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The consistency between the exchange currents in the pionic range and the Reid soft-core potential, which
has an asymptotic behavior like Vopp is studied in the doubly radiative n-p capture process. The cross
section is evaluated using the interaction Hamiltonian expressed by means of the nuclear current, that
includes the two-body terms deriving from one-pion exchange. The gauge invariance is preserved by the
generalized contact term. This cross section is compared to that obtained with the Siegert form of the
interaction Hamiltonian. The difference between the values of the cross section, which is of the order of
24%, constitutes a quantitative estimate of the lack of consistency between pion exchange currents and the
nuclear potential considered. The use of purely phenomenological wave functions leads to a great
disagreement. Finally, the existence of an exchange effect of the order of 30%%uo is pointed out in the process
under examination, which occurs via the emission of two F. 1 photons.

NUCLEAR REACTIONS Meson exchange currents, Reid soft-core potential and
Siegert's theorem; H(n, yy), thermal n, calculated o».

I. INTRODUCTION

The principal aim of this work is to give a quan-
titative estimate of the consistency between pion
exchange currents (MEC) and N-N potential, taking
the process of the doubly radiative n-p capture
into consideration. To this end we compare the
value of the cross section obtained using the nu-
clear current operator with that obtained using the
charge density operator, which are connected
through Siegert's theorem. This last value will
be assumed as the "comparison one, " being model
independent, as it will be shown in the following.

This reaction seems to be a convenient one be-
cause the use of Siegert's theorem is valid, being
a low-energy process. At the same time, as it
is a second order process, it involves off-shell
matrix elements and, thus, it allows us to investi-
gate the short range behavior of MEC and N-N
potential. MEC operators are of course consistent
with the long range part of an N-N potential, as
the Reid soft-core potential' (RSC), since its
asymptotic part is given by one-pion-exchange
potential Vppz Their lack of consistency at
short range can be pointed out in the reaction
chosen because the virtual intermediate states
have unlimited momenta. A similar investigation
in single photon processes requires high momen-

turn transfer, so that Siegert's theorem is no
longer applicable.

The experimental and theoretical situation about
the reaction n+d-0+2r is briefly as follows.
The most recent experimental result, which low-
ers considerably the first one obtained by Dress
et a/. , is that of Aust et al. , and gives a value
e» ——(- 5.2+6.4) pb for photons in the energy range
330-1890 keV. Moreover, lowering the photon
threshold to 233 keV, these authors find that the
energy spectrum agrees with that expected for an
&1-F-1 emission mode. In agreement with this
result, Earle and McDonald' have obtained an up-
per limit of 1.6 pb, for photons in the energy
range 700-1520 keV.

In the meantime the problem has been studied
in detail, from the theoretical point of view, in
the framework of the usual electromagnetic inter-
action theory, i.e., without Adler's conjecture
about the amount of the nonorthogonality between
S bound and continuum wave functions. Grechuk-

hin demonstrated in 1971 that the electric dipole
is the fundamental emission mode. Then the
cross section for the E1-F1 mode has been cal-
culated by several authors still more carefully
up to the value (0.1176+ 0.0003) pb given by Blom-
qvist and Ericson.

Emission mechanisms different from the domi-
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nant E1-FI, have been also evaluated. Bernabeu
and Tarrach' have studied the emission of an M1
photon followed by a bremsstrahlung photon. The
present authors have calculated the influence of
the exchange currents on the cross section fox the
M1-M1 mode. ALL these processes give negligible
contributions to the dominant &1-E1 mode.

It is well known that for lom-energy transitions,
like those which come into play in this process,
the continuity equation for the current allows the
interaction Hamiltonian III to be expressed in two
equivalent forms: one the "current operator" II~
by means of the current density, and the other,
the "charge operator" H, by means of the charge
density. The mathematical formulation of the
equivalence betmeen these tmo operators is Sie-
gert's theorem. .B,is commonly used to calcu-
late low-energy ~1 transition amplitudes, neglec-
ting retardation effects, relativistic corrections,
and two-body exchange contributions to the charge
density. With these approximations the charge
operator assumes the Siegert form (3}.

The results obtained with the tmo equivalent
forms of &I should be identical in principle in the
long wavelength approximation. It is clear that
this occurs only as one uses wave functions which
are eigenfunctions of the nuclear Hamiltonian H.
Furthermore, II must have eigenvalues coincident
with the experimental values of the energies to be
utilized. In general these conditions are never
satisfied because, commonly, use is made of nu-
clear potentials, which only approximately give
the experimental energies, and of wave functions
which are approximations of the true eigenfunc-
tions of II.

A simplification occurs in the case of the nuclear
two-body problem where the wave functions can be
exactly calculated once the N-N potential is given.
Then, in order to have equivalence between the
two approaches, it is necessary to use a nuclear
current consistent with the potential, so that the
continuity equation is satisfied.

In the low-energy processes, like the one under
examination, it is usually assumed that a nuclear
potential with the correct behavior at large r is
sufficient. This behavior is determined by the
exchange of one pion and the corresponding ex-
change potential is VgpE.

It has been demonstrated by several authors, see
for example Thompson and Heller, that, up to
terms M' in the nonrelativistic expansion in the
inverse of the nucleon mass, the continuity equa-
tion is satisfied with V~~K, if the exchange cur-
rents, commonly labeled pion current and pair
current, are added to the one-body current,
while the charge density keeps its one-body form.

As regards the &33-isobar excitation current,

mhich has the same range as the pionic currents,
. we remember that it is not connected to the nu-

clear potential by the continuity equation, being
divergenceless. However, this current need not
be considered in our case because the correspond-
ing ~1 operator vanishes as k in the limit 0-0.

At this point the outline of potential and electro-
magnetic operators appears consistent, but it is
not so because any realistic potential must be
modified from its correct OPE tail to reproduce
the properties of,the n-p system. In the RSC
potential, as mell as in many other potentials
widely used in the literature, the part at inter-
mediate and short range, which takes into account
the exchange of mesons heavier than the pion, is
determined in a phenomenological way. The cor-
responding terms are missing in the expression
of the exchange current commonly used in the low-
energy processes. The problem of the consisten-
cy between MEC and N-N potential, which is the
object of our work, arises just from the absence
of these terms.

A partial comparison between the results with

Hp 'and H~ for the total cross section of this reac-
tion has been made by I ee and Khanna, con-
sidering only the convective current and the S part
of the deuteron state.

A last consideration concerns the exchange ef-
fect in this reaction which occurs essentially with
a double &1 emission. At first sight it can appear
surprising that such an effect exists because Sie-
gert's theorem, which allows us to replace the
two body current density with the one-body charge
density, is sometimes interpreted as demonstrat-
ing that there are no exchange effects in the low-
energy ~1 transitions. Formally, this interpreta-
tion immediately breaks down because the charge
density also acquires two-body contributions ' be-
ginning with the second order terms in the non-
relativistic expansion in 1/M of the same OPE
processes leading to the exchange currents. But
just because of their dependence on the nuclear
mass, me can neglect these two-body terms 19e20

and assume the usual one-body form of the charge
density. Nevertheless, the matrix elements of the
Siegert operator include the effects of the total
(impulse and exchange) current because the meson
exchange between the nucleons determines not
only the electromagnetic operators but also the
nuclear Hamiltonian and, thus, the wave functions.
Comparing the cross section obtained with. H, and
with H~, me shall be able to distinguish the con-
tributions of the one-body transition operators
from the two-body ones, it being understood that
the influence of mesons on the wave functions
makes a clear distinction between one-body and
two-body effects ultimately impossible.
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Finally, we recall that an analogous comparison
has been made by Bassani et a/. for the process21

of two photon absorption from the 1s to the 2s state
of the atomic hydrogen. Their starting point was
the problem of the choice of the electric dipole
interaction E r or A 'p, which are related by a
gauge transformation of the electromagnetic poten-
tials, in connection with the proper choice of the
eigenstates of the unperturbed Hamiltonian.
These authors have shown that both forms of &&

give the same transition amplitude for the con-
sidered process, using the same unperturbed wave
functions. Hence their numerical problem is
equivalent to ours, with the double advantage that
the electron current is purely convective and the
eigenstates of the unperturbed Hamiltonian are
exactly known. In fact, the numerical results
are the same, but the sum over the intermediate
states converges to the final result in a very dif-
ferent way in the two cases. With the E ' r opera-
tor, an excellent approximation is obtained con-
sidering just a few intermediate states of the dis-
crete spectrum, the continuum giving negligible
effects. On the contrary, when p'A is used, the
continuum states give more than half the total
value

In Sec. II we have calculated o,„(EI-EI)for the
n-p capture independently of the form of the inter-
action Hamiltonian. In Sec. QI the calculation with

H, is outlined and in Sec. IV, that with B~ is more
extensively reported. In Sec. V we have reported
the numerical results obtained with H~ and we have
discussed them in comparison with that obtained
withH, . In Sec. VI we have stated our conclu-
sions.

II. E1-E1 CROSS SECTION

(f IH, (k, ) In) (n IH, (k~) I i)
fk ~

n n- N1

where the summation over n, means sum over the
discrete quantum numbers and integration over
the continuous ones of the intermediate state

~ n);
E, and E„are the energies of the state ~i) and ~n),
respectively, and the operator &12 changes photon
1 into photon 2. Since we are considering the E1-
&1 transitions in thermal n-p capture, the ener-
gies of the emitted photons are low (&uq+ &u2 =&,
if we neglect nuclear recoil, where 8 is the deu-
teron binding energy). Therefore, we can take
the long wavelength limit of the theory. When
k -0 Hg can be transf ormed by means of the con-
tinuity equation so that the current density is re-
placed by the charge density p(x). This is the
content of Seigert's theorem, while the E1 inter-
action Hamiltonian assumes the Siegert form

where & is the nuclear Hamiltonian and D the nu-
clear electric-dipole momentum

D = d'exp(x),

which, - in the ca,se of point nucleons of coordi-
nate r&, become

The current form H~ of the &1 interaction Hamil-
tonian in the limit k-0 follows simply from (1) as

As is well known the interaction Hamiltonian
for the emission of a photon with momentum k,
energy ~, and polarization ~, which is given in
Coulomb gauge by

where &„-,„ is the polarization vector and j(x) is
the nuclear electromagnetic current density, gives
rise to transition amplitudes for second order
processes which are not gauge invariant. In or-
der to preserve the gauge invariance, a gauge (or
contact) term must be added to the dispersive part
of the amplitude coming from H& in the second
order perturbation expansion. Therefore, the
amplitude for the transition from the initial state
~i) to the final state ~f) with emission of two pho-
tons has the form

where j is the Fourier transform of j(x) evaluated
at k=0. As said in the Introduction, the aim of
this work is to compare the numerical results
obtained with these two equivalent forms of H~,
when the nuclear potential contains V~~& as ex-
change potential. Therefor e, the nuclear current
density in (6) must include, besides the convec-
tive current, the exchange current which is the
sum of the two-body currents corresponding to the
processes of pion exchange and pair excitation.
In fact, the magnetization part of the one-body
current, as well as the two-body current corre-
sponding to the excitation of the &» resonance,
goes to zero as k in the limit k-0.

Explicitly we have for our two-body problem
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=r ef „~v v (r, x v, ),

As far as the gauge amplitude is concerned, its
complete expression generalized to the case in
which the exchange currents are considered, and
valid for any value of the photon momenta, has
been obtained by Friar. In the E1-&1 long wave-
length limit, it reduces to the form given by Sachs
and Austern

~;,=(f i[[if,~,,„,. D], ~„;„, D]li), (lo)

if the nuclear Hamiltonian contains Vgpa as ex-
change potential.

Because the exchange current has a complicated
dependence on nuclear variables, it is convenient
for the calculation of the cross section to express
the transition amplitude by means of the &1-&1
generalized polarizabilities ' (f lP/„li) defined by

(l l j
' mgjf1+2 1 2

&&
Pyg(1) + y (+ )g (2L )1/2 fl(1)

(vb)

where L =2L +1, r is the relative coordinate, M
and p are the nucleon and pion masses, f,//N is
the m-& coupling constant (f,//„= 0.08), the tensors
Qg„are defined by

n,"'„=[y '(r) (o, o. )"']"', (8)

F (r) being the spherical harmonics, r = r/r,
and

3 3't
y, (x) =e-"l l+ —+—r l.x

Gordan series for the rotation matrices and the
sum rules for the Racah coefficients. It follows
for the total cross section, the expression

B

~2, = „,'3„- j d~i(~i~2)'Z
1 &f I IP, I li) I'. (»)

where v is the n-p relative velocity in the initial
state.

Before concluding this general discussion which
is independent of the form chosen for H&, we have
to remember that in the thermal n-P capture the
initial state can be a spin singlet or triplet l =0
state, but only the triplet one can have &1-E1
transitions to the final deuteron state. There-
fore, following a standard notation for the deuter-
on wave function and denoting with z(r) the re-
duced radial wave function of the continuum 'S1
state, the initial and final states are

z(r) ~
&0+~0,

l~)= E—pi(r) u

l~oy2

where po is the singlet isospinor and g& $J are the
usual spin-angle functions.

For the sake of clarity, we must divide our
treatment into two parts corresponding to the
Siegert and "current" form of the E1 operator,
because several details of the calculation are dif-
ferent in the two cases. We begin with the Sie-
gert operator in order to obtain, shortly, in our
formalism the results of Blomqvist and Ericson
and Lee and Khanna. The numerical value of the
cross section so obtained will be the comparison
value in the next section where the cross section
is evaluated with the "current" operator.

where R& is the rotation which makes the z axis
coincident with the k, direction, and D '(R, ) is the
corres onding rotation matrix. The advantage is
that (f P/ li) are the matrix elements of irre-
ducible tensors of rank j. Therefore we can use
the standard procedure, based on the Wigner-
Eckart theorem, to factorize the dependence on
geometrical factors while all the dependence on
dynamics is included in the reduced matrix ele-
ments. Then we can easily perform the sum and
the average over the magneti'c quantum numbers
of the nuclear states, and the sum over the polari-
zation of the photons, by means of the Clebsch-

III. SIEGERT OPERATOR

When one works with the Siegert form of &~,
the dispersive part of the transition amplitude
can be transformed, as noted by several auth-
ors, ' ' ' in such a way that. the gauge part is
exactly canceled. It follows that the total ampli-
tude is given by

M/, =-2m((ui(u2) 1/2

,(f I &i2i2 D In)(nI &rgq D li)1 +P12J

and the corresponding reduced polarizabilities by

(f llP ll.) ( )1 /) //2v( )1/2 Q [l ~ ( )/P ]~ l l j (f IID Iln)(n 11 D II i)

y ~n
8) —E„-~1
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(f ll~, ll2& =Me2&~2~2}'"&1+I'»}

"I.5, .Ao&~i}+8-}'"5,
~2K2&~2)1 (17)

where 6;„.is the Kronecker symbol. The func-
tions K~(~), with /= 0, 2, are defined by

p'
K, (u))= it dP 2 I„,(P) I(P) (18)

with

I&(p) =
J

drr2j 2(pr)f(r) .
From the expression (17) of the reduced matrix

elements of P,.~ it is clear that the total cross
section is the incoherent sum of oq, and o2„which
correspond to the l =0 and l =2 parts of the deu-
teron state. When we take the asymptotic form
of the wave functions

M, (r) =re
242(r) =xpy2(ur),

e(r) =Am (r a,), -
(20)

where 0. = v'MB, N is the normalization constant,
p the asymptotic D to S ratio in the deuteron wave
function, and a, the triplet scattering length, we
obtain

1g1 3 1 3 1
op~ —ogy

— + 7l' 32 ln2 +
10 5 ea, 2 jag, j

(21)

p 187
o2 =—o2 54+ v —128 1n2

10 ' 16

where

120 1 75 1
7 42Cg 2 (&@2)

(22)

e4 II2 (If)2/2"=-. 9 I,M)
"'. (23)

a&„reproduces the result given by Blomqvist and

Here J&, J&, and J„are the total angular momen-
tum of the initial, final, and intermediate states.
Since for the two-body system the D operator is
a part the isospin factor, the relative coordinate,
the possible intermediate states are spin triplet
l =1 states. Assuming the effect of the interaction
in these I P~ & states to be negligible, their wave
functions become

I'I', & = &4' 2(pr)W22, (r)2)2, ,

p being the n-P relative momentum. In this ap-
proximation the radial matrix elements in (15) are
independent of the angular momentum ~„, so that
the sum over ~„can be easily performed with the
result

IV. "CURRENT" OPERATOR

The partial cancellation between the disper-
sive and the gauge part of the transition ampli-
tude leading to (14) does not occur when the "cur-
rent" form of 02 is used in (2). Therefore, also
the generalized polarizabilities are composed of
two terms

(f II',.I2& =&f II,.I2&+(f II",.I2&. (24)

The reduced matrix element of the first one, cor-
responding to the dispersive amplitude, derives
from (15) with the substitution

3

( )ll2 i (25)

and so we can avoid writing it explicitly. In order
to have the generalized polarizabilities corres-
ponding to the gauge amplitude (10) we must ex-
press the polarization vectors of the photons by
means of the rotation matrices and develop the
double commutator, recalling the working hypoth-
esis that the nuclear potential contains V~pg.
Then with the standard recoupling techniques, the
terms can be rearranged in irreducible tensors,
dividing the angular from the spin variables, with
the result

4v2~e2 ' /11 j}
(fllI", ll2&= (, "2iz &.2.-2.+r2,r2, ) (000)3(02(d2

&&(f lire "'5",,

g (2k}'&
I ... Iry2(~r}n'„~,'2 II2&.

(28)

Ericson and by Lee and Khanna, "while o2„ is
slightly different from the expression obtainable
from formula (30} in Ref. 10. Because of the
factor p = 7& 10 in gq„, the value of the total
cross section evaluated with the Siegert operator
is determined by v», and also by itsmodel inde-
pendent expression (21}. ln fact, as shown in Ref s.
12 and 10, both the regularization of the wave
functions at the origin and the n-p interaction in
the intermediate states give an effect of the order
of one part in 10 . For all these reasons the
cross section obtained with Hp can be considered
the correct one. As for its numerical value,
Blomqvist and Ericson, using the best values
for the low-energy n-p parameters entering in
(21), obtain the very accurate value quoted in the
Introduction.

In the next section, in order to make the com-
parison with the value of the cross section calcu-
lated with&~, we can assume cr» ——0.118 pb as
that corresponding to H, .
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3$
t

30

FIG. 1. E1-E1 transitions in n+p —d+2y. A full
line indicates the transitions due to j~ and j„while a
dashed line indicates those due to j only.

We have not reported the term relative to the
Thompson amplitude, which derives from the
kinetic energy (and corresponding to the gauge
term A'/2m of the atomic Hamiltonian), because
it vanishes owing to the orthogonality between the
wave functions of the initial and final states.

With respect to the calculation with H„another
complication arises concerning the dispersive
part in the amplitude, in addition to the need to
consider the gauge term separately. The summa-
tion over the intermediate states extends to the
I"

2 channel besides the P~ channels. In fact,
the operator 03,2,

- included in the exchange cur-(1)

rent, allows the transition with hl = 3 from the
initial S~ state to the E2 state, from which the 8
part of the deuteron can be reached through the
same operator and the & part also through Oq, o, 0~,2

and the gradient operator.
In conclusion, the possible Ei-Z1 transitions

we must take into account in this case are report-
ed in Fig. t. , where we have indicated with a dash-
ed line the transitions due to j,„and with a full
line those possible with both j,„and j, .

As far as the wave functions of the intermediate
states are concerned, we remember that Lee and
Khanna have evaluated the effect of the n-p inter-
action in the P~ states using only the convective
part of the nuclear current. The enhancement of
the cross section, which was unappreciable in the
calculation with H„becomes about 5%, which is
a small effect even if not completely negligible.
Because it seems reasonable to assume that the
interaction effect maintains this order of magni-
tude when the exchange current is added, we have
considered noninteracting intermediate states
only. With this hypothesis the reduced matrix
elements of the nuclear current for the possible
transitions become

(27a)

(27b)

2w '~' e('~ II) III'~p =)) (
—';) ~~'.() ),

em~'" e
&dll) II'~2) =«(—', 'l —' B:,(»- ', [A', (p)+2B'„,(p)~ .

(27c)

(27d)

The radial matrix element Bz(p) is defined as

B~(p)=fMf,'„ f d~rj, ((p~)(„(w~)/4),

while A&'(p) is given by

A, '(p) =I, '(p) —J,'(p)

with

J~ (P) = 2 Mf »jt dr rj, (Pr)e~"f(r),

(28)

(29)

l

where l& indicates the orbital angular momentum
of the state whose radial wave function is f(r).

For the gauge term we obtain

4—5, ,2 ~5 l
~P+ ~(B2 —25'2)

5

with the definitions

Iz'(p) =
~l

dr rj, (pr) —f(r) —[rj)(pr)]df(r)
I

8, = Jt dru, (r)re'"z(r),
(32)

+ (Sl~ —2j),(pr)f(r) (so)
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Since the radial wave functions of the interme-
diate states have been considered spin indepen-
dent, all the dependence on the angular momen-
tum J„ is contained in the (6-j) and (9-j) coeffi-
cients. Then by means of their sum rules we can
make the summation over J„ in the dispersive part
of the reduced generalized polarizabilities which
transforms into the sum of three terms relative
to the values of j=0, 1, 2:

from S-D interference, unlike the Siegert opera-
tor. Furthermore, we note that because of the
behavior of the operator j,„for ~-0, the use of
the wave functions in their asymptotic form leads
to divergent matrix elements. Therefore, we
must consider wave functions with the correct
behavior at the origin. With the aim of making
as many calculations as possible analytically,
we have assumed the deuteron wave functions to
have the form

((()i(()o)'I 12'
x(5q.o[Mo(~i) + 2N(u»)]

+ '5g $[M$(Q)f) + v 3N((dg)]

g(,o(w) =Ng c(e "(",

,()=Npgd, y, (P, ),
(37)

(s3)+ 5, ,~[Mo((og) + (1/v 5)N((u&)]}.

The quantity N(&uq) corresponding to the interme-
diate states +2 is given by

2

N((()i) =Ps'4nJl d'p
& B,(p)

p +M~g
I

x B'„(p)—,[~'„,(p)+2B'„,(p)]

which is the analytic form derived by Gourdin
et al. from the dispersive analysis of the n-P-d
vertex in the nonrelativistic limit. The coeffici-
ents must satisfy the following sum rules:

Q c; =Q d, =Q d,P,
' =Q

p
', —0. (36)

As for the continuum Sq state we have taken the
parametriz ation

(s4}

and the M(&oq), corresponding to the intermediate
state P~, are expressible as, omitting the de-
pendence from ~~,

»(»)=~ )»Q ge»)(4»)'"(»-a)

with the condition 1++;g,=0.

(39)

Mo —3Fo+QKo — (Gp+o Ho+o Kg},4

8

36 1 (a, + 2K,),5, v8

M2 — 60+Ho+5 K0
12

5

(Fo + 2Go +PHo+~Ko)
V8

by means of the functions
2

F(((o) =4m
) dp o M

&„',(p)&',(p),

2

G, (~) =4~ Jt dP, B'„,(P)&',(P),

2

&(((o)=4m "dp, M
&„',(p)B',(p),

2

K, ((u) =4'
Jl dp, B„,(p)B',(p),

(s6)

where the index l =0, 2 means transitions to the
S, D part of the deuteron. From expressions (33)
and (35) we can immediately observe that these
transitions contribute simultaneously to the dif-
ferent j components of the generalized polariza-
bilities. Therefore the cross section has terms

TABLE I. Parameters of the fit in expression (37) for
the RSC deuteron wave function.

(yg (fm-1) P, (fm-')

1 1.000
2 1115.640
3 —101.330
4 -42.167
5 -0.366
6 -941.277
7 —142.490
8 110.990

0.2316
4.6677
4.3700
4.1703
1.2344
4.6854
6.6890
6.9821

1.000
-11686.137

-399.674
-81.167

12 389.894
82.495

—1 382.949
1 076.538

0.2316
3.2179
4.7240
1.4294
3.4068
7.1600
4.2093
2.4697

V. NUMERICAL RESULTS

The N-N potential considered in this work is the
Reid soft-core potential. Therefore, we have
made a fit with the expression (37} to the deuteron
wave function tabulated by the author, and with the
form (39) to the scattering wave function obtained
by numerical integration of the system of Schro-
dinger equations for the S- D coupled channels at
zero energy. We remember that the triplet scat-
tering length given by the RSC potential is a,
=5.39 fm, the &-state probability is &D =6.47%
and the asymptotic D- to 8-wave ratio is p
=0.026223. In Tables I and II we report the value
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y; (fm ')

—3.388
2307.684

-2412.369
247.455

-140.382

2.125
8.753
8.822

11.050
11.720

of the other parameters of our fit to the Reid set
of wave functions.

Because we are interested in seeing how much
the results change with phenomenological wave
functions, we have also used the wave functions
existing in the literature and parametrized with
the form (37) and (39). While the parametrization
(37) of u, (r) as the sum of exponentials is nearly
of general use and so would allow many different
choices, that of u2(x) drastically reduces their
number. In fact, besides the various sets of
parameters of Gourdin et al. , among which we
have chosen No. 1, that provide a good fit to the
Garthenaus wave function, we have found only the
fit of McGee to the Hamada- Johnston wave func-
tion, modified so that it vanishes at x= 0, rather
than at the hard-core radius. Since we must
change the asymptotic behavior of the McGee fit
in order to have the correct deuteron binding en-
ergy, we are really dealing with a phenomenologi-
cal wave function in this case too. Moreover, the
Sq-continuum wave function, which we must add

to complete the set, is partially arbitrary because
the condition of orthogonality with the S~-bound
wave function is not sufficient to define it com-
pletely. A satisfactory solution to this problem
for the modified McGee wave function has been

TABLE II. Parameters of the fit in expression (39) for
the'RSC 3$& scattering state.

given by Lee and Khanna, with the triplet scat-
tering length fixed at the value a, = 5.41 fm, which
is very close to the best experimental value. ' We
refer to their Table II for the values of the other
parameters. From now on we will call this set
of deuteron and S~-continuum wave functions the
"McGee set." To complete the "Gourdin set" we
have used in (39) the set of parameters obtained
by Durand, which gives a z(r) orthogonal to the
uo(r) of Gourdin et al. with a, =5.406 fm. The
phenomenological wave functions chosen have a
soft-core behavior at the origin and predict deu-
teron properties similar to. those predicted by the
Reid potential. In fact, the D-state probability
corresponding to the Gourdin and McGee wave
function is I'D = 6.5% and 7/p, whereas the asymp-
totic &- to S-wave ratio is p =0.0265 and 0.0269,
respectively.

Our numerical results for the total cross sec-
tion are reported in Table III for these three sets
of wave functions, considering both the S part
of the deuteron state (normalized to 1 —PD) and the
complete S+'D state.

The values in the first column correspond to
the contributions of the convective current alone,
those in the other columns to the total (impulse +
exchange) current. Furthermore, in the second
column only the transitions through the 'P~ states
are considered, while in the last one those through
the +2 channel are also taken into account. In
both cases we have included the contribution of the
generalized gauge term which vanishes when the
exchange currents are not considered. Before
making any comment on the results in Table III,
we recall that a comparison between the total
cross section calculated with the Siegert operator
and the "current" operator has been made by
Lee and Khanna, but neglecting the exchange
currents and the deuteron D state, Their results

TABLE III. Total cross section in n+P d+2y reaction evaluated with the three sets of
wave functions (Gourdin, McGee, Heid). The label S indicates that only the S part of the
deuteron wave function has been considered, and the label 3$+ 3D indicates that the D part is
included. The values in the column headed P correspond to transitions through the inter-
mediate channels P p f 2 only, while those tn the column P+ E include the I'2 intermediate
state too.

Wave functions
Deuteron

state

Total cross sections in pb
Without exchange With exchange currents

currents 3P 3P+ 3I'

Gourdin set

McGee set

Reid set

3$

3$+ 3D

3S

~$+ 3D

S
3$+ 3D

0.0876
0.0878
0.0902
0.0906
0.0830
0.0831

0.266
0.206
0.216
0.153
0.155
0.118

0.339
0.273
0.269
0.195
0.183
0.146
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are then equivalent to ours in the first column
and, more precisely, to that labeled 8 for every
set of wave functions. In the common case of the
McGee set we reproduce their value. From the
other values in the first column we can see that
the cross section changes very little when the
deuteron & state also is taken into account, be-
cause there is not 8-D interference when only the
impulse current is considered and the correspond-
ing contributions are in the same ratio 1/p as in
the calculation with H, .

Unlike the Siegert operator, the "current" op-
erator produces a large model dependence of the
cross section. In Ref. 10 the considerable varia-
tion between the value obtained with hard-core
and soft-core wave functions was pointed out. Our
results in the first column emphasize the model
dependence of the cross section for different soft-
core wave functions, and those in the other col-
umns show that even more pronounced variations
arise when the exchange currents are included in
the calculation.

The second feature of the calculation with the
Siegert operator we have to compare is the depen-
dence of the result on the short range behavior of
the wave functions. We think that a meaningful
evaluation of this effect on the cross section cal-
culated with the "current" operator is not pos-
sible. The reason is that any determination of the
asymptotic cross section is in this case highly
questionable. In fact, with the choice of the ex-
perimental values of the parameters the asymp-
totic cross section (0.21 pb) is grossly overesti-
mated if at the same time the gauge term is ne-
glected, as in Ref. 10. If, instead, the spurious
contribution of the gauge term is considered, the
asymptotic cross section drops to 0.05 pb. Since
on the other hand it is also not sensible, in our
opinion, to take a, = & =4.31 fm in order to pre-
serve the orthogonality of the wave functions, we
must conclude that there is not any acceptable way
for calculating the asymptotic cross section.
Furthermore, we want to point out that all we have
said regards the convective current, because the
matrix elements of the exchange currents are
divergent with the asymptotic wave functions. We
think rather that the values of the cross section
obtained with the impulse current alone are inter-
esting because they allow us to make an evaluation
of the exchange effect in the process under exam-
ination which occurs with a double &1 emission.
In analogy with the interaction effect in the single
photon n-p capture, which has been explained with
the contributions of the pionic exchange currents
and the &33-resonance excitation current, ' we
call here exchange effect the percentage differ-
ence between the total cross section and the con-

tribution of the one-body current. This value fol-
lows obviously from the difference between the
cross section calculated with the Siegert operator
and the convective current alone. Therefore, the
exchange effect exists also in this &1-&1 process
and is about 30%, a value higher than the 10% of
the single photon n-P capture, which occurs with
an M1 emission.

If we observe the values reported in the last
two columns of Table III, we note that the effect
produced by the inclusion of the pionic exchange
currents is extremely model dependent. The
percentage variations among the three cases con-
sidered, which are less than 10% in the calcula-
tion with the impulse current, become 30% in the
comparison between o (Reid) and o (McGee), 40%
between o (McGee) and e (Gourdin), and even 80%
between u (Reid) and e (Gourdin). Evidently the
short range behavior of the exchange operators
produces considerable differences in the cross
section, even if the soft-core wave functions used
give very similar properties of the two-body sys-
tem.

Inside every set of wave functions we can observe
the importance of the D part of the deuteron. In
fact, because of the negative interference between
the transition amplitudes to the S and D part of
the deuteron, the cross section drops, on the
average, more than 20%.

From the second column in Table III, which
corresponds to transitions through the interme-
diate channels 'P~, we see that with the com-

ff

piete deuteron wave function the cross section be-
comes 0.206 pb with the Gourdin set, 0.153 pb
with the McGee set, and 0.118 pb with the Reid
set. That is, with the wave functions derived
from the Reid soft-core potential, we obtain again
the value of 0.118 pb which is the model indepen-
dent result of the calculation made with the Sie-
gert operator.

As we can see from the third column, the inclu-
sion of the intermediate state '+2 reduces the
agreement between the values of the cross section
calculated in the two different ways. In fact,
op ef($ changes from 0.118 to 0.146 p.b and propor-
tionally the cross section increases in the other
two cases.

These values are the final result of our calcula-
tions and we think they can allow us to reach a
quantitative conclusion on the consistency between
the nuclear potential and the pionic exchange cur-
rents. In fact, the only effect we have neglected
is the N-N interaction in the intermediate states
that, as pointed out above, we can consider to be
of the order of a few percent.

As regards the dependence of our results on the
wave functions, we can observe that the value
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most different from the comparison one is that of
the Gourdin set, which has purely phenomenologi-
cal wave functions, A closer value is obtained
with the McGee set where the S scattering wave
function is purely phenomenological, while the
deuteron wave function corresponds to the Hama-
da- Johnston potential. The best value corresponds
to the Reid set, where the S scattering wave func-
tion has also been calculated by integrating the
system of Schrodinger equations for the Reid soft-
core potential.

It seems reasonable to conclude that the agree-
ment is increasingly better as the wave functions
are less independent of the nuclear Hamiltonian
and the current density operators. In fact, we
have a complete equivalence between the calcula-
tions made with the Siegert operator and those
made with the two-body currents used, only if the
exchange part of the N-N potential is Vopm On

one hand this explains the better agreement ob-
tained with the Reid set, on the other hand, it
justifies the residual difference which ean be
ascribed to the medium and short range part of the
interaction, owing to the exchange of heavier
mesons. This part is taken into account in a
phenomenological way by the Reid potential, but
it is not contained in the exchange currents con-
sidered, which are those usually employed in low-
energy processes. We must conclude that these
short range effects are not negligible in the case
under examination, because we must ascribe to
them the residual difference of 20%.

VI. CONCLUSIONS

We have calculated the &1-~1 cross section for
the doubly radiative n-p capture reaction, using
the current operator, and taking into account the
meson exchange currents in the pionic range and

the generalized contact term, so that the transi-
tion amplitude is gauge invariant.

The principal aim of this work is to give a quan-
titative estimate of the consistency between ex-
change currents in the pionic range and N-N poten-
tial with the correct Vopm behavior at large dis-
tances. To this end we compare the results ob-
tained with &~ to that obtained with H, . We have
also briefly reported the calculation with H, in
the framework of our' formalism to get a clear
view of the principal differences between the two
approaches. In the ease of .H, the main feature
is surely the model independence of the result
o» ——0.118 pb, which is assumed to be the com-
parison value for that obtained with II~.

In the calculation with the current operator, be-
sides the wave functions deriving from the Reid
soft-core potential, we have also used two essen-

tially phenomenologieal sets of wave functions
(Gourdin, McGee) in order to evaluate the impor-
tance of the fact that the wave functions are eigen-
states of the nuclear Hamiltonian. The total cross
section has a value which is extremely dependent
on the kind of wave functions used. With the Reid
set we obtain o» ——0.146 pb which is a value near
the comparison one. In the other two cases the
total cross section comes out to be 0.273 pb for
the Gourdin set and 0.195 pb for the McGee set.
Of particular interest is the fact that the pheno-
menological wave functions, which predict deuter-
on properties very similar to the Reid ones, give
such a different value of the cross section. This
is due to the short range behavior of the exchange
operators which gives importance to the differ-
ences in the intermediate and short range of the
wave functions. In the Reid set we have just
eigenfunctions of the nuclear Hamiltonian, so that
the residual difference between the cross sections
calculated with II~ and with II, must be ascribed
to the fact that the exchange current considered
does not contain the heavier meson exchange con-
tributions and thus corresponds only to the asymp-
totic part of the Reid soft-core potential. In this
potential V~pm is in fact modified in a phenomeno-
logical way at intermediate and short range to take
into account the meson exchange effect which dif-
fers from the OPE effects. In conclusion, we have
an estimate of 24% for the lack of consistency at
short range between the RSC potential and the pion
exchange curr ents.

The use of the current operator places impor-
tance on the contributions coming from the D part
of the deuteron wave function and from the inter-
mediate channel +2, which is now open because
of. the tensorial structure of the transition ex-
change operator. Furthermore, it is interesting
to note that the contributions of the exchange cur-
rents are of the same order of magnitude as those
of the impulse current. Therefore, if we express
the interaction Hamiltonian by means of the cur-
rent operators, it is impossible to distinguish
a dominant contribution to the total cross section,
as a pnoxi one could be tempted to do, limiting
the calculation to the impulse current and to the
8 part of the deuteron wave function.

Finally, comparing the value of the total cross
section obtained with the impulse current (oq„
= 0.083 pb for the Reid set) to that obtained with
the Siegert operator, we can estimate the overall
effect of the exchange currents in the two-photons
n-p capture, which occurs mainly via two &1
transitions. This effect is about 30% and thus
greater than the 10% effect in the single photon
capture which occurs via an M1 transition.
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