Half-life of ²⁴¹Pu

S. K. Aggarwal and H. C. Jain

Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400085, India

(Received 22 August 1979)

The half-life of ²⁴¹Pu was determined by studying the ingrowth of ²⁴¹Am by α spectrometry. A synthetic mixture was prepared by mixing different isotopes of plutonium so as to obtain a ²³⁸Pu/(²³⁹Pu + ²⁴⁰Pu) α activity ratio of nearly 0.1 and an increase in the α activity ratio due to the ingrowth of ²⁴¹Am of about 0.1 after a period of 30 days. This was done to get a desired change periodically in the α activity ratio and to measure this change with high precision and accuracy. The initial values of ²³⁹Pu/²⁴¹Pu and ²⁴⁰Pu/²⁴¹Pu atom ratios in the mixture were obtained by mass spectrometry. The ingrowth of ²⁴¹Am was measured periodically by α spectrometry on electrodeposited sources using a silicon surface barrier detector. From the 80 α spectrometric measurements carried out on five electrodeposited sources over a period of 457 days, a value of 14.42 ± 0.09 yr is obtained for the half-life of ²⁴¹Pu using a value of 432.6 yr for the half-life of ²⁴¹Am. The uncertainty quoted on the value is a combination of one standard deviation on the average value and the error evaluated from the estimate on various error components. The half-life obtained in this work is in good agreement with the preliminary results reported recently by CBNM (Geel), NBS (Washington), and AERE (Harwell) using different methods.

RADIOACTIVITY ²⁴¹Pu half-life; measured: ²⁴¹Am ingrowth by α spectrometry, ²³⁹Pu/²⁴¹Pu and ²⁴⁰Pu/²⁴¹Pu atom ratios by mass spectrometry.

I. INTRODUCTION

The work presented here was motivated by a large discrepancy¹ between the various published values of ²⁴¹Pu half-life. The half-life of ²⁴¹Pu in the studies reported earlier has been determined mainly by the two methods: (i) by observing the decay of ²⁴¹Pu relative to other isotopes of plutonium using a mass spectrometer and (ii) by measuring the ingrowth of ²⁴¹Am by α or γ counting. The first method, though absolute, has led to half-life values ranging from 14.6 yr to 15.1 yr^{2-5} while the measurements reported by the ²⁴¹Am ingrowth method have yielded a half-life value of about 14.0 ± 0.2 yr⁶⁻⁹ based on the half-life of ²⁴¹Am as 432.6 yr. There were two other measurements reported by the reactivity method¹⁰ and by calorimetry¹¹ which led to the half-life values as 14.63 ± 0.27 yr and 14.355 ± 0.007 yr respectively. In view of the great importance of the half-life of ²⁴¹Pu in nuclear technology, it was considered worthwhile to utilize the expertise developed in the fields of α spectrometry and mass spectrometry for determining the half-life of ²⁴¹Pu.

In the mass spectrometric method, there is a problem of measuring accurately the small change (about 1% in 3 months) in the atom ratio of 241 Pu relative to other isotopes of plutonium unless the measurements are carried out under strictly controlled conditions. Further, most of the measurements reported have involved the measurement of isotopic ratios much different from unity. These may be responsible for a large variation in the half-life values reported by studying the change in the isotopic ratios mass spectrometrically. This is evident from the half-life of 241 Pu reported by Zeigler and Ferris⁴ in which six different laboratories from the USA participated in a sample exchange program and the half-life values calculated from the data reported by these laboratories varied from 14.50 yr to 15.06 yr.

The α or γ counting methods used earlier for determining the ingrowth of ²⁴¹Am require a knowledge of the efficiency of the detector which should be known accurately over the period of experiment. Further, the measurements have not been performed on replicate samples to observe the ingrowth of ²⁴¹Am periodically to confirm the reproducibility of the experimental data.

With a view to eliminating the need for the efficiency of the detector, the ingrowth of ²⁴¹Am in the present work was determined by α spectrometry relative to the α activity due to ²³⁹Pu + ²⁴⁰Pu which remained practically constant during the course of investigations. Further, the measurements were carried out periodically over a period of 1.25 yr on 5 electrodeposited sources prepared from a synthetic mixture of plutonium isotopes. The synthetic mixture was prepared so as to have 238 Pu/(239 Pu + 240 Pu) α activity ratio nearly 0.1 and an increase in the α activity ratio due to the ingrowth of ²⁴¹Am by about 0.1 (i.e., 100% change in the α activity ratio) after a period of 30 days. This was done with the objective of obtaining the desired change periodically in the α activity ratio and measure this change with high precision and accuracy. The initial α activity ratio was kept as 0.1 and the measurements were performed up to

2033

© 1980 The American Physical Society

TABLE I. Isotopic composition of the synthetic mixture of plutonium used for the determination of the halflife of 241 Pu.

I	Mass number	Atom percent		
	238	0.02502 ± 0.00025^{a}		
	239	49.0577 ± 0.057		
	240	8.3687 ± 0.017		
	241	40.0203 ± 0.024		
242		2.5283 ± 0.025		

^aDetermined by α spectrometry.

an activity ratio of about 2 so that the tail contribution due to energy degradation from the high energy 238 Pu + 241 Am peak (5.50 MeV) to the low energy 239 Pu + 240 Pu peak (5.17 MeV) was small and could be accounted for accurately.

II. PRINCIPLE OF THE METHOD

The method involved the measurement of $(^{238}$ Pu + 241 Am)/ $(^{239}$ Pu + 240 Pu) α activity ratio periodically by α spectrometry. If R_{α} denotes the increase in the α activity ratio due to the ingrowth of 241 Am after a time t, then

$$R_{\alpha} = \frac{A(^{241}\text{Am})_{t}}{A(^{239}\text{Pu})_{t} + A(^{240}\text{Pu})_{t}}$$
$$= \frac{N(^{241}\text{Am})_{t}\lambda(^{241}\text{Am})}{N(^{239}\text{Pu})_{t}\lambda(^{239}\text{Pu}) + N(^{240}\text{Pu})_{t}\lambda(^{240}\text{Pu})}, \quad (1)$$

where A's denote the α activities, N's stand for the number of atoms, λ 's are the decay constants, the symbols in the parentheses denote the isotope, and the subscripts to the parentheses denote the ingrowth period for ²⁴¹Am.

The number of atoms of 241 Am formed from the decay of 241 Pu after a time t is given by

$$N(^{241}\text{Am})_{t} = \frac{N(^{241}\text{Pu})_{0}}{1 - \lambda(^{241}\text{Am})/\lambda(^{241}\text{Pu})} \times \left[e^{-\lambda(^{241}\text{Am}) t} - e^{-\lambda(^{241}\text{Pu}) t}\right], \quad (2)$$

where $N(^{241}Pu)_0$ denotes the number of atoms of ^{241}Pu at zero time. Substituting the value of $N(^{241}Am)$, from Eq. (2) in Eq. (1) we get

$$R_{\alpha} = XY \left[e^{-\lambda (^{241}\text{Am})t} - e^{-\lambda (^{241}\text{Pu})t} \right], \tag{3}$$

where

$$X = \frac{\lambda^{(241} \mathrm{Am})}{R^{9/1} \lambda^{(239} \mathrm{Pu}) + R^{9/1} \lambda^{(240} \mathrm{Pu})}, \qquad (4)$$

$$Y = \frac{1}{1 - \lambda (^{241} \text{Am}) / \lambda (^{241} \text{Pu})} , \qquad (5)$$

Here $R^{9/1}$ and $R^{0/1}$ denote the initial values of 239 Pu/²⁴¹Pu and 240 Pu/²⁴¹Pu atom ratios in the synthetic mixture [as t is very small compared to the half-lives of 239 Pu and 240 Pu; therefore $N(^{239}$ Pu)_t = $N(^{239}$ Pu)₀ and $N(^{240}$ Pu)_t = $N(^{240}$ Pu)₀]. Thus, knowing the values of X, Y, R_{α} , t and the half-life of 241 Am, the half-life of 241 Pu can be calculated using Eq. (3). It may be mentioned that an approximate value of $\lambda(^{241}$ Pu) suffices for calculating Y from Eq. (5).

As is seen from Eq. (3), the accuracy in the measurement of ²⁴¹Pu half-life by the method reported here depends on three factors: (a) change in the α activity ratio, (b) the atom ratios $R^{9/1}$ and $R^{0/1}$, and (c) the half-life values of ²³⁹Pu, ²⁴⁰Pu, and ²⁴¹Am. In the present work, as will be seen later, the atom ratios and the change in the α activity ratios were measured with high precision and accuracy. Further, the half-life values of the reference isotopes ²³⁹Pu, ²⁴⁰Pu, and ²⁴¹Am are now known accurately.

III. EXPERIMENTAL

A. Preparation and purification of synthetic mixture

A synthetic mixture of plutonium isotopes was prepared by using ²⁴¹Pu (enriched) and ²³⁹Pu containing small amounts of other isotopes. Enriched ²⁴¹Pu used in this work was obtained from Oak Ridge National Laboratory, USA in 1969.

CABLE II.	Illustration	of ta	ıil	correction	factor	due to	0	energy	degradation.
-----------	--------------	-------	-----	------------	--------	--------	---	--------	--------------

Sample	Counts in ²³⁸ Pu or ²⁴¹ Am region (4)	Counts in 239 Pu + 240 Pu region (B)	Tail correction factor A/B
²³⁸ Pu-I	112 508	882	127.56
²³⁸ Pu-II	100 935	791	127.60
²⁴¹ Am–I	133 007	1012	131.43
²⁴¹ Am–II	131 926	1207	109.30
		Average =	123.97 ± 4.97 ^a

^a Standard error of the mean calculated as s/\sqrt{n} , where $s^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2/(n-1)$ with n = 4.

Disk Number	1	2	3	4	5
Total counts in (²³⁸ Pu + ²⁴¹ Am) region	303 555	249 777	396 137	915465	257136
Total counts in (²³⁹ Pu+ ²⁴⁰ Pu) region	202121	164 916	263 86 9	60 79 40	170 551
Tail correction ^a	-2448	-2015	-3195	-7384	-2074
Net counts in (²³⁹ Pu + ²⁴⁰ Pu) region	199672	162 901	260 674	600 556	168477
$\left(\frac{238 Pu + ^{241} Am}{239 Pu + ^{240} Pu}\right) \alpha$ activity ratio	1.520 27	1.533 30	1.51966	1.52436	1.526 24
Average =1.524 77±0	.002 4 ^b		94404 8444 - 474 - ₁ ., , , , , , , , , , , , , , , , , , ,		

TABLE III. Illustration of α energy pulse height analysis.

^a Based on the tail correction factor given in Table II.

^b Standard error of the mean calculated as s/\sqrt{n} , where $s^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2/(n-1)$ with n = 5.

Precalculated and known aliquots from the solutions of ²³⁹Pu and ²⁴¹Pu were mixed to obtain 238 Pu/(239 Pu + 240 Pu) α activity ratio nearly 0.1 and an increase of about 0.1 in the α activity ratio after a period of 30 days due to the ingrowth of ²⁴¹Am. The chemical exchange between the plutonium isotopes was ensured by using freshly prepared solutions of ferrous ammonium sulphate and sodium nitrite as the reductant and oxidant, respectively. The plutonium solution was evaporated to near dryness, treated with concentrated HNO₃ twice to break the polymer, if any, and was finally taken in 7 M HNO₃. It was subjected to a redox cycle once more and purified from ²⁴¹Am by using a double stage anion exchange procedure.

The plutonium solution in 7 M HNO₃ was loaded onto the jacketed column containing Dowex 1×8 resin (200-400 mesh) and operating the column at 60 °C. Americium was washed down with 3 M HNO_3 and plutonium was eluted with 0.35 M HNO_3 . The purified plutonium solution (referred to as synthetic mixture) was transferred to a clean and dry volumetric flask using 1 M HNO₃. The radiochemical purity of the synthetic mixture was checked by α spectrometry and γ spectrometry. It was found to be free from ²⁴¹Am (by checking for the 60 keV peak on an intrinsic germanium detector) and only three α energy peaks corresponding to 241 Pu + 242 Pu (4.90 MeV), 239 Pu + 240 Pu (5.17 MeV) and ²³⁸Pu (5.50 MeV) were observed.

FIG. 1. The alpha particle energy spectrum of SM-241-III Pu sample (at zero time).

FIG. 2. The alpha particle energy spectrum of SM-241-III Pu sample (after 457 days).

B. Mass spectrometry

The isotopic composition of the synthetic mixture was determined by using a Varian MAT CH-5 mass spectrometer with a thermionic source. The instrument has a resolution of 425 (at 10% valley definition) measured at around mass 238 and an abundance sensitivity greater than 105. Rhenium ribbons $(0.04 \times 0.7 \times 8 \text{ mm})$ were used as the sample and ionization filaments in the double filament assembly. The ionizing filament was

heated to a current of about 6 A and the sample filament to a current of about 2 A. Mass spectrum was obtained by scanning the magnetic field and the output was fed to a strip chart recorder as well as to a TDC-312 computer coupled to the mass spectrometer.

The mass discrimination factor was calibrated by analyzing the isotopic standards of uranium and plutonium obtained from National Bureau of Standards. It was found to be 0.0036 per mass unit and used in the present work.

Counting No.	Growth period (days)	$\binom{2^{238}Pu + {}^{241}Am}{\alpha}$ activity ratio	Half-life of ²⁴¹ Pu (yr) ^a
1	Taken as zero time	0.08612 ± 0.00016	
2	15.0	0.14115 ± 0.00032	14.433
3	30.0	0.19609 ± 0.00043	14.430
4	58.0	0.29824 ± 0.00006	14.435
5	90.0	0.41499 ± 0.00045	14.416
6	117.0	0.51329 ± 0.00049	14.403
7	156.0	0.65364 ± 0.00071	14.407
8	193.0	0.78630 ± 0.00068	14.389
9	218.0	0.87634 ± 0.00075	14.437
10	253.0	0.99855 ± 0.0016	14.406
11	278.0	1.08773 ± 0.0012	14.444
12	315.0	1.21696 ± 0.0011	14.445
13	350.0	$1.340\ 10 \pm 0.001\ 9$	14.425
14	371.0	1.41318 ± 0.0013	14.467
15	401.0	1.52477 ± 0.0024	14.375
16	457.0	$1.720\ 38 \pm 0.001\ 2$	14.353

TABLE IV. Summary of ²⁴¹Pu half-life measurements.

^a Half-lives of ²³⁹Pu, ²⁴⁰Pu, and ²⁴¹Am used are 24110 yr, 6553 yr, and 432.6 yr, respectively, Ref. 14 (1978). ^b Standard deviation s computed from $s^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 / (n-1)$ with n = 15.

The synthetic mixture was analyzed for 239 Pu/ 241 Pu and 240 Pu/ 241 Pu atom ratios within 24 h from the time of purification. Three filament loadings were carried out. Five runs, each consisting of 10-12 scans, were taken during each mass spectrometric determination. Table I presents the data on the isotopic composition of the synthetic mixture.

C. Alpha spectrometry

Sources for α spectrometry were prepared from the synthetic mixture by electrodeposition in aqueous HNO₃ medium (pH about 2). Platinum disks were used as the cathode and a platinum stirrer as the anode. A current density of about 200 mA/cm² and a voltage of 8-10 V was used. The electrodeposition was continued for about an hour. A few drops of dilute ammonia solution were added to the solution in the electrodeposition cell before stopping the electrodeposition. The electrodeposited source was washed with water, acetone, dried under an infrared lamp and ignited. Five sources were prepared from the synthetic mixture. Duplicate sources were also prepared from ²⁴¹Am solution and from ²³⁸Pu solution on platinum planchets.

A 50 mm² silicon surface barrier detector mounted in a vacuum chamber (pressure $<10^{-2}$ torr) and coupled to a 4 K analyzer (TN-1700) was used for recording the α spectra. The system has a resolution of 20 keV full width at half maximum (FWHM) at 5.50 MeV. The initial activity on each source was about 2×10^5 dpm so as to eliminate the distortion and pileup effects. The source to detector geometry was such that about 3% of the α particles emitted (in 4π) by the source entered the detector. The sources were counted for a time long enough to accumulate more than 10^5 counts under each of the two peaks at 5.50 MeV and 5.17 MeV.

The α spectra from the five sources prepared from the synthetic mixture were recorded periodically for studying the ingrowth of ²⁴¹Am over a period of about 1.25 yr. Alpha spectra were also

TABLE V. Constants used in the calculation of the $^{\rm 241}{\rm Pu}$ half-life.

One year	= 365.24 d
Half-life of ²³⁸ Pu	$=$ 87.74 \pm 0.09 yr ^a
Half-life of ²³⁹ Pu	$= 24110 \pm 30 \mathrm{yr}^{\mathrm{a}}$
Half-life of ²⁴⁰ Pu	$= 6553 \pm 8 \text{ yr}^{a}$
Half-life of ²⁴¹ Am	$= 432.6 \pm 0.6 \text{ yr}^{a}$
Half-life of ²⁴¹ Pu	$=$ 14.5 \pm 0.5 yr ^b

^a Reference 14 (1978).

^b Reference 1 (1974).

recorded from ²³⁸Pu and ²⁴¹Am sources each time under the identical conditions. All the sources were kept in a perspex planchet box and handled with extreme care. The $(^{238}Pu + ^{241}Am)/(^{239}Pu$ $+^{240}$ Pu) α activity ratios were computed by taking the equal number of channels for ²³⁹Pu + ²⁴⁰Pu and ²³⁸Pu +²⁴¹Am peaks. The tail correction due to energy degradation from the high energy ²³⁸Pu $+^{241}$ Am peak (5.50 MeV) to the low energy 239 Pu $+^{240}$ Pu peak (5.17 MeV) was applied based on the contribution calculated from α spectra recorded on ²³⁸Pu and ²⁴¹Am sources. The tail contribution varied from about 0.1% of the α activity ratio at the beginning of the experiment to about 1% at the end of the experiment. An illustration of the tail correction factor due to energy degradation and the results of α energy pulse height analysis are given in Tables II and III, respectively. Figures 1 and 2 show the typical α spectra recorded from one of the sources at zero time and after the growth period of 457 days, respectively.

Our experience¹² in the field of α spectrometry shows that the accuracy in computing the α activity ratio from an α spectrum on weightless electrodeposited source is mainly dependent upon the ratio of counts in the high energy peak to those in the low energy peak and as this ratio increases, the tail contribution also goes on increasing. It was therefore considered essential to maintain the initial 238 Pu/(239 Pu + 240 Pu) α activity ratio in the synthetic mixture at nearly 0.1 and carry out the measurements up to $({}^{238}Pu + {}^{241}Am)/({}^{239}Pu + {}^{240}Pu)$ α activity ratio nearly 2 so that the change in the α activity ratio due to the ingrowth of ²⁴¹Am could be obtained with high precision and accuracy while still keeping the tail contribution low. In order to determine the precision and accuracy achievable in the measurement of α activity ratios, synthetic mixtures having a wide range of $^{238}\mbox{Pu}/$ $(^{239}Pu + ^{240}Pu) \alpha$ activity ratios were prepared from solutions of ²³⁸Pu and ²³⁹Pu isotopes. It was found¹³ that following the conditions described above, an accuracy of 0.5% or better can be achieved while the precision is $\pm 0.2\%$.

IV. RESULTS AND DISCUSSION

Table IV summarizes the results on the α activity ratios obtained after different growth periods and the half-life values calculated from the data. It is worth noting that the half-life values of ²⁴¹Pu obtained by the α spectrometric method after different growth periods (15 days to 457 days) are in good agreement with each other, which enhances the confidence in the α spectrometric measurements. The growth interval was obtained by taking the midtime of the pulse height analysis. The values of various constants used in the calculation of ²⁴¹Pu half-life are given in Table V. A small correction was applied to the initial ²³⁸Pu/ (²³⁹Pu + ²⁴⁰Pu) α activity ratio to account for the decay of ²³⁸Pu during the period allowed for the growth of ²⁴¹Am. The correction varied from 0.05% after 15 days to about 1% after 457 days. As an example, the half-life of ²⁴¹Pu is calculated using the α spectrometric data obtained after a growth period of 401 days. From Table IV,

 $R_{\alpha} = 1.524\ 77 - 0.086\ 12\ e^{-\lambda(^{238}Pu)t} = 1.439\ 39$,

where

t = 1.09856 yr.

From Table I,

 $R^{9/1} = 1.22582, R^{0/1} = 0.20911,$

 \mathbf{so}

0.693 145/432.6
$x = \frac{1}{1.22582(0.693145/24110) + 0.20911(0.693145/6553)}$
= 27.933 58,
V =
$1 - (0.693\ 145/432.6)(14.5/0.693\ 145)$
= 1.03468,
$1.43939 = 27.93358 \times 1.03468 \left[e^{-0.693145/432.6\times 1.09856} - e^{-0.693145/T_{1/2}\times 1.09856} \right]$

 $= 28.902 \ 32 \left[e^{-0.001 \ 760 \ 2} - e^{-0.761 \ 46/ \ T_{1/2}} \right].$

 $T_{1/2} = 14.375 \text{ yr.}$

S.No.	Quantity	Approximate value	Error (%)	Remarks
1	R_{lpha}	0.1 to 1.6	0.50	Evaluated by experiments conducted on synthetic
2		$X = \frac{\lambda (^{241} \text{Am})}{P^{9} / 1 + \lambda / 2^{239} \text{Duy} + P^{0} / 1 + \lambda / 2^{249} \text{Duy}}$		mixtures
(a)	R9 /1	1 995 89	0.10	Evaluated experimentally
(a) (b)	R0 /1	0.20011	0.10	-do-
(0)	10	0.603145	0.20	-40-
(c)	λ(²³⁹ Pu)	$\frac{0.093143}{24110}$ yr ⁻¹	0.12	Ref. 14
(d)	λ (²⁴⁰ Pu)	$\frac{0.693145}{6553}\rm{yr}^{-1}$	0.12	-do-
(e)	λ (²⁴¹ Am)	$\frac{0.693145}{432.6}\mathrm{yr}^{-1}$	0.14	-do-
e sa	X	27.938	0.19	Computed by error propagation in Eq. (4)
3		$Y = \frac{1}{\lambda (^{241} \text{Am})}$ $1 - \frac{\lambda (^{241} \text{Am})}{\lambda (^{241} \text{Pu})}$	•	
(a)	$\lambda(^{241}Am)$	$\frac{0.693145}{432.6}\rm{yr}^{-1}$	0.14	Ref. 14
(b)	λ(²⁴¹ Pu)	$\frac{0.693145}{14.5}$ yr ⁻¹	3.44	Ref. 1
	Y	1.03468	0.12	Computed by error
4	Growth	15 d to	0.10	Evaluated
	Combined error	497 a	0.55%	experimentally Computed by error propagation in Eq. (3)

TABLE VI Estimates of errors (10)

2038

H A	LF - 1	LIFE	O F	241Pu

S.No.	Authors	Year	Method	Half–life value (yr)
1	Seaborg <i>et al.</i> (Ref. 19)	1949		10
2	Thompson <i>et al</i> . (Ref. 20)	1950	Ingrowth of ²⁴¹ Am	15.37 ^a
3	Mackenzie <i>et al.</i> (Ref. 6)	1953	Ingrowth of ²⁴¹ Am by α counting	14.12 $\pm 0.2^{a}$
4	Rose <i>et al</i> . (Ref. 7)	1956	Ingrowth of ²⁴¹ Am by γ counting	13.87 ± 0.28^{a}
5	Brown et al. (Ref. 8)	1960	Ingrowth of 241 Am by α counting	14.12 ±0.24 ^a
6	Smith (Ref. 9)	1961	α/β Branching ratio	13.3 ±0.3
7	French <i>et al</i> . (Ref. 2)	1966	Change in isotopic ratios by mass spectrometry	13.59 ± 0.46
8	Nisle and Stepan (Ref. 10)	1970	Change in reactivity	14.63 ±0.27
9	Shields (Ref. 3)	1970	Change in isotopic ratios by mass spectrometry	14.6 ±0.4
10	Whitehead <i>et al</i> . (Ref. 21)	1972	Ingrowth of ²⁴¹ Am	14.96 $\pm 0.15^{a}$
11	Zeigler and Ferris (Ref. 4)	1973	Change in isotopic ratios by mass spectrometry (mean of 6 laboratories)	14.89 ±0.11
12	Strohm and Jordan (Ref. 11)	1974	Calorimetric determinat- ion of power decay	14.355 ± 0.007
13	Wilkins (Ref. 5)	1974	Change in isotopic ratios by mass spectrometry	15.02 ±0.10
14	Whitehead (Ref. 15)	1977	Ingrowth of ²⁴¹ Am	14.56 ±0.10
15	Crouch (Ref. 16)	1978	Change in isotopic ratios by mass spectrometry on different samples	14.24 to 14.53
16	Garner (Ref. 17)	1978	Change in isotopic ratios by mass spect- rometry on different samples	14.38 ±0.07
17	Vaninbroukx (Ref. 18)	1978	 a) Change in isotopic ratios by mass spectrometry b) Ingrowth of ²⁴¹Am by α and γ counting 	14.30 ±0.14 14.60 ±0.10
18	Present work	1979	Ingrowth of 241 Am by α spectrometry	14.42 $\pm 0.09^{b}$

TABLE VII. Comparison of various ²⁴¹Pu half-life values.

^a Half-life of ²⁴¹Pu recalculated using $T_{1/2}$ for ²⁴¹Am = 432.6 yr, Ref. 14 (1978). ^b Combination of the one standard deviation on the average value in Table IV and the estimated error given in Table VI.

The half-life of 241 Pu obtained in the present work is 14.42 ± 0.09 yr. The uncertainty given here is a combination of one standard deviation on the average value given in Table IV and the combined error evaluated from various error components listed in Table VI.

The various published values for the half-life of 241 Pu are given in Table VII. The half-life of 241 Pu has been recalculated for various measurements reported earlier by 241 Am ingrowth method using the recommended 14 half-life value (432.6 yr) of

- ¹R. Vaninbroukx, European Atomic Energy Report No. EUR-5194e, 1974.
- ²R. J. French, F. L. Langford, Jr., W. D. Leggett, and R. J. Nodvik, WCAP-6082, Yankee Core Evaluation Program Quarterly Progress Report for the period ending 30 September 1966.
- ³W. R. Shields, National Bureau of Standards Technical Note 546, 25 (1970).
- ⁴R. K. Zeigler and Y. Ferris, J. Inorg. Nucl. Chem. <u>35</u>, 3417 (1973).
- ⁵M. Wilkins, AERE-R 7906 (1974).
- ⁶D. R. Mackenzie, M. Lounsbury, and A. W. Boyd, Phys. Rev. <u>90</u>, 327 (1953).
- ⁷B. Rose and J. Milsted, J. Nucl. Energy 2, 264 (1956).
- ⁸F. Brown, G. G. George, D. E. Green, and D. E. Watt, J. Inorg. Nucl. Chem. <u>13</u>, 192 (1960).
- ⁹H. L. Smith, J. Inorg. Nucl. Chem. <u>17</u>, 178 (1961).
- ¹⁰R. G. Nisle and I. E. Stepan, Nucl. Sci. Eng. <u>39</u>, 257 (1970).
- ¹¹W. W. Strohm and K. C. Jordan, Trans. Am. Nucl. Soc. <u>18</u>, 185 (1974).
- ¹²S. K. Aggarwal, H. C. Jain, C. K. Mathews, and M. V. Ramaniah, BARC Report, BARC-824 (1975).

²⁴¹Am. The errors reported are as those given in the original papers. As is seen from data in Table VII, the half-life of ²⁴¹Pu obtained in this work by an independent method is in good agreement with the measurements reported recently¹⁵⁻¹⁸ by other methods during the course of these investigations.

The authors are thankful to Dr. M. V. Ramaniah, Director, Radiological Group for his keen interest in this work.

¹³Unpublished results from this laboratory.

- ¹⁴A. Lorenz, summary report of the first coordinated research meeting on the measurement of Transactinium Isotope Nuclear Data, Vienna, 1978, Report No. INDC (NDS)-96/N.
- ¹⁵C. Whitehead, U. K. Nuclear Data Progress Report UKNDC(76) P86, 41 (1977).
- ¹⁶E. A. Crouch, U. K. Nuclear Data Progress Report, UKNDC (78) P88, 97 (1978).
- ¹⁷E. L. Garner's private communication to P. DeBievre cited in Ref. 18.
- ¹⁸R. Vaninbroukx, International Conference on Neutron Physics and Nuclear Data for Reactors and other Applied Purposes, Harwell, 1978.
- ¹⁹G. T. Seaborg, R. A. James, and L. O. Morgan, *The Transuranium Elements: Research Papers* (McGraw-Hill, New York, 1949), p. 22.1; National Nuclear Energy Series, Plutonium Project Record, Div. IV, Vol. 14B (1949).
- ²⁰S. G. Thompson, K. Street, A. Ghiorso, and F. L. Reynolds, Phys. Rev. <u>80</u>, 1108 (1950).
- ²¹C. Whitehead, A. C. Sherwood, and B. Rose, AERE Report, AERE-PR/NP 18 (1972).