sequential fission proba-
bilities and angular distributions. " ' All of
these topics have as a major theme the angular
momentum and its partitioning among several,
though not necessarily yet identified, degrees of
freedom.

Transport equations have been advocated for
the description of the time evolution of the inter-
mediate complex formed in heavy-ion collisions
and have even been applied with moderate suc-
cess to the angular momentum transfer observed
in these reactions. ' ' However, the constant
difficulty of the problem and the occasional
occurrence in literature of gd hoc generalization
of results to models with additional degrees of

freedom not explicitly treated, has led us to the
conclusion that a good deal could be learned by
simplifying the problem in two ways: first, by
making the model as simple as possible, striving
to obtain transparent analytical results; second,
by considering the long time limit of statistical
equi/ibrinm, to which all the transport equations
must tend.

%ith the latter simplification we are, in a way,
losing sight of the most exciting part of the game,
namely the time dependence. However, we be-
lieve this to be a small and temporary sacrifice
to make, considering the clarity of the results.
Yet, even the statistical equilibrium limit is not
deprived of interest. On the one hand, such a
limit applies to all of the compound nucleus pro-
cesses, fission in particular. On the other hand,
many of the collective degrees of freedom which
we consider are quite likely to be in most cases,
either close to, or at the statistical equilibrium
limit. There are, of course, most interesting and
notable exceptions.

The plan of the paper is as follows: Section I
deals with angular momentum fractionation along
the mass asymmetry coordinate. As this degree
of freedom is perhaps the slowest to equilibrate,
this section is perhaps more relevant to fission
than to deep-inelastic processes. Yet there
exists, in heavy-ion reactions, components which
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are apparently equilibrated along the mass
asymmetry mode and yet are difficult to explain
by compound nucleus decay. " ' It is possible
that our formalism may enable one to learn about
these components as well. Section II deals with
the equilibrium partition of angular momentum be-
tween orbital and intrinsic rotation which in-
volves the excitation of the collective modes known
as wriggling. In it both the average values and
fluctuations are considered. The effect of the
wriggling mode on the fragment spin alignment is
discussed. Section III generalizes Sec. II by
allowing the disintegration axis to tilt with res-
pect to the plane normal to the total angular mo-
rnentum. The average fragment angular momen-
tum is obtained and the spin and angular fluctua-
tions are estimated. In Sec. IV the thermal ex-
citation of twisting and bending modes is studied
for a system with zero total angular momentum.
The average and rms angular mornenta of the
fragments are calculated. Section V generalizes
Sec. IV by considering the twisting and bending
modes in a system with a finite total angular mo-
mentum. The first and second rnornent of the
fragment angular momentum as well as the frag-
ment angular momentum depolarization are
evaluated. In Sec. VI all of the above cases are
considered for the reaction 600 MeV Kr+ Au, and
numerical estimates of angular mornenta and their
alignment are calculated.

It is hoped that this simple exercise in statisti-
cal mechanics will prove as useful to many heavy-
ion practitioners, both theoretical and experimen-
tal, as it has been useful to us.

I. ANGULAR MOMENTUM FRACTIONATION ALONG THE

MASS ASYMMETRY COORDINATE

Variations in the total exit-channel angular mo-
menturn along the mass asymmetry coordinate
have been observed in nonequilibrium heavy-ion
reactions. ' In these processes the angular mo-
menturn fractionation appears to arise mainly
from the decreasing rate of spread of the popula-
tion along the mass asymmetry coordinate with
increasing angular momentum due to the-depen-
dence of the interaction time upon angular momen-
tum.

It is interesting to note that angular momentum
fractionation is expected even when statistical
equilibrium is attained along the ridge line, either
directly as the end product of diffusion, or through
population from the compound nucleus. The rea-
son for this can easily be seen. For sufficiently
heavy systems the potential as a function of mass
asymmetry (ridge potential22) has a minimum at
symmetry whose second derivative increases with
increasing angular momentum. At equilibrium,
the mass distributions for large angular momenta
are more sharply peaked about symmetry than the
mass distributions for small angular momenta.
It follows that, after summation over all partial
l waves, the average angular momentum decreases
with increasing asymmetry. This is a straightfor-
ward prediction that canbe easily verified. More
quantitatively, let us consider the ridge line as a
function of mass asymmetry and angular momenta.
For two touching liquid-drop spheres of mass
numbers A„A2, the energy is

E=-'E 1 5 x(1 x) /3 g/3
"x(1—x) [x'/'+ (1 —x)'/']'+ -'[x'/'+ (1 —x)'/') 3 x' '+ (1 —x)' '

+E [x»~+ (1 x)'/']

where E„,E~,E~ are the rotational, Coulomb, and surface energies of the equivalent sphere and x
=Ag/(A( + A2) .

Expanding about x= ~, we have

E= (0.453 54 + 1.295 84y ')E„+(0.892 44 + 0.466 64y') Ec + (1.259 92 —0.559 96y') E~ = o/E„+PEc + yE &,

where y =x--,'.
Incidentally, it may be of interest to note the value of the fissionability parameter, X=Ec/2Ea, at which

the second derivative at symmetry is zero [Businaro-Gallone (BG) point]:

X~G = 5
—1.3885

Eq
(1.3)

Now let us assume that a compound nucleus has been formed and that neutron decay and fission are the

only competing processes. In the constant temperature limit, dropping l-independent factors and assum-
ing I'r =—I'„,we get (see Appendix)
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P(f,y) cc " (l,y) (x: l exp[-(REs+ CEc+ SEs)/T]dldy,
N

(1.4)

where R = e —1, C =P —1, S= y —1, and l is the angular momentum. Integrating over angular momentum
we obtain for an entrance channel angular momentum distribution of the form 2l+ 1 =—2l

() ),
(

ce+ ES) (
z„"*

)]
where E„"is the maximum rotational energy of the equivalent sphere, and S= -R. The last equation can
be written in terms of the fissionability parameter X and the rotational parameter Y(X=Eo/2Es, Y
= ER/Es)

2E C + —'S)
p(v) —e e(- '

) e e( e()',)
—)

The first moment of the angular momentum is

(1.6)

where

[1 (T/(ftEm)))(/2F((61Emx/T)1/2)]exp(6(Eme/T)

exp(SE */T) —1

-.2 "
2

F(x) =e" e' dy
0

is the Dawson integral and l
„

is the maximum of the entrance channel angular-momentum distribution.
The second moment of the angular momentum is

, (1 —T/QE„')exp(61E /sT) + T//ftEs

exp((itEs "/T) —1 (1.8)

These moments as well as the mass distributions
as a function of the mass asymmetry y are shown
in Figs. 1(a,), 1(b).

From Fig. 1(a) one sees that the mass distribu-
tions for low values of l are considerably broader
than those obtained for high l values. This is
due to the fact that the minimum in the potential
energy, which is shallow for the lower l values,
becomes progressively deeper with increasing
angular momentum, resulting in an increased
concentration of the yield near symmetry. It is
precisely this effect which leads to the fraction-
ation of the angular momentum along the mass
asymmetry coordinate [see Fig. 1(b)]. However,
it is important to realize that the fissionability
increases rapidly with l. This causes the dis-
tribution of angular momenta leading to fission
to be narrower than the input triangular distribu-
tion and the overall average angular momentum
leading to fission, lD, to be larger than that ob-
tained by averaging over a triangular distribution.
The resulting mass distribution, P(y), is narrow
and resembles the mass distributions obtained for
the highest l-values.

With these points in mind, the interpretation of
Fig. 1(b), which depicts l and l' as a. function of y,
is fairly straightforward. For moderate values of

y, both l/lD and l '/l~' are constant and close to
unity. This is due to the fact that the high l waves

I

dominate the yield for this range of asymmetries,
so that averaging over l yields a value of l, l~,
which is essentially la, lD . However, the mass
distributions for high l waves are relatively nar-
row, and as one moves out to extreme asymme-
tries their contribution to the total yield for a
given asymmetry becomes less important, re-
sulting in a slightly lower average l.

The constant temperature approximation is
fairly poor. In particular, it is rather unwise to
drop the dependence of T on angular momentum.
Furthermore, the approximation I'~ =—I'„fails
when the fission width is large. At the expense
of an analytic answer, a more accurate picture
can be obtained by including the angular momentum
dependence of T and by replacing I'„with I'~= I'„
+ I'/. The results are shown in Figs. 2(a),2(b).
One sees that the mass distributions for the high
l waves are narrower because of the lower temp-
erature. On the other hand, the l-integrated mass
distribution is somewhat broader because of the
diminished weight given to the high l waves by the
lower T and the division by I"~. These refine-
ments cause l, i~to drop off more as one moves to
larger asymmetries [see Fig. 2(b)]. However,
the qualitative interpretation is similar to that
described above: l, l are nearly constant as a
function of y for small y due to the dominance of
the high l waves, and then drop off rather abruptly
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FIG. 1. (a) Calculated mass distributions for the in-
dicated reaction obtained by integrating over all L waves
leading to fission (squares) and for selected individual
l waves (solid curves). All curves have been normal-
ized to unity at symmetry. (b) Mean (crosses) and mean
squared (squares) angular momentum as a function of
mass asymmetry divided by the corresponding quantities
obtained by integrating over the mass distribution.

because of the small contribution of the high l
waves to the extreme asymmetries.

Another case which may be relevant in heavy-
ion reactions arises when the system equilibrates
along the ridge line and decays without passing
through the compound nucleus stage. In other

FIG. 2. (a) Same as Fig. 1(a) except that the angular
momentum dependence of the temperature and total
reaction width have been incorporated into the calcula-
tions (see text). (b) Same as Fig. 1(b) but including the
same refinements as the calculation shown in Fig. 2(a).

words, there is no competition from neutron
emission or from other particle decay modes.
In this case, Eqs. (1.4), (1.5),(1.7),(1.8) must be
modified as follows:

P(l,y) =A(l, T)lexp[-(REs+ CED+ SEs)/T)did@,

where
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"1
A(l, T)=(f e*p[-(RZ„+CR +RE )/T)dy

Then )00

Au + 288 MeV Ar

No competition

P(y) f=ptt, y)d( (1.10)

lty) = f lP(ly)dl/P(y, ),

P(y)= f I'P(le)dl/P(yi. (1.12)

Notice that the difference between Eq. (1.4) and

Eq. (1.9) resides only in the factor A(l, T) which

is absent in the former case and present in the
latter. Calculations based upon this second set
of equations are shown in Figs. 3(a),3(b). The
mass distributions for the individual l waves
shown in Fig. 3(a) are identical to those in Fig.
2(a) since the effect of neutron competition only

changes the normalization (the mass distributions
in the plots have all been normalized to unity to
facilitate comparison). However, the distribution

P(y) is now considerably broader than its counter-
part in Fig. 2(a) due to the change in the weighting
of P(l, y) in the integration over l.

The most significant effect of the assumption of
equilibration along the ridge line can be seen in
Fig. 3(b). In contrast to the preceding case (neu-
tron competition), where l and ~l remained con-
stant out to moderate asymmetries and then drop-
ped off rapidly, l and l peak at symmetry and fall
off more gradually with increasing y, giving rise
to curves which are Gaussian in appearance. The
dramatic differences in the I fractionation imply
that it may be possible to distinguish between the
two mechanisms, i.e., compound nucleus fission
and noncompound nucleus decay, by measuring
the angular momentum as a function of asymme-
try. This result is particularly important in
light of the fact that there are a number of exam-
ples" ' in heavy-ion reactions where fissionlike
mass distributions occur which are difficult to
explain in terms of compound nucleus decay, the
reaction Xe+ Fe being a recent example. ' More-
over, recent y multiplicity results for the reac-
tion Cu+ Au bear a remarkable resemblance to
the calculations in Fig. 3(b).

II. STATISTICAL COUPLING BETWEEN ORBITAL AND
INTRINSIC ANGULAR MOMENTA AND WRIGGLING

MODES

In the spirit of simplicity let us assume that we
can approximate the exit channel configuration by
two touching, equal, rigid spheres with all the
associated rotational degrees of freedom. As we
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FIG. 3. (a) Same as Fig. 2(a) but in the absence of
neutron competition. Note that only the total mass
distribution (squares) is different from Fig. 2(a). (b)
Same as Fig. 2(b) but without neutron competition.

shall see, this model leads to simple analytical
predictions for the relevant statistical distribu-
tions. (In this model the normal modes do not
have any restoring force and because of this it
may be thought that some relevant physics may
be missing. However, insofar as the angular
momenta associated with these normal modes
are concerned, the model does not suffer any
limitation. This can be easily seen by observing
that the angular momentum arises only from the
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(I 2s) -2s
2//, r 2s

lt' 2 1
q

2I I~
p+ S — pS+pr2 g pr2 2 ~r2

(2.1)

The first term is the orbital and the second the
intrinsic rotational energy, 4 being the moment
of inertia of one of the two equal spheres.

The partition function is given by

Z (-"f-"e ds

g pr~yT
22+ s,

' 2T(22+ sr'I)' (2.2)

The average spin for both fragments is given by

2fss ss /r-ds
2s=

momentum component of the phase space which is
indeed accounted for in the present model. The
addition of restoring forces introduces a coordin-
ate component of the phase space which would
have to be integrated out. }

First, let us consider the equilibrium between
intrinsic rotation of the fragments and their
orbital rotation, assuming that the relevant angu-
lar momenta are all parallel to each other. If
the total angular momentum is I and the fragment
spin is s, the energy for an arbitrary partition
between orbital and intrinsic angular momentum is

where

Q2E5=
Ss

It is important to appreciate the meaning of (2.5).
The quantity 40' represents the amount of angular
momentum trade-off alldwed by the temperature,
between orbital and intrinsic rotation. It should
correspond exactly to the long time limit of cr,
of Ayik, Wolschin, and Norenberg. ' Just be-
cause of the meaning of this trade-off, it is un-

warranted to assume g priori that similar values
should be taken by a,' and o„',however defined
(other orthogonal rotational modes), as implied
in the same paper.

In some instances, such as y-multiplicity mea-
surements, one is interested in the average sum
of the moduli of the fragment spins. This can be
obtained from

2(s( Js(s(s"""Ss/Z,

which yields

s(sr'+ 22) sr'T(s, '+ 22()

y
1/J'2

+I
&

erf I
2 '+22 sr T(sr +22() j'

(2.5)
or, in dimensionless form,

2d I= i I= 2I~ .
pr ++ (2 2)

2l st 1
(& T) 2/W

(//
——2 exp(-x ) + xerf(x) (2 9)

The second moment s' is given by

2 p, r~g T 4I~~4s=
&

+//r'+ 2& (//. r' + 2s) '

From this we obtain the standard deviation

2&pr T 104', =
&

———NT.
pr +R 7

(2.4)

(2 5)

where x=Is/(S~T)'/' and S = Pr'0/(//r'+25).
Also Is =I/7 is the spin per fragment arising from
rigid rotation. The above expression is plotted
in Fig. 4. In the limit of large I, one recovers
(2.2)

2'
2 I s I

=
&

= -', I .
pr +24

The result in (2.3} is temperature independent as
one should have expected from the fact that (2.1}
is quadratic in s. It could in fact be obtained by
solving the equation

For small I,

2[si 2
{S/T)(/p ~ ( x ) I

to order x~, so for I= 0 one obtains
dE/ds = 0. (2.6)

o,'= T/b, (2. /)

This result corresponds to the mechanical limit
of rigid rotation when the orbital and the intrinsic
angular velocities are matched.

The result in (2.5) could have been obtained
also by appreciating that the thermal fluctuations
about the average in (2.3) are controlled by the
second derivative of (2.1) at the minimum, or

(2.10}

The second moment, still given by E(l. (2.4) can
be rewritten as 4s = 2I*T+4I~'. In this case the
fragment angular momentum at zero angular mo-
mentum arises from the excitation of a collective
mode (wriggling~') in which the two fragments spin
in the same direction while the system as a whole
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FIG. 4. Total spin of the fragments Yr=2l Sl arising
from wriggling as a function of the spin arising from
rigid rotation alone plotted in dimensionless form. The

upper solid curve shows the result for both of the

wriggling modes while the lower solid curve corres-
ponds to the excitation of a single wriggling mode (see
text). The limiting behavior for both small and large
x are indicated in both cases.

FIG. 5. Schematic illustrating the titling mode and
the doubly degenerate wriggling modes for the two equal
sphere model. The long arrows originating at the
point of tangency for the two spheres is the orbital
angular momentum while the shorter arrows represent
the individual fragment spins.

l2'=l +4R' —4lRcosB

s~ 4s' 1 2 2
s'

E(s)=—+
2

= —+
2p, r

Zcc 5*+,

2 i s I
= (ss*T) '

4s =48 T,

(2.11)

(2.12)

(2.13)

(2.14)

rotates in the opposite direction in order to main-
tain I=0. Contrary to what has been assumed
thus far, the wriggling mode is actually doubly
degenerate, as illustrated in Fig. 5. Considering
first the twofold degenerancy of the wriggling
mode in the limit, I=0, one obtains

=(I—2Is) + 4R —4(I 21s)R cose, -
and the total energy is

35I + 14R
10'

The partition function

Z ~ R exp -E T) dRdB

is readily evaluated and yields

gT 3.5I '
lnZ = ln — + const .

(2.17)

(2.18)

(2.19)

(2.15)

Let us now couple this doubly degenerate mode
to the spin arising from rigid rotation. If the
aligned component of the angular momentum
arising from rigid rotation is IR and that due to
wriggling is R, the total angular momentum for
each fragment is

2 ) s J Z
I + R + 2I R cos B)

xR exp( F/T)dRd8 . -(2.20)

The angular momentum of either fragment is

s = (I„'+R'+ 2IRR cosB)'~',

so the average sum of the moduli of the fragment
spins is

s'=I '+R'+2I„RcosB.
The orbital angular momentum is

(2.16)
The double integral in Eq. (2.20) cannot be eval-
uated in closed form. However, for large IR and

small IR one can immediately obtain the integral
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over 8:

R
2IR+ for IR &R,R 2I~

2

2R+ for I «R.

2jsj 1 1 1
(S~T)«~ = 2x+ ——x+ —exp(-x')

+vw (1+x /2) erfc(x) . (2.22)

This function, which is plotted in Fig. 4, has the
following limiting values:

2jsj x
, /2

——vw 1+—,small Is
T) 2

2jsj 1
, » ——2x+, large IR.

(2.22a,)

(2.22b)

The above are only limiting expressions, but they
can be used as interpolation formulas from 0 to
I~ and from I~ to ~. Taken together the expres-
sions above form a continuous function at R =I„.
The integral, moreover, is a continuous function
along with its first derivative on the interval
(0,~) and yields a, rather accurate approximation
to 2js). It is given by

T l 5 T I~
2 j s j = 2I„+ ——I~ + exp — ~~

2I~ 2 IR & T
2 IR

+vm S*T)' +
2 8* i/2 (0 T)1/228 T)

(2.21)

where again s* = )/r 8/()/r + 2s) = 8/1.4. In di-
mensionless form:

process itself can lead to an out-of-plane width, "
although one need not consider that in this discus-
sion. ) If the recoiling nucleus fissions perpendi-
cula, r to the separation axis in a plane perpendi-
cular to its spin, then wriggling will contribute
to the out-of-plane anisotropy via Eq. (2.24). On

the other hand, if the fission occurs along the
separation axis, the wriggling process will have
no effect on the out-of-plane width; however, an
in-plane anisotropy will be generated due to the
intersection of all possible fission decay planes
along the original separation axis.

Interestingly enough, a depolarization of the

type discussed above has been employed in cal-
culations aimed at reproducing sequential fission
data for Kr+ Bi,"where an in-plane anisotropy
has been observed experimentally. However, it
is not possible to attribute the in-plane anisotropy
to wriggling alone since other measurements'
have not shown any appreciable variation in the
out-of-plane width with the in-plane angle.

At any rate, the fragment spin depolarization
arises from other sources as well, as will be
discussed in the next chapters.

III. THERMAL FLUCTUATION OF THE ANGULAR
MOMENTUM PROJECTION ON THE DISINTEGRATION

AXIS: TILTING

Above, we have assumed that the two touching
fragments are aligned with their common axis
perpendicular to the total angular momentum.
Because of the thermal fluctuations, this condi-
tion can be relaxed (see Fig. 5). Assuming now

that the two fragments are rigidly attached one
to the other, the energy is given by

where R =&*T.
It is interesting to note that the wriggling mode

generates a random angular momentum in a plane
perpendicular to the Line of centers of the frag-
ments. The vector sum of this random angular
momentum and that arising from rigid rotation
thus leads to a fluctuation in the orientation of the
total spin, again in the plane perpendicular to the
seParation axis. The corresponding rms angle is

- =(",.')"'=(: )"'=(,",;)'" (2.24)

Also in the limit of large I~, one obtains

4o~ = 4Is + 4R~ —4Is —2R = 2R~= 25*T, ('2.23)

+ = +
28~ 25„28~ 28 ff

(3.1)

For small I we have

K = —'I (3.4a)

where 9,=29+ pr; ~, =2&; Md &,ff
K is the projection of the angular momentum I
along the line of centers. The partition function
1s

Z=&ir exp(-I /2s, T)(25,«T)' erf[I/(28, «T)' ~]

(3.2)
from which

I(25,f f T) exp( I'/2S, «T) -)
eff

~7/ erf[I/(2S &&T)1/2]

Now let us consider the effect of this spin de-
polarization on the in-plane and out-of-plane an-
gular distributions of fission fragments produced
via the sequential decay of heavy products pro-
duced by deep-inelastic collisions. (The fission

while for large I we have

K'= y T=—"yT.eff

The total fragment spin is given by

2s = [K + —(I —K )]"'
49

(3.4b)

(3.5)
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and the averaged square quantity is

4s =K+—I ——K =—'E+ —I',
48 49 49 49

and for large I,

4s' =—"ST+—' I'.
7 48

The average, on the other hand, is

f S(1 y4&K2/f2)&&2e»rdK
2s=

(3.6a)

(3.6b)

n
af

C

Twisting
n

Sinc t (3.6)

'7he angle more relevant to sequential fission
angular distributions is the angle between the
total spin of one fragment and the normal to the
line of centers (in the same plane as f), which is
given by

f P,'(K /I) e dK
7' Z

2 K2 2 45 K2 9=—I+— =—I 1+—-2 ——2IR+—
7 28 I 7 8 I 14 I„

(3. f)

where we have dropped terms of order higher than
K2/I . From the above equations one learns that
the total angular momentum of the fragments is
only slightly affected by the thermal fluctuations
of the separation axis and that the correction to
the ordinary rigid rotation limit, at constant temp-
erature, decreases as I '. Furthermore, the fluc-
tuation c =0 up to order K /I and can be ne-
glected in most cases.

Because of the excitation of this mode the reac-
tion plane is not perpendicular to the total angu-
lar momentum of the system I, but is "tilted" by
an angle 8, given by

Bending

Bending

FIG. 6. Schematic illustrating the twisting and bend-
ing modes for the two-equal-sphere model. Note the
pairwise cancellation of the fragment spins.

Z ~ R exp -R' 8T)dR (4.1)

equal-sphere model. ' A splitting of the degen-
eracy could easily occur in the case of fragment
deformation. We shall not consider this rather
important possibility at the moment, although it
is completely trivial, because of the arbitrariness
in the choice of deformation.

The partition function can be written as

K2 1/2
sing

4s
(3.9)

Since I may be considerably larger than s, this
angle can be considerably larger than 8, . One
should note that the combined effect of wriggling
and tilting will produce spin components along
all the coordinate axes. If the separation axis is
the z axis, tilting will lead to an rms z component
of (K,'4)' = 0.84''8T for each fragment. On the
other hand, the rms x and y components due to
wriggling will be (8'/2)'~ =0.60v'sT; hence, tiit-
ing and wriggling together generate an angular mo-
mentum which is almost random.

from which

(4.2)

IV. TWISTING AND BENDING MODES EXCITED IN A
ZERO-ANGULAR-MOMENTUM SYSTEM

These three degrees of freedom are illustra-
ted in Fig. 6. They are degenerate in our two-

(~T) 1/2
V7T

(4.3)

& lnZ
s[1/sT] (4.4)

OR = ——ST =-0.227&T.3 4
R 2

(4 5)

Notice that R is the angular momentum of each
fragment and that, for each mode, the angular
momenta of the two fragments cancel out pair-
wise. Furthermore, for each fragment the re-
sulting angular momentum is randomly oriented.
It is worth stressing again that this angular mo-
mentum can exist even when the total angular mo-
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mentum is zero because of the pairwise cancella-
tion mentioned above.

V. COUPLING OF TWISTING AND BENDING MODES TO
RIGID ROTATION

We want to generalize the previous calculation
to the case of nonzero total angular momentum.

Let us assume that each fragment has an aligned
angular momentum component I„arising from
rigid rotation and a random component R due to
the bending and twisting modes. The overall
rotational energy arising from the fragment spins
1S

E= [(Is +—R'+2RIs cos8)+ (Is'+R' —2Rl„cos8)]=—(Is'+ R') .R R R R g R (5.1)

The average total angular momentum of the fragments is

2x f f [(I„+R2+2I„Rcos8)'i+(I„2+R2—2laR cos8)'i ]R exp( R'/ST-)dRsin8d8
2x f f R' exp(-R'/s T)dR sin8 d8

(5.2)

The integral over 8 yields

2 R2I +——for I &RR 3IR
R

Fig. 7. For small x one obtains

3
(5 5)

+~ &ST exp(-l, '/sT) . (5.3)

This expression can be written in dimensionless
form as

2I2R+ —" for IR &R.
3 R

Thus caution is necessary in calculating the ther-
rnal average. The result is

2isl =i 2Is+—erf(ls/v'ST )
1' sT

R

In the limit of IR=O, one obtains

2 I s I
=~ v'& T = 2R

4
tw

(5.6)

or

2jsi ~ 2x+
EST x

(5.7)

2 R2 2 49 ST
2 I s I = 2I + = 2I +— =—I 1+-

3I~ 7 2 I

in agreement with the results of the last section.
For large x,

2lsl 11 2
V'ST x &

2x+ —ierf(x) +~ exp(-x'),
Ww

where x=l„/v'ST . This function is plotted in

(5.4)
(5.8)

Similarly the average square angular momentum
1S

4s =2I +2R +2 —(I iR —2I ~R) i + s ' sin R ex — dR,
2 R R (5.9)

which, to order R /ls', yields

4s =4(Is +R ),
4@2 = 4 R2 = 2gg .

3

(5.10)

(5.11)

R2 «3yy)~i2
(5.12)

In this case as well as in (3.7) and (2.22b) we see
that the correction to the rigid rotation limit de-
creases as I ' in Eq. (5.8), but with a slightly
larger coefficient. However, there is some ap-
preciable contribution to the width. Of greatest
importance is the fact that a sizeable "tilt" of
the angular rnornentum of each fragment about
the direction of the total angular momentum is
introduced

I

This depolarization is of great importance for
the proper interpretation of the out-of-plane
angular distribution of gamma rays emitted by
the fragments and of the out-of-plane angular
distribution of sequential fission fragments. '

Note that the effect on the depolarization in Eq.
(5.12) is larger than that due to tilting in Eq.
(2.24) .

VI. A SIMPLE APPLICATION TO A TYPICAL HEAVY-ION
REACTION

It should be stressed again that the above
formalism applies strictly to a system which has
reached statistical equilibrium. In general this
is not the case in heavy-ion reactions, especially
insofar as the mass asymmetry degree of freedom
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=54.29+ 1.73 = 56.025

and from Eq. (2.23),

4@~ = 2(93.75) = 187.505' .
The fluctuation of the separation axis with respect
to the total angular momentum yields the follow-
ing from Eqs. (3.4b) and (3.7):

K =—'N T = 367.505

2—

I
— r

0
r I I

0 0.5 I.O

I I

I.S 2.0

IR/( fT)'

I

2.5

I

3.0

I

3.5

2 9 131.25
2s =—190+—

7 2 190

=54.29+ 3.11= 57.405.

The out-of-plane tilting of the separation axis
from Eq. (3.8) is

v'367.50
8 sin 190579'

FIG. 7. Total fragment spin S z
——2i Si as a function of

the spin arising from rigid rotation for the twisting and
bending modes. Dimensionless forms are utilized. The
limiting behavior for large and small x are indicated.

Since wriggling and tilting together produce an
angular momentum which is nearly random we

can estimate their combined eff'ect on the de-
polarization of the fragment spin from Eq. (3.9)

, —,v'367. 50
28.70

is concerned. However, for other degrees of
freedom statistical equilibrium may be reached or
closely approached. At any rate, it is interesting
to compare the predictions of an equilibrium model
with experiment.

The reaction which we want to consider is
600 MeV Kr + ' 'Au. Some of the vital statistics
of this reaction are summarized in Table I. If
we allow the system to evolve to the configuration
of two touching spheres [r=1.22(A~' '+A&' )+2]
we have (either for l„,or l) an excitation energy
of 113 MeV, so T = 1.78 MeV and 8T = 1315 or
K~V =12@.

Now let us first consider the effect of the doubly
degenerate wriggling mode. For the average
angular momentum the total spin is given by Eq.
(2.22b),

TABLE I. 600 MeV Kr + iAu.

Eg~= 600 MeV
E, =418 MeV
Bcoe =283 MeV

E/Bc oui
——1.48

T= 190

which is indeed substantial. The twisting and
bending modes lead to

R = ~ST = 196.885~

2s = -190+7
131.25

=54.29+ 4.84 = 59.135,

4g = 2(131.25) = 262.505

This produces an angular momentum depolariza-
tion of

, 4196.88
27.14

The combination of wriggling, tilting, bending,
and twisting gives rise to an overall nearly iso-
tropic angular momentum depolarization of 6)

=34 . Recent measurements of out-of-plane se-
quential fission angular distributions for Au+ Kr"
give a width of -25'. This is not necessarily at
variance with the value of 34' just calculated, be-
cause sequential fission will favor the larger an-
gular momenta, resulting in a smaller depolariza-
tion.

A depolarization of -34' is also quite helpful
in explaining the small out-of-plane anisotropies
in the gamma rays associated with deep inelastic
processes. A 30% to 70% split in the E1,E2 con-
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tributions added to the above depolarization are
sufficient to explain the 10%%uo to 30%%uo anisotropies
observed.

If one assumes a triangular distribution for the
angular momentum distribution (i.e., no l frac-
tionation), there is an additional contribution to
the sigma squared of both fragments of

2 4 I, 4
4&2 mm — l 2 368.37g2

49 2 9

Summing all the fluctuations we obtain

4g = 818.37/ or 20 = 28.615 .
In conclusion, without allowing for angular mo-
mentum fractionation, we obtain for the overall
fragment spin

2~s( =—~4+291.

Another interesting case is spin generated by
the wriggling, bending, and twisting modes for
zero total angular momentum. For wriggling we
obtain

2~s( =(ws*T)'"=17.1f)n.

Bending and twisting contribute

27=~ l&T =25.858.4

Combining both angular momenta one obtains

(s )' i' = 15.5R

fragments for zero total angular momentum.
Comparisons with experimental results are,

of course, welcome and left to the readers. To
many the agreement may appear remarkable.
However, we caution against excessive confidence
in view of the crudeness of the model. Yet we
hope that the wise use of this exercise (curn grano
sails} may help in understanding the much more
intricate aspects of everyday life in fission and
heavy-ion reactions.

~t' wh jp»(E —B» —E» —«)d»
1» 4 „a,m„ fop„(E—B„E„—e—)de

(Al)

where 0„,is the neutron cross section for the
inverse reaction; m„is the neutron mass; & is
the neutron kinetic energy or the kinetic energy
along the fission mode at the saddle; B~ and B„
are the fission barrier height and the neutron
binding energies, respectively; E"„andE„"are the
rotational energies at the fission saddle point and
for the residual nucleus after neutron emission,
respectively; and I'~ and l„arethe level densi-
ties at the saddle point and of the residual nu-
cleus after neutron emission, respectively.

By expanding lnp in power series to first order
in q the integrals can be performed to give

APPENDIX

The general expression for the ratio of the fis-
sion width 1'~ to the neutron width I'„is 5

for each fragment.

VII. CONCLUSION

~t' w5 T» p»(E —B» —E»)t„4„,omT„' p„(E B„E„')-'-
where

(A2)

In conclusion, using a simple model we have
investigated the angular momenta associated
with a number of collective degrees of freedom.
For the mass-asymmetry mode we have found
that there can be appreciable l fractionation along
the mass-asymmetry coordinate, even in the
equilibrium limit. Furthermore, the distinctly
different patterns observed for the case of com-
pound-nucleus decay and for non-compound-nu-
cleus decay (i.e., equilibration along-the ridge
line} imply that it may be possible to experimen-
tally distinguish between these two mechanisms,
perhaps via y-ray multiplicity measurements.
Six other collective modes have been considered:
two wriggling, one tilting, two bending, and one
twisting. Excitation of these modes causes a
modest increase in the average fragment spins
over the rigid rotational value, but leads to a
sizeable spread in the fragment's angular mo-
rnenta about the average value. In addition,
these modes also result in a depolarization of the
fragment spins and induce significant spin in the

1 B lnp~ 1 B lnp„
T~ BE TN BE

both derivatives being evaluated at the upper limit
of the respective integrals. This expression can
be simplified by further expanding lnp in power
series and by setting T~= T„=T

(A3)

The dependence of I'~ on the mass asymmetry y
can be easily introduced in the above expression
by a minor redefinition of p„

t' (y) I' 1 p'(E)
F» 4oi~~» T p»(E)

The ratio p»(E)/p»(E) is approximately constant
and close to unity. By retaining explicitly only
the angular-momentum-dependent factors, one
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obtains

(A5)

which is immediately identifiable with the expres-
sion (1.4) apart from the statistical weight l to be
included when an impact parameter integration is
considered. It should be appreciated that the
level-density expansion introduced to obtain (A2)
and (AS) is not a mere technicality. One can see
that all the statistical mechanics of the system,
initially residing in the level densities ("micro-
canonical" description) now resides in the coeffi-
cients of the first order expansion of their logar-
ithms in 1/T This .is called the "canonical"
expansion and it allows one to describe with a
single parameter T the statistical equilibrium
between a limited number of explicitly treated

degrees of freedom (fission mode; neutron trans-
lational degrees of freedom) and the large num-
ber of the remaining internal degrees of freedom.
In the wide range of excitation energies in which
such an expansion is a good approximation, the
remaining degrees of freedom can be considered
a "thermostat" or a "heat bath" whose tempera-
ture is T. The canonical expansion is used
widely throughout the paper and its advantages in
reducing a variety of problems to a form amen-
able to analytical treatment are hopefully apparent.

Finally it should be stressed that one should
never say that a nucleus has a given temperature
T. In fact, for an isolated nucleus p and not T is
the relevant statistical quantity. Rather one
should say that the statistical equilibrium between
a given set of collective models and the remain-
ing intrinsic modes is characterized by a temp-
erature T.
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