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The local field correction to the m-nucleus optical potential is calculated taking recoil into account. The
correction arises from the triple scattering matrix element (0;gr, Gr, gr, ~0;k'), where r, are rrlV

amplitudes. The recoil energy of nucleon 1 affects the pion Green's function 6 and the intermediate
scattering amplitude 7,. The recoil of nucleon 2 affects only v, and has not been included to save
computational time. Effects of antisymmetry of the two nucleons, spin flip, and charge exchange have been
included, but not those of pair correlation and Pauli blocking. Inclusion of recoil is found to reduce the
local field correction by a factor of 7 from the result of fixed scatterer calculations. Nevertheless, the local
field correction remains sizable. In the m-' 0 case it represents a correction 2/3 as large as the first order
optical potential near the mN resonant energy. Nucleon 1 typically recoils through —1 fm while in terms of
the internucleon separation r» the effect is very long ranged. Thus the P-wave nature of the mN interaction
which enhances the reflection of the pion from nucleon 2 back to nucleon 1 is the main reason why the
local field correction is so important in m-nucleus scattering. The imaginary part of the local field correction
part of the optical potential is analyzed and its reactive content is shown to arise from two competing
mechanisms. The first, and dominant, mechanism is a reduction of the single nucleon knockout contribution
that is overestimated in the first order optical potential while the second mechanism is the two-nucleon
knockout. The analysis suggests very slow convergence of multiple scattering expansions near the mN
resonance energy.

NUCLEAR REACTIONS Pion optical potential, local field corrections, reactive
content of optical potential.

I. INTRQDUCTION

Nuclear pion scattering has the unique feature
that the mean separation of nucleons, d-2 fm, is
comparable to the resonant mN scattering radius:
r, = (tr/2v—)'~' -1.8 fm. The scattering radius is
defined so that a black disk of radius x, produces
the same total cross section as is observed in the
J = 2, I= 2, mN scattering state at resonance. The
scattering radius is quite distinct from, and much
larger than, the interaction range x,~-0.3 fm,
within which the mX interaction is large. The con-
sequence of a large scattering radius is that pion
waves reaching a nucleon inside a nucleus are
strongly modified by the presence of other nucle-
ons. The rescattered pion wave a distance d
from a nucleon is approximately (f/d) cos8 e'~,
where f is the P-wave scattering amplitude, 8
is the polar angle measured from the beam direc-
tion, and k is the pion's wave number. Because
f/d=i r, /d has magnitude comparable to unity at
resonance, rescattered waves are as important
as incident waves reaching a nucleon.

A substantial part of this multiple scattering
effect is summed into the first order optical
potential because the small angle (8-0) pion mul-
tiple scattering tends to leave the nucleus in its
ground state between scatterings. However, there
is a correspondingly large amplitude for pion re-

flections (8-v). The reflections involve large
momentum transfer and they preferentially popu-
late excited nuclear states between scatterings.
Thus, the effects of reflections come in as higher
order terms of the standard optical potential ex-
pansions. ' With few exceptions, analyses of m-

nucleus scattering have been performed by omit-
ting the higher order terms on grounds that they
are thought to be small. ' Generally calculations
are based on a wN off-shell amplitude that is only
kinematically modified in the nuclear medium.

By way of contrast, isobar hole theories of
pion-nucleus scattering' describe the same physics
in a fashion that emphasizes the local field cor-
rections to the ttN scattering in the (3, 3) isobar
state. The pion scattering is viewed as a sequence
of 4-hole states with pion propagation between
the annihilation of one 4-h state and creation of
the next. Often rather substantial local potentials
are used to represent the effect of the nuclear
field on the isobar self-energy and these effective
interactions modify both the mass and width of the
isobar in the nuclear medium.

The effects of the nuclear medium on the mN

interaction are organized into higher order terms
in the multiple scattering optical potential, terms
which have been called local field correction by
Foldy and Walecka. 4 The simplest multiple scat-
tering model in which the local field correction
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has been studied consists of pion waves scattering
from fixed, nonoverlapping potentials. Even
though a local potential model is not adequate to
describe pion scattering, the results of Agassi
and Gal' are instructive by way of showing how a
projectile's interaction with any one nucleon can
be strongly modified by the presence of others
nearby. In this simple model, the local field
corrections arise from multiple reflections of the
incident pion from the neighboring nucleons, a
feature which is relevant to pion-nucleus scatter-
ing due to the large back-scattering gN amplitude.

In more recent fixed scatterer estimates for
nuclear matter, very large effects due to the
local field correction have been found based on
the Goldstone diagrams of Fig. 1. The import-
ance of these diagrams is that they are the first
terms in the multiple scattering series which
have the reflection property, and thus the local
field correction is small or large depending on
their contribution to the optical potential. In the
triple scattering process of Fig. 1, the pion wave
scattering from nucleon 1 is modified by an inter-
mediate scattering from nucleon 2. At resonance,
this local field correction, calculated in fixed
scatterer approximation, is about three times as
large as the "leading" tp term of the optical po-
tential, indicating a severe divergence of the
multiple scattering description. It has been
argued" that self-consistent treatments of the

multiple scattering process, which approximately
sum many-body effects, ultimately regulate the
local field correction to -—,'tp. However, this
argument relies on a fixed scatterer analysis for
infinite nuclear matter and it is recognized' that
effects neglected in such analyses may regulate,
or quench, the local field correction. Three-body
analyses of m-d scattering' have shown that the
fixed scatterer approximation overestimates the
local field correction. In nuclei, however, the
local field correction is long ranged" because
the pion propagates at positive energy from one
nucleon to another. The effect is thus propor-
tional to A(A —1)(1/r'), i.e., to the number of
pairs of nucleons and the mean value of x '.
Clearly the deuteron case is not a decisive test
of the local field effect since (1/r ) is not much
different than for nuclei but the number of pairs
is small. Because neither fixed scatterer nor
three-body analyses have settled this issue, a
detailed calculation of the diagrams in Fig. 1 is
presented in this paper.

Because the pion twice scatters from nucleon 1
in Fig. 1, an internal loop exists through which
large momentum flow is supported by the P-wave
coupling of the pion to nucleons. The associated
recoil energy of nucleon 1 is neglected in fixed
scatterer analyses, and we shall show in this
paper that omission of recoil causes serious over-
estimates of the leading local field correction.
Nevertheless, the inclusion of recoil is not suffi-
cient to quench the local field effect in nuclei such
as "O, although it does suggest a more conver-
gent multiple scattering analysis.

The strategy of this paper is to separate the
local field correction from true pion absorption
effects, which we do not consider here. This is
done by excising the nucleon-pole part of the mN

interaction with nucleon 2 in Fig. 1, thereby
omitting the intermediate state where the pion is
absent and two nucleons are excited. The analy-
sis is described in detail in Sec. II and numerical
results for the local field correction with and
without recoil are presented in Sec. III. Section
III also examines the reactive content of the local
field correction to explicitly display the origin of
the large effects. Conclusions are presented in
Sec. IV.

II. RESCATTRRING WITH RECOIL

FIG. 1. Goldstone diagrams for local field correction
due to triple scattering process. The contribution of
the direct diagram (top) is divided into direct and spin-
Qip parts a's discussed in the text. The contribution of
the exchange diagram {bottom) is not divided. Heavy
lines represent the isobar excitation.

The Goldstone diagrams of Fig. 1 can be evalu-
ated using the rules for a pion propagator in
a nucleus. " One may also derive the same re-
sult using the triple scattering term of Watson's
multiple scattering expansion

T "&=A(A —l)(0; k ', A
~
r, GAG r,

~
0; k, X) ', (la
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=A(A —1)l 2(u~.

x(0;k', »
I
~,G&;G~, lo;k, &) v'2w, . (1b)

where k and k' are the initial and final pion mo-
menta and». (= 1, 2, 3) the pion isospin. The ket
l0; k, ») is the product of a pion plane wave state
and the target-nucleus ground state. The pion-
nucleon scattering operator v and the pion propa-
gator G will be described later.

It should be noted that T") is not the matrix
element of a part of the Klein-Gordon optical
potential. In fact, T"'does not even have the
appropriate dimension. The discussions of
Ref. 11 show that the contribution to the Klein-
Gordon optical potential is given by

7 "& =v'2u)„f"bl 2(o,

tivistic properties. The full reduction of the rel-
ativistic amplitude to the form (1) is omitted as
only minimal changes from the usual Watson
multiple scattering theory arise. The scattering
matrices v,. are I; matrices for pion scattering
from nucleon i, wherein the energy variable is
(d+H~, H~ being the Hamiltonian of the target
nucleus and ~ the pion's asymptotic energy. In
this work, we approximate H~ by a constant aver-
age binding energy (Hr = 8) i—n which case the r,
are simply related to the mN t matrix at a shifted
energy, (d -B.

The nuclear wave function is assumed to
be a determinant of single particle wave functions
»t&„, and thus (1) reduces to standard two-nucleon
forms which we expand as follows:

Equation (1) is a generalization of the usual
Watson potential theory in that the pion propagator
G and the mN amplitudes have appropriate rela-

T (3) —T (3) + T (3) T (3)
D SF EX&

where direct plus spin flip and exchange terms
are defined via

(2)

Tn»'& + T~ r& = v'2o&~, QQ (»t& (1)P„.(2); k', ».
l
v,Gq2G r,

l
»t& (1)»t&,(2); k, ») &»'2(o„,

7&;„&=&2~,.Pg(y„,(1)y.(2);k, &
l
~,Gr,G~,

l
y„( )y, ,( );k, &) 4 ~„.

(3)

In each of these expressions, the 7tN scattering matrices v, and v, are fully off energy shell. The mN

matrix, v'„ is evaluated at the shifted pion energy & -B. Expressed as a single nucleon operator, it has
the form

»

(q', o. 'l r, (r„(o)lq, o&) = —4»gh„, ~(o&)A, ~(q', q)A2I(o, ', o)e"~ ~""—

In order to separate the local field correction from true pion absorption effects, the off-shell amplitude w,

is written in a form which omits the nucleon pole term, as follows:

&&
/

(q», o. » l7;(r„.&u») lq, n) = 4»g -h„„(o&»)n„(q»,q)A„(n», o )e'« '&'"

The energy dependence of the off-shell ampli-
tude is expressed as a dispersion integral, with-
out crossing, as follows:

1 " Im[h~ 2~(z) j
2I,2 J

7& K» —z y Z7j

A, (q', q) =q' ~ q+io' q'&&q=o ~ q'o' q
' (8a)

Q, (q», q) =2q' ~ q —io' q'&&q, (8b)

which is just the right-hand cut term of the Chem-
Low form for the mN amplitude. The relationship
of the energy variable co' with the initial pion
energy, w, is discussed later. In these expres-
sions, both the isospin (I) and spin (8) indices are
understood to be summed over 2 and & values and
the projection operators for spins 4=~ and & are

while those for isospins I=—,
' and —,

' are

~,(P, n) =

J&3(P» o') =6» —ri 7'»'r, .

(Sa)

(sb)

M + v q~z, z exp(2i6, 1,z) —1
(10)

The phase shift values used in the present calcu-
lations are based on Salomon's parametrization"
up to 250 MeV pion kinetic energy. For the cal-
culation of the right-band cut amplitude, h„,f (u)

Here P, q' denote the final state isospin and mo-
mentum while &, q are similar labels of the initial
state quantities. The mN energy dependent am-
plitudes, h,l, J (m), are related to the phase shifts
as follows:
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based on Eq. (7), we employ in addition the CERN
theoretical phase shifts'3 to extend the integration
to 4 GeV mN center-of-mass total energy. The
form factor v(q) is specified later in Eq. (25).

The remaining ingredients of the triple scatter-
ing amplitude are the m-nucleus intermediate state
Green's functions, G=(E —(d, —Hr+iq) ', where
E = & —Eo is the total energy of the external pion
plus nuclear ground state. The first scattering
of Fig. 1 excites the nucleon from an occupied
(hole) state, (t)„, to an unoccupied (particle) state
which is approximated as a plane wave state of
momentum p. The energy of this one particle-one
hole state is approximately represented as Eo+JB
+p'/(2M}, where M is the nucleon mass, and -8
is the average hole state energy. Thus, the
Green's function for momentum q of the pion takes
the form G = [&o —(d, —P'/(2M) —8] '. A similar
Green's function applies to the pion line of mo-
mentum q' in Fig. 1. The recoil effect in the
pion Green's functions forces the propagation
energy &o —P' /( 2M) 8neg-ative for pk )('2M&A.

This causes two natural cutoffs for high momen-
tum values which are not present in fixed scatter-
er analyses.

The off-. shell wN amplitude, 7„may be viewed
as an isobar-hole state with a continuous mass
spectrum M + z & M +w, . The energy denomina-
tor internal to this amplitude is thus (&o —P'/2M

28 —z+—iq}, where P'/(2M) is the recoil energy
of nucleon 1 and 2B represents the energy shift

due to the two-hole states in the nucleus. The
effect of the nucleon recoil energy is to cause a
downward shift of the energy at which the off-shell
zzN amplitude is evaluated via Eq. (7). Because
the gN amplitude, v„ is resonant with a width of
I'-100 Me7, the recoil effect is to force 7, away
from resonance except in a momentum range 4p
-v'2MT'-2 fm '. In the'fixed scatterer analysis,
the recoil energy is omitted permitting the v; am-
plitude to remain large for an infinite range of
momentum values.

In this analysis, the isobar recoil is neglected
in order to keep the number of integrations
manageable. The nucleon recoil affects both the
pion propagators and the amplitude 7'„while &-
recoil affects only 7,. Thus, it appears that the
nucleon recoil provides the bulk of the recoil
effect and omission of 4 recoil is a reasonable
approximation, particularly considering the
enormous amount of computational time required
to take account of it. However, we recognize
the possibility that isobar recoil could alter
our results to some extent. If a nonzero momen-
tum, say, p', were assigned to the isobar, then
there would be an extra recoil energy, -p'z/2M~,
in the energy denominator. Note that the effect
would be a further downward shift of the energy
at which v; is evaluated. The effect is qualita-
tively the same as that due to the nucleon recoil
and in the same direction. When expressions (5)
and (6) are substituted into (3), we find

v(k') v'(q')
(o~ —(() —8 P/2M + z-zi

x gh, »~(&g —28 —p'/2M)Q»(q', q)A„(p, c()e'" ')'"& v'(q)v(k)

S,J (g) —(g) -B-p 2M+ zg

—4«I, (,.(2) Q))„„(«)()„(&)',q)&)„(&),«) (,.(2))=—4«z "&(M)4«,(r„&;)&I„&)'&7.
I,J

The sums over single particle states have been expressed in term of nuclear density matrices, pa(r, r )
normalized according to

(12)

The nucleon recoil effect resides in the P'/(2M) energy shifts and the p integration. In the M —~ (fixed
scatterer) limit, the p integration can be carried out to yield (2zz) 5 ")(rz —rz)), which expresses the static
nucleon propagation. In the recoil case, both p and r =- r, —r,' vector variables must be integrated. For a
spin and isospin saturated nucleus, the following simplification holds [see Eq. (54)]:

dzr p, (r, r) = 16, (13)

the mass number for "Q. The isospin sums simplify due to
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a p' u, X =Or', I" I. (14)

When the remaining spin and isospin sums are carried out, the result simplifies as follows:

Tt" + TfJ=v(()a(k')(2tr) 'fdic[-'4w)]')(I)] fd rf'g, v' fd re''("' ("» 'e" t'

&&4p,(r„r,')4p, (r„r,)[& o((d —B)Ko(k', k, r', r, w) —s»(&o —B)K»(k', k, r', r, w)],

where

(15a)

2r —= r, —r„r' = r,' —r„w = (o —B —p /2M, (15b)

~ W

K (k' k r' r w) = ~ (k
(2~) 2(o, , —w+ iq 2(o, ((o, —w+ iq)

(15c)

Nn(k', k, q', q) =k' ~ q'q'. qq. k, (15d)

and

X»(k', k, q', q) =q' q(k' ~ qq' ~ k —q' ~ qk' ~ k),

&n((o) = s(-4o)'([@„((d)+ 2h„(u) )]'+ 2 [@„((d)+ 2h„((o)]'],

*SF(~)= r'(-4o)'{911(~)—i,.(~)]'+ 2[I „(M)—I „(M)]'].

(15e)

(16a)

(16b)

The term Sn is due to scatterings without spin-flip and it produces the direct contribution, T, in (15).
The term SoF is due to double spin-flip scatterings and it produces the spin-flip contribution, y, in (15).
» both (16a) and (16b), the possibility of charge exchange in the first and the last scatterings is included.
Thus, when we define a pion propagation function by

1 dq e 'v(q) (17)
(2o)~ 2(o, (o, —w+ir]'

it is possible to reduce the kernel E to the sum of the following direct and spin-flip terms:

Kn(k', k, r', r, w) = [k' ~ V'(7G(r; w)] ~ [k ~ V'O'G(r'; w)], (18)

(19)K»(k', k, r', r, w) = [k ~ VVG(r, M)] ~ [k' ~ V'V'G(r', w)] —k' ~ kV, V,G(r; w. )V,'. V,'.G(r'; w).

Note that our form factor v(q) does not absorb the (2(o,) '~' factor and thus a hard form factor v(q) is used
in this paper, but there is no disagreement with "soft" form factors which do absorb the (2(o,) '~' into

v(q). Further defining three pion propagation functions as follows:

G,(r; w) —= V,2G(r; w),

G,(r; w) = r'(d/dr)G-(r; w),

G,(r; w) —= Go(r; w) —3G,(r; w),

the direct and spin-flip kernels can rewritten as

K,(k, k, r, r, w) =k k G,{r)G,(r )+k' r k r G, (r)G,(r )

+ k rk' ~ rG, (r) (G)r+ k' ~ rk ~ r'r ~ r'G, (r)G,(r'),

(20)

(21)

(22)

K»(k', k, r', r, w) =k ~ k'G, (r)G, (r') + k' r'k ~ r'G, (r)G, (r') + k ~ rk' ~ rG, (r)G, (r')

+ k ~ r'r r'k' ~ rG,.(r)G, (r') —k k'[3G, (r)G, (r') + G,(r)G, (r')

+ G, (r)G, (r') + G,(r)G, (r')] .
Here the parametric dependence of G, and G, on the recoil energy via w=(o —p /2M Bis implicit. -

In order to permit some analytical reduction of the propagation functions, it is convenient to express
the m'N form factor in a monopole form

v(q) =(1+k'/u')/(1+ q'/o'), (25)
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where k is the on-shell momentum. The 'cutoff parameter o( is equal to 940 MeV/c in this work, '4 how-

ever, the sensitivity of our results to other values of o, is tested (see Fig. 7).
Now employing the identity

1 8(2U) 1 "
dy2() 1

2(d, (2() - (d, + ip) M)2- m, 2 —q'+irl FF, y'+ 2()2 y'+ m, '+ q' '

we find the pion propagation function can be reduced to a quadrature of an analytic function as follows:

G(r; FF)) = e(2c)g(r; Q) —— dy»g[r;i(y'+ m')'~2],1 "
zv

0

where

&$2 r (&2+ k2)2

(2FF)2 Q' —q'+i@ (F22+ q')'

takes the analytic form

(O2 ~ k2)2e-ar (+2 + k2)2 elgr e ar-
8F(c((Q'+ u2) 4FF(Q'+ a')2 rg r;Q)=

(27)

(28b)

In similar fashion, the propagation functions G„G„and G, are also expressed in the form of Eq. (27)
through use of Eqs. (20)-(22). The explicit forms used in the calculations of this paper involve Eq. (27)
with

and

(
2 ~k2)2e-ar (+2 + k2)2 Q2eF gr+ +2+ ar

8 (Q, ,) [1—2/(o )]+4 (Q, +,),

Q(o(2 + k2)2 8 a" (C(2 + k ) cpu" —8 a ZQei or+ &e-ar

8FF(Q2+ o2) c(r 4)F(Q2+ a2)2 „r' r'gi(r')Q)=- 2 2 + 2 2 2 2

(29)

(30)

We note in passing that the numerical evaluation of (27) requires some care near y values satisfying
i(y'+ m, ')'~2 -icF; however, straightforward analysis shows that the propagation functions go(r; Q) and

g, (r; Q) are not singular as Q-in or as r-0.
The next steps in the reduction of (15) to a tractable calculation consist of introducing new variables

r =- r, —r2; r' —= r, —r, and carrying out the r2 integration using a harmonic oscillator shell model density
for ' 0. To this end we define

p(FF')=f p're'& ~ P& "p (F+F„F'+F )p (F„F),' (31)

and consider the shell model density matrix

p,(r„r,') = 21»(1+2r, r,'/b') exp[- —,'(r, '+ r,")/b'],

with b = 1.786 fm. When the momentum transfer, k - k', of the pion is neglected, the following expression
emerges:

D(r, r') = „,, exp[- ,'(r'+r"—)/b'+-,' r r'/b']

(r+ r')2& 3 (r+ r')' 2r ~ r' 27 5 (r+ r')' 3r ~ r'

~ ~

~

~

~

~ ~ ~

8b'
~ I

8 b' b' 4 8

Further specializing the analysis to the k=k (zero-momentum transfer) limit, it is observed that the
scattering matrix element becomes a scalar function of a single vector, k. The result is invariant with

respect to rotations of k and we use this fact to simplify the expression by averaging over directions of k.
The results are expressed as follows:

W

7 o&2) =k2~D(~ —&)(2~2) ' dPP2 -4vk(')
I
~ —m—

2M]

dz d'r'jo sar r' joks g~r r', p+ '
2 g»r r', p
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2
T~~p' ——k2 SSF((o —B}(2v') '

dPP -4vh "~ (y —2B—
2M

cPr r'j, sDr, r' j, ks g$0r, r', p + ','9» r, r', P (35)

where

g»(r, r'; p}= &G,(r)G,(r') + ~~G, (r)G, (r')P, (cos8), (35)

9»(F, r', p) = —&(2r' —r")G,(x)G,(r') —x'(2r" —r')G, (r)G, (r')
+ &rr'c so8[4G, (r)G, (r')+ 4 G(r) G(r')+ 3G,(x)G,(r')]
—cos'8[r 'G, (r)G, (r') + r "G,(r)G, (r ') + &(r'+ x")G,(r)G,(r')]+ & cos'8 rr'G, (r)G, (r'), (37)

oJ,(r, r', p) = Y2G,(r)G,(r'),

9~,(r, r', p) = -G,(r)G,(r')[r' cos'8+ ~(2r' —r') —err' cos8]

-G,(r)G,(r')[v" cos'8+ ~(2r' —r")—v'r r' cos8],

(38)

(39)

cos8=r r', 's= ~r- r'~. (40)

The P dependence of the pion propagation functions, G, , is implicit. The final forms (34) and (35}in-
volve four integrations which are performed numerically, namely, P, r, r', and cos8 integrations.

The exchange contribution is given by Eq. (11)with particle labels 1, 2 interchanged in the final (or
initial) state. However, this interchange gives rise to a more complicated spin-isospin sum, e.g. , (14)
no longer applies in a direct fashion. Consider the spin-isospin sums of Eq. (11)with final state particles
exchanged in the following condensed notation:

SI= Q Q(-4~} O' Q hml', 2J' 12/'A2p(XI p) 2 h, p ,g A2.g.,A..,p,(a, X} P
v, v' e,8 I', J' III JrI

2I, 2J
I,J

(41)

The projectors 0».. and A„„depend on spin and
isospin operators of nucleon 1, in the notation of
(11). Thus they have been commuted with the
projectors 0 ~ and A, I projectors that depend on
nucleon 2 operators. The state

~

p},
~

p'} repre-
sent spin-isospin nucleon states that are summed
for a closed shell nucleus. Thus, (41}invozves
a trace over nucleon spins and isospins and
cannot depend on the external pion isospin projec-
tion, X. If we average over the possible ~ values,
the spin-iosspin sums are rendered to the form

2I ~ I' ~ I I' I (44)

Q(, P) Z—,—p, ,g 2z Q&...-A„(P, )-
I', J' pt

=H, A, (P, A.)+H, A, (P, A.), (45a)

where

can be used to evaluate the sums in (42) provided
we first use the crossing matrix CI, I„ to rear-
range the order of indices as follows:

1'=-'» g Q(~, p)Q(~, &)Q(P, ~), (42)
and

(45b)

where

(43)Q(~, P) =- -4sg h„.„.n„.A„.(~, P),
I', J

and Q is a similar form involving the amplitudes
h in place of h. The projection property of A,
namely

H,"& = —v~v(-h„+ 4h„—2h„+ Sh„),

H,'& = —pv(2h„+ h„+4h„+ 2h„),

H,' & = —tv(2h„+ h„—2h„—h„}.

(45c}

(45d)

(45e}

(45f)
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Results similar to (45) hold for the Q as well.
In this fashion, we obtain from Eqs. (42), (44),
and (45).

s, ((o, P) = (H,"H," H—,' 'H ')H,"
+ 2(H "H&'& —H' &H' &)H '&

s s s s s

—2H'&H' &H' & —4H'&H' &H' &

s s s (47b)

I'= ', Tr-+H, H,H, A&(p, p)+HQ, H, A, (p, p), (46)

I' =
~4 [62(&d, p)k' q'q' qq ~ k

+ 6'2(a&, P)(k' q'q" kq2+k" qq ' kq")

+ S,((u, p)k' ~ k(q' q}'], (47a)

where H, and H, are defined as in (45b) in terms
of the A2I 2J pion -nuc leon amplitudes with pole
terms excised. The remaining trace in (46) is
over the spin and it yields

F2(u), P)=H,"H,' 'H,' '+2H,'&H,' &H' &,s

$3(&2&, P) =H,' 'H,' &H,'&+ 2H,' &H,' &H', "& .

(47c)

(47d)

In Eqs. (47), the amplitudes H,';& are evaluated via
(45) in terms of k» 2~(&o —B). The amplitudes
H,', & are evaluated in a similar fashion in terms
of k» 2~(v —2B —P'/2M), i.e., at the recoil shifted
energy.

The remainder of the analysis proceeds in a
straightforward fashion, rather similar to the
analysis leading up to (34). For brevity, we
omit the details and present the results in the
following form in the k' =k limit:

&&0

Ts(3x&=k2(2»2) ' dpp' &P2 &Pr'j, (ps)D s(r, r')—$2(&u, p) j,( ks) &~2,(r, r'; p)+~ 2 &2»(r, r'; p)
0

lr«

+ S2(&d, p) j( ks)g„(r, r', p)+ ', ' g22(r, r; p)

+2, (t«, P)(2&(»)3,.(r «';PHI

where

(48)

D (r r') =f 2'r, 16,p, (r' + r„r )p (r + r.„,r, ),. (49)

Employing the shell model density matrix of (32), we find

Dsx(r, r') =,&2 3exp[- -', (2'2+ r")/b2+ &r ~ r'/f&2]

&& ([I+ 1 S2/52 2 (+2+ +«2)/52]2 2 (+ 2 +«2)2/b4+ 27 3 (+2 y +«2}/b2 y 1 S2/52)

Equations (34), (35}, and (48) have been numer-
ically evaluated. As the calculation is nontrivial,
two entirely independent computer codes were
written, each employing different integration
variables and numerical methods. The codes
were checked against each other and thus a high
degree of confidence in placed on the resulting
numerical evaluations.

III. RESULTS AND DISCUSSION

The size of the leading order local field correc-
tions,

can be discussed best in relation to the first
order potential,

(0"= (2tr,')' '(0 2' 2 Q r 0'2 2) (2tr )'r'

(52)

We do this by comparing the k=k' (diagonal)
matrix elements U"& and U"&. For m —"0 scat-
tering the k=k' element of the first order optical
potential is

U(2& = 16k2[-4&&k(' &(&u —B)]

U~ & =T's&=T& &+ T' & —T& ~~ ~ ~
I& SF EX (51) where
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h&'&(&o) = 3[k„((o)+2h„((o)

+ 2h„((o)+ 4h„(co}]

The three parameters of the calculations are the
binding shift 8 = 21 MeV, the mN form factor
cutoff o = S40 MeV/c of Eq. (25) and the "0 oscil-
lator parameter b =1.786 fm of Eqs. (33}and (50).

Figure 2 shows the real and imaginary parts of
U('" and U(') as functions of the kinetic energy of
the pion in the laboratory frame. Below 100 MeV,
the local field correction embodied by U"' is
seen to be a modest correction to the first order
optical potential. However, in the range 120 to
240 MeV, the local field correction can be nearly
as big as U"'. Both the real and imaginary parts
of the optical potential are affected.

The local field correction U") is composed of
direct, spin-slip, and exchange contributions as
shown in Fig. 3. A notable coincidence is the
near cancellation of spin-flip and exchange con-
tributions. Thus the total U"3 is nearly equal
to just the direct contribution T&g& of Eq. (34) as
is seen by comparing the solid and dashed lines
of Fig. 3.

An objective of this work was to test the validity
of fixed scatterer estimates of the local field
correction. In the fixed scatterer case, the nu-
cleon mass M- ~, causing the nucleon recoil
energy p /(2M)-0. In this event, the local fie),d
correction can be much more simply evaluated
since the p integration produces 5&'&(r, —r,'), i.e.,
the recoil distance is zero. For example, the
direct contribution from Eq. (34) produces

300—

200—
ReU

(fm)
IOO—

50 IOO 0 300
I

—IOO—

(o)

400-

300-

200—
&3&

ImU

(fm) Ipp

250 300

-IOO—

-200—
Pion Fnerqy T» (Mev)

Up)„= k'&'((o —8)[-4vTi&'&((o —2B)]

d'x»D r», r» /DO r», r», 0 . 55

The function g» of (34) vanishes when r =r' and
thus does not contribute. Because of rotational
invariance, a one-dimensional x» integration
suffices to evaluate this expression as opposed
to the four-dimensional one needed when recoil
is included. In the fixed scatterer calculation,
the resonant amplitude h" is unaffected by
recoil energy and the pion Green's functions be-
come free of recoil energy shifts.

The ratio R defined by

FIG. 3. Contributions to the real and imaginary parts
of the local field correction due to direct (——-),
spin-Qip (.~ ~ ~ .~ ), and exchange (—e —~ —) terms for
m-~~0 scattering. The solid line shows the total which
is approximately equal to just the direct contribution.

-200 a = u&'&/U&'& (56)
-400—

ImU

(fm)

200—

0 300

-200-

-400—

-600— Pion Fnergy TI,b (Mev)

(b)

FIG. 2. Heal and imaginary parts of the first order
optical potential, U ~, and of the local field correction,
U~3, both evaluated at k =k', for x- 60 scattering.

is the complex ratio of local field correction to
first order optical potential. The magnitude of
the ratio with recoil effects included and for the
fixed scatterer approximation (FSA) (55) are
compared in Fig. 4. The inclusion of recoil
typically reduces the local field correction by a
factor 6 to 7. Nevertheless, the peak value ~R

~=0.66 at 150 MeV shows that the local field cor-
rection remains sizeable compared to the first
order optical potential. Because the resonant
energy dependence of U&'& is divided out in the
ratio R, Fig. 4 clearly shows the additional ener-
gy dependence due to the leading local field cor-
rection. Local field effects are most pronounced
near the mN resonance energy and the fixed scat-
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FIG. 4. Magnitude of the ratioR of U to U for
m- 0 scattering. Solid line shows the recoil calcula-
tion and dashed line shows the fixed scatterer calcula-
tion.
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5 6

terer limit is not a resonable approximation to
them.

Figure 5 shows the ratio 8 as a function of
M„/M, where M is a variable nucleon mass and

M„ is the physical nucleon mass. Results are
shown for the local field correction with variable
mass M at 150 MeV pion energy. There are two
points to be noted. First, the ratio R drops rapid-
ly in size as one moves away from the static
limit, i.e., as M„/M increases from zero.
Second, the real and imaginary parts of R change
differently as M„/M goes from zero to unity,
which corresponds to the physical case.

Figure 6 compares the fixed scatterer and re-
coil calculations as functions of the typical inter-
nucleon separations,

I I I

-ReR

0 I I I I I I I I I

0 O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O

MN/M

FIG. 5. Real and imaginary parts of ratio R are plot-
ted versus inverse recoil mass, M for 150 MeV m- 6Q

scattering. Pf& is the physical nucleon mass. ) Fixed
scatterer results (MN/M=0) are approached very slowly
as the mass M increases.

FIG. 6. Contributions to the local field correction,
U 3, from different internucleon separations for 150
MeV m-~60 scattering. Solid line shows the recoQ re-
sults and dashed line show one-fif'th of the fixed scat-
terer results.

which give rise to the local field correction. The
integrand of the x» integration for U&'), other in-
tegrations having been done, is plotted versus s»
and it is immediately clear that the local field
correction is a very long range effect. Most of
the local field correction arises from nucleons 1
to 3 fm away from the subject nucl. eon, with non-
negligible contributions arising from nucleons
up to 5 fm away (i.e., on the other side of the
nucleus). The failure of the fixed scatterer ap-
proximation, which is shown at one-fifth actual
magnitude is Fig. 6, is most pronounced for small
internucleon separations (sl.5 fm). The recoil
effects tend to increase the range of the local
field correction.

A simple interpretation of the long range of the
local field correction is made in terms of the
resonant scattering amplitude mentioned in the
Introduction. Pion scattered waves originating
at nucleon 1 can freely propagate a substantial
distance to a second nucleon, backscatter, and
return to scatter once again from nucleon 1 with
probability amplitude of order unity. Thus, the
interaction of the pion with any nucleon is influ-
enced by essentially all the other nucleons in the
nucleus near the mN resonance energy.

It is also apparent that higher order effects will
modify the local field correction. In a self-con-
sistent treatment, the pion would not freely
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propagate large distances without experiencing
scattering and absorption through its interaction
with the surrounding nucleons. ' Our results
motivate a self-consistent description of the
pion-nucleus scattering, however, that is
beyond the scope of the present paper.

Because the local field correction is long range,
there- is not a great sensitivity to short range
correlations or to mN form factor cutoffs. The
dependence of the ratio R on the nN form factor
parameter o, of Eq. (26) is shown in Fig. V. At
150 MeV pion energy, the ratio R reduces from
0.62 to 0.5 when the gN cutoff is reduced from
940 MeV/c to 600 MeV/c. Because of the com-
plex interplay of direct, spin-flip, and exchange
contributions, we find that further reduction of n
has little effect on the local field correction.

The relative insensitivity to the vN form factor
deserves some explanation. lf one approximates
the pion propagation functions by neglecting the
tensor coupling [dropping G, (r) terms in Eqs. (36)
and (37), for example), then the local field cor-
rection is found to be much shorter ranged and
more sensitive to gN form factor cutoff. The
long range of the actual effect is in the tensor
coupling term, ' which accounts for four-fifths of
the local field correction. Thus, we find that an
angular average over pion directions, such as is
customarily used in derivations of the Lorentz-
Lorenz correction, fails in the local field correc-
tion since it omits the tensor coupling.

Figure 8 shows the dependence of the local field
correction on the recoil momentum variable, P,
which is the momentum of the plane wave excited
states. The integrand of the P integration for 150
MeV pion energy is plotted versus momentum P
including direct, spin-flip, and exchange contri-
butions and with all other integrations carried

0,65—

200

100—
Imaginary

0

(f )
—100

-200

-300
0 2

Recoil Momentum p (frn )

FIG. 8. Dependence of the local field correction on
the nucleon recoil momentum p for 150 MeV 71- 0
scattering.

out. Owing to recoil effects, the contributions
typically arise from excited nucleon states of mo-
mentum 0.5 to 3 fm '. We have tested the sensi-
tivity of the calculation to Pauli exclusion of nu-
cleon momenta in the range 0 to 1.4 fm ' by ex-
cluding that range of P integration. As Fig. 8
suggests, it is found that the imaginary part of
U"& increases in magnitude while the real part of
U&'& decreases in magnitude. At 150 MeV pion
laboratory energy, the absolute magnitude of the
ratio R does not change much due to Pauli
blocking.

Figure 9 shows that the excited nucleon typically
recoils a distance 0.5 to 1 fm as opposed to the
zero recoil distance of the fixed scatterer approxi-
mation. Thus, it is seen that the local field cor-
rection mainly arises from backward angle scat-
terings in the intermediate nucleon interaction
and the usual interpretation in terms of multiple
reflections is verified.

Because the local field corrections substan-
tially change the imaginary part of the optical

I
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FIG. 7. Dependence of the ratio R on the xN off-shell
form factor parameter [see Eq. (25)] for 150 MeV 7t'-~60

scattering.

FIG. 9. Dependence of the local field correction on the
nucleon recoil distance, l&g —&~1, for 150 MeV a-t~O
scattering.
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potential, it is important to identify the physical
processes which are responsible. The reactive
content of the optical potential is considered along
the lines of the work of Tandy, Redish, and
Bolle." The discontinuity operator

m'N

~NN ~N ———
/

EU((g) -=U((o + ie) —U((o —ie)

is useful in this regard since

lim EU(&o) = 2i Im U(&o) .

(57)

(58)

Multiple scattering expansions generally involve
operator strings of the form

I'=AMBA . (59)

where A-=A(&a+0) and B =B(a+ i—e) depend on the
energy variable & and & is an infinitesimal imag-
inary part. The discontinuity of such operator
strings is given by the foQowing theorem:

4I' = (4A)BABA ~ ~ ~ +A *(~)ABA

+A *B*(4A)BA ~ ~ ~ +A*B~A *(m)A ~ ~ ~

+A +B*A+B+(col) ~ ~ ~ + (6o)

where A*—=A(e —ie) and B*=B(co—ie). A deduc-
tive proof can readily be constructed. The dis-
continuity operator b, obeys a chain rule with the
exception that it conjugates the complex energy
variable of all operators to its left.

The imaginary part of the triple scattering
optical potential U&'), or of the T matrix T&') of
Eq. (1), arises from five separate discontinuities
as follows:

hU "&= (0; k, X
~

[h7', G7;G7; + v,*dGr,Gr,

+ v',*G*47'2G y, + 7;*G*7'2*6G7,

+r,*G*r+G+Sr,]~0 k» (61)

Figure 10 indicates the five cuts corresponding to
this equation. The notation &,* designates
r,(e —iq), which differs from the Hermitian con-
jugate of 7,(v+ ig) due to the spin and isospin
projections of Eqs. (5) and (6). When the spin
and isospin sums are evaluated as in Sec. II, the
various contributions to the discontinuity, hU~'&,

can be shown to involve Hermitian forms, how-
ever, those details are omitted. For the present,
we note that the third term of Eq. (61) represents
the cut corresponding to a nucleon, a b and two
hole states in the residual nucleus in the inter-
mediate state. Because the 4 mass is greater
than M„+m„ this discontinuity corresponds to
production of md% intermediate states and must
contribute a negative imaginary part to the optical
potential. Note that omission of the pole term
from r, in this work means that the true pion
absorption cut corresponding to AÃ intermediate

FIG. 10. Absorptive cuts of the local field correction
(a) and the first. order optical potential (b). The imag-
inary part of U ~ arises from plane wave impulse ap-
proximation of the quasifree hnockout process (n, nN).
The four xN cuts of the local field correction serve to
modify the absorption of the first order optical potential
by inclusion of initial and final state distortions to the
quasifree knockout.

states is not present. A complete analysis, of
course, must include the true absorption; how-

ever, the present focus is on the local field effect
which we logically consider as a separate issue.

The remaining four cuts of Fig. 10 and Eq. (61)
correspond to intermediate mN states. These
cuts are corrections to the absorptive cut of the
first order optical potential, "

U =A&0;u, ~~~~, ~o;u, »,
which also corresponds to mN intermediate states
as indicated in Fig. 10. However, the nucleon
knockout to mN intermediate states is overesti-
mated in the first order optical potential because
its discontinuity corresponds to plane wave knock-
out. The corrections to this discontinuity present
in b, U&') are distortion effects of the medium on
the outgoing pion which generally cause a reduc-,
tion of the mN reaction cross section. For this
reason, the mN distortion cuts of U"' tend to be
emissive in that they act to reduce to absorption
present in U&'). The imaginary part of U&') can
thus be either positive or negative depending on
the predominance of the wN or mAN cuts.

Figure 11 shows a comparison of the various
contributions to the imaginary part of the optical
potential as functions of the pion energy. The
imaginary part of U&'& is seen to consist of a
large .emissive part due to mN cuts and an absorp-
tive part due to the mXN eut. The figure reem-
phasizes the slow convergence of the multiple
scattering expansion of the optical potential in the
vicinity of the mN resonance energy. It should be
noted, however, that Pauli exclusion effects that
are not included here will reduce the absorptive
parts significantly.
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FIG. 11. Imaginary part of first order optical poten-
tial ImU ( ) is compared to the imaginary part of
the local field correction ImU 3 (- ——-). The mNN

cut contribution to ImU 3
( p is purely absorp-

tive, but is conterbalanced by the sum of the four xN
cut contributions (- —- -), which tend to be emissive.

IV. CONCLUSIONS

The leading order local field corrections in
pion-nucleus scattering are quite large near
the mN resonant energy. The conventional multi-
ple scattering theories thus converge, at best,
quite slowly. The previous work on the local
field corrections employing the fixed scatterer
approximation seriously overestimates the effect;
however, the present analysis including recoil
effects basically points to the same conclusion.
The -pion-nucleus interaction involves very high
order multiple scattering processes which may be
better organized into the theory if one insists on
a self-consistent optical potential theory in which
the pion propagation between scatterings is mod-
ified by the effects of the medium. Inclusion of
the pion absorption mechanism is not likely to
alter this conclusion.

Recent papers by Qset and Weise" considered
several higher order corrections to the optical
potential in an isobar-hole model. The isobar
self-energy in the nucleus was shown to be sub-
stantially altered by the isobar-nucleus Hartree
potential, by Pauli blocking effects, and by pion
absorption and reflection contributions. Qf these
effects, the pion reflection contribution to the
isobar self-energy is the agent for the local field
correction considered in this paper. Many dif-
ferences in the approaches deter any simple
numerical comparison of our results for the
local field correction with the isobar self-energy
results of Ref. 18. However, several remarks
are in order. An important conclusion of Ref. 18
was that partial cancellation between various
corrections takes place in the calculation of total

cross sections for m-nucleus scattering. Further-
more, the results show that all of the above-men-
tioned medium corrections are large and they
must be incorporated in an equal footing. Qur
results for the local field correction also argue
strongly for its inclusion into microscopic the-
ories of m-nucleus scattering.

We further emphasize that the local field effect
should be incorporated in all orders and in a self-
consistent manner. Incorporation in all orders
requires that all internal pion propagators contain
the pion optical potential. Self-consistency re-
quires that the m-nucleon t matrix, so modified,
be able to reproduce the pion optical potential in
the relevant energy range. This conclusion is
based on the very large, and opposite in sign,
contributions to the imaginary part of the local-
field correction discussed in relation to Figure
11. The quasifree reactive content of the optical
potential is incorrect if the intermediate state
pions are not distorted by the optical potential.

Because the pion-nucleus elastic scattering is
nearly black-disk scattering near the mN reso-
nance energy, the inclusion of local field correc-
tions is not expected to induce dramatic changes
in forward angle elastic scattering predictions.
Back angle scattering is expected to be sensitive
to the local field correction. However, the chief
importance of the local field corrections may lie
in their implications for distorted wave calcula-
tions for reactions. Local field corrections tend
to increase the nuclear transparency. The anom-
aly in predictions of single pion, charge-exchange
cross sections" when standard optical potentials
are used in DWIA calculations may be an experi-
mental indication of increased transparency of
the nucleus to pions. A second pion application
which may be sensitive to knowledge of the local
field correction is the extraction of matter radii
from pion-nucleus elastic scattering. Although
the data very precisely determine a strong absorp-
tion radius for "the optical potential, " it is a dif-
ficult problem to relate this information to matter
radii using a microscopic theory of pion multiple
scattering. Local field corrections are expected
to further complicate such attempts.

As noted previously, the predominance of the
first order optical potential implies that the pion-
nucleus reaction cross section is strongly
dominated by quasifree knockout of nucleons which
is a single nucleon process. The presence of
large local field corrections suggests increased
importance of multinucleon processes. As shown
by Morris et al. ," there are data which support
this view. The ratio of nucleon knockout by m'

and 7I beams, when the nucleus is left in a defi-
nite final state, is found to differ significantly
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from prediction based on quasifree scattering.
A principal conclusion of this work is that pion

multiple scattering requires a self-consistent
treatment of the pion self-energy in the nucleus.
It is reasonable to expect that local field correc-
tion will be reduced by the self-consistency as
has already been shown in the fixed scatterer
case by Johnson and Bethe. '
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