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The transition amplitude for quasielastic transfer reactions between heavy ions, given by distorted-waves

theory, is evaluated in closed form. By means of suitable approximations the transfer partial-wave amplitude

is expressed in terms of the elastic S matrix elements in the initial and final channels and of known

functions defined by the Coulomb radial integrals of the transfer form factor. The partial-wave summation

is performed by using the Poisson sum formula in conjunction with Fourier-Bessel transform techniques for

evaluating integrals over localized functions in l space. The resulting expressions cover uniformly the whole

angular range including forward and backward directions. The general structure of the excitation functions

at 0' and 180' is discussed, including possible backward-angle enhancements of the transfer cross section.

A crucial step in the derivation is the introduction of a mean, elastic S-matrix, whose dependence on the

initial and final angular momenta allows the display in detail of the magnetic quantum number and Q-value

dependences of the smooth and oscillatory parts of the cross section. Applications and extensions of the

present formalism will be given in subsequent papers.

NUCLEAR REACTIONS Closed-form S-matrix theory of heavy-ion transfer
reactions based on D%BA. Uniform approximation for transfer angular distri-
butions, 0' and 180' excitation functions. Explicit form of magnetic quantum

number and Q-value dependences.

I. INTRODUCTION

In this paper we give an analytic description
of "quasi-elastic" (as distinct from "deeply-in-
elastic») transfer reactions between heavy ions,
based on distorted-waves theory. The purpose
is to display explicitly all significant features of
the transition amplitude, including the finer de-
tails of the dependence on magnetic quantum num-
bers, l matching, Q values, etc.

The earliest closed-form treatments of heavy-
ion transfer reactions above the Coulomb bar-
rier" assumed simple phenomenological forms
of the partial-wave amplitude and were restricted
to I =0 transfer. Though grossly oversimplified,
these descriptions emphasized the predominantly
diffractive nature of the transfer process and

were the first to predict the existence of regular
oscillations in the transfer cross section at small
angles, even though the data known at the time
showed smooth «bell-shaped» angular distribu-
tions only. Also, the systematic variations of
the main cross section characteristics with

energy, charge, and mass numbers were at least
qualitatively described. At first, however, the
diffraction oscillations were not found at the pre-
dicted energies, which was attributed' to the ne-
glect of recoil effects. Not before early in the

present decade was the oscillatory structure of

many transfer angular distributions firmly es-
tablished by experiment.

Closed-form descriptions based on the dis-
torted-wave Born approximation were first de-
veloped by Dar and his co-workers, ' "using for
the mean elastic S matrix the parametric form
of the strong absorption model. " This formula-
tion was extended" by employing a more general
technique for the partial-wave summation.

A different approach, with emphasis on the clas-
sical-refractive rather than the quantal-diffrac-
tive aspects of heavy-ion reactions, was followed
in the early semiclassical theory. ' This was
later amended to account more appropriately for
the effects of strong absorption by the use of com-
plex trajectories and saddle-point methods. ""
The most recent semiclassical treatment, "though
similar in concept to that of Ref. 15, takes a sig-
nificant step towards a closed-form representation
by performing analytically the main partial-wave
summation in the distorted-waves transition am-
plitude.

Much of the recent advance in a more detailed
understanding of heavy-ion transfer reactions is
due to the experimental and theoretical work of
Kahana and his co-workers. "" These authors
have interpreted several significant features of
the distorted-waves amplitude that were not ac-
counted for in the earlier closed-form descrip-
tions, by means of an extended version of the
phenomenological transfer S matrix' in which the
localization with respect to the difference be-
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tween the initial and final orbital angular mo-
menta is incorporated explicitly. A clear and
useful presentation of these developments is given
in the review by Kahana and Baltz."

In the present paper we employ analytic tech-
niques developed previously for elastic"" and
inelastic'4 heavy-ion scattering to evaluate the

partial-wave representation of the transfer transi-
tion amplitude. Particular attention is given to a
more accurate treatment of the small- and large-
angle regions, and to show how the specific pro-
perties pointed out by Kahana et al. can be de-
rived from the transfer S matrix of distorted-
waves theory.

H. SMALI ANGLE REPRESENTATION

A. Angular distribution

We assume that the reaction

A, +B, =(AI+c)+B, A&+(B, +c) =A&+B&, (2.1)

in which a nucleon or cluster c is transferred between the (heavy) nuclei A,. and B,, can be described in
distorted-wave Born approximation (DWBA). In view of excellent accounts of basic distorted-waves
theory"" we may start directly from the partial-wave representation of the DWBA transfer amplitude.
With all due reservations, especially for heavy ions, we adopt the no-recoil approximation for simplicity,
leaving recoil corrections for consideration at a later stage. Then the differential cross section for an-
gular momentum transfer L can be written

i ii= L- (2.2)

where p.„p.& are the reduced masses, and k,-, k& are the relative wave numbers in the initial and final
channels. Disregarding spin effects, we have lumped all spin and spectroscopic factors together in. the
constant A. Then the reduced transition amplitude for multipolarity (L,M) is given by

p»(8) = pi'i 'f L(l& L00~10)(l&L; -MM~l 0)(21&+1)"'RL) .. (kz, k, )exp(i[a, (k&)+o„(ki)]]Y, „(e,0).
(2.3)

Here we have chosen a coordinate frame with
z axis in the direction of k,. and y axis in the di-
rection of k, && k&. The radial integrals are de-
fined as

&», (ki, k, ) =
k

drf((~)(k&, gr)

where f,"'i ' are the radial parts of the distorted-
wave functions, and

f

plifying features of heavy-ion interactions above
the Coulomb barrier. These are (i) large gra-
zing angular momenta li'0', l&(o); (ii) strong Coulomb
interaction indicated by high values of the Som-
merfeld parameters n„n&, and (iii) strong ab-
sorption of low-l partial waves.

Under these conditions we may replace the
spherical harmonics in (2.3) by their asymptotic
forms for large l&. In this section we use the
"small-angle asymptotics

(2.5)

is the transfer form factor, ii =(2p. res)' '/ti
being the imaginary wave number associated with
the binding energy &~ of the transferred cluster
in the final nucleus. The scale factor g arises
from the no-recoil approximation and can vary
between f =B, /B& and g =(B,/B&)~[1+(c/p, ,) ] de-
pending on the range of the interaction" (where
the symbols of the particles stand for their mas-
ses), and c,(k) denote the Rutherford phase shifts.

Our purpose is to evaluate the summations over
the orbital angular momenta l„l& in explicit an-
alytic form by utilizing the characteristic sim-

(2 8)

(I'LL; -MM
i
l;0) —= d~z( 'n)—'

in terms of reduced rotation matrix elements,
where

K=l] -l~.
With the definitions

(2.7)

(2.8)

where'= i&+ 2, whichis valid for 0& 8c v —~M
~
/Xz

and exact in the forward direction 8=0. For
L «l,-, l& we may then also use the asymptotic
form of the Clebsch-Gordan coefficients
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R ( & x(kfy 4 ) R/x(Xf)
(2.9) bx)/ =i"dor( ,n—)d„r(,&(—), (2.10)

we replace the summation over l/ in (2.3) by the
poisson s ries of integrals over Xf with the result

g &e& = „,~ ) g 0 g e '"' f dere/& &rrr& exp&r'&rr rrr&\
& ee "r&lre&&&&e' r'& &ere& ~

m=- 0

(2.11)

Now we take the crucial step by making a suit-
able approximation for the functions Rzr(X/).
First, we assume that the nuclear part of the
distorting interaction in the initial and final chan-
nels is contained in these functions through the
complex nuclear phases only, so that we can write

R, ()&,) —[S,&»(k, ) ]&/'e', , (k.„k,)[S,& ". &(k,.) ]'",
(2.12)

where S,'N'(k) is the nuclear part of the total elas-
tic S matrix

S,(k) =S '"'(k)e'"&' ' = &7(k) exp (i2[6,' '(k) +o((k) ]j

26(r)()&) =6 «&(A. ) +6 «&()& )

=6 &'&()&+ —,'K)+6 «&(X ——,'K) (2.17)

n,() )-=~() „), l (2.18)

Here the critical angular momentum of the mean
reflection function is given by

AK=A +&K,

4K = 4 ln —exp ' +exp — ', 219

(k)e & 25 &(4) (2.13) where

A = 2(A, +A/), K, =A( —A/, (2.20)

6t~) ( (k/, k,.) = „, dhP»(kp)F~")(x)F', (k;r), .

(2.14)

and & is the geometrical mean of the l-window
parameters of the initial- and final-channel S
matrices,

where kf' =gkf, are the transfer radial integrals
with Coulomb radial wave functions F, ( rk) only.
Approximations similar to (2.12), which is known
as the "Sopkovich prescription, »' are usually
made in semiclassical approaches"'"'"; the same
device was used in our description of inelastic
heavy-ion scattering" to approximate the Coulomb
excitation part of the inelastic radial integrals.

Second, we repla. ce the square root of the pro-
duct of the nuclear S matrices by an average S
matrix which may be regarded as the "geometrical
mean" of S&',.» and S&'/». Assuming that Sr,. /(k, . /)
may be interpolated by smooth functions S(X,. /) of

the continuous variables X,. f =l«+ —,', character-
ized by critical angular momentum parameters
A f =l -"f +—,

' and l -window parameter s &lee)&r«on which
Cf f,f t

they depend through the combinations p. , /
= (X,. /

-A,. /)/A, . /, we show in Appendix A that

[S (N)(k ) S (N&(k ) ]&/2 [S (f)()& ) S (()()& ) ](/2

S &//)P ) (2.15)

where

A,. +Ef
(2.21)

(R~(, (k/, k, ) =, I(~"'» (()(, $), (2.22)

where the I~"K are functions of the mean asymp-
totic Rutherford deflection function cy and of the
adiabaticity parameter $,

o& =Os(X) =2 arctan(n/X), g =n/ —n,

where

(2.23)

It will be seen later on that the E and E0 depen-
dences of the mean S matrix described by (2.18)—
(2.20) determine the magnetic substate population,
the l matching, and most of the Q-window effects
in the transfer cross section.

Third, although the Coulomb radial integrals
(2.14) can be expressed in terms of generalized
hypergeometric functions of two variables known
as Appell functions, "for practical purposes we
use an approximation obtained by replacing the
Coulomb radial wave functions 6', (kx) by their
WKB forms. Then we can write

(K)
S(E)()&) )i ( y )e(2&&)&/ (X)

)& L()& +)& )

with

(2.16)
n = —,'(n,. +n~),

P ZgiZgie P f ZAf Zgfe
i @2 f

(2.24)

(2.25)
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The main properties of the functions I~ ~ and some
further approximations are given in Appendix B.

Now we can write our approximation for the
functions R«(X&) as

R«( AI )=, I~i"r'(a, $) rir( li~+ 2K)a,.u,'& ~-&

x exp[i25Ni~&( A.
&

+ —,'K) ],
and the amplitude (2.11) becomes

(2.26)

k&k''K sin& ~ „o
x exp(i[25+( X& +sK) +2ntsX&]] Js( X&8), (2.27)

where we have defined the mean total phase shift

25„(X)=5„"'(X,) +o "'( X, ) +5/'(Xq) +cr '~'(X~)

—= 25 r'(lip+ —'K)+2o r'(lip+ —'K). (2.28)

To evaluate the integrals over Az in (2.27), we
first note that the nonoscillatory parts of the in-
tegrands are localized in I, space. This is because
the reflection functions q~ for heavy ions have a
strong-absorption profile with very small values
for low-L partial waves, and because the functions
II,"'& fall off exponentially at large l with a rate
determined by the binding parameter ~. Thus the
"transfer partial-wave amplitude functions"

I

the binding parameter a/k and the mean elastic
window parameter ~, in other words, by the dif-
ference between the range R~ of the bound state
wave function of the transferred cluster and the
mean surface diffuseness a semiclassically as-
sociated with 4.

From Appendix B it is seen that we can write

I~"'~(a, $) = I~"~(u,-$)e ~

I (K )
( () pe/2 y-xy- (2.30)

y
—(p2 + $

I 2) 1/2/n (2.31)

where I~" «(n, $) is a slowly varying function of X,
and where

CLK(X) = IL-K(Q& $) 7K(X) y (2.29) with

whose general shape is sketched in Fig. 1, have
maxima at X=A~. We note that, in contrast to
the simple parametric forms assumed in Refs.
1, 2, 18, and 20, the functions c«(X) derived
from distorted-waves theory are essentially asym-
metric about their maximum positions, the asym-
metry being determined by the difference between

p= n, k=-, (k;+k—~), &'= ' n. (2.32)

v„(Z~) =ilr(Aq+ ,'K)e &~~, -
which yields

(2.33)

In terms of Az, the maximum of cr(X) = cs(&&+ ,'K)—
is at Xz =A& =A& ——,'K. Its value may be calculated
approximately by determining the maximum of

c22(X)
x io'

i I

A, a 26.3 Ag —A~ —~K+ 5~, A~-A~+5~, (2.34)

i.0—

0.5— 0.5

(2.35)

with the definition D(p) =dg(p)/dp 'As an e.x-
ample, for the convenient parametric form
q(g) =(1+e ") 'we obtain

where A» is given by (2.19) and 5r is obtained
by solving the equation

D(5,/~),
n(5,/I )

l0 20 30 40 — 50

FIG. 1. Typical shape of the transfer partial-wave
amplitude function err(X), defined by Eq. (2.29), as a
function of the mean orbital angular momentum variable
X= 2(X&+A&), for L =K=2 (solid curve). The example
shown pertains to the reaction Ca( 0, C) Ti at E&~
= 56 MeV. Also shown are the functions Iz+z(n, $) and

qE(X) of which cl,&(X) is the product: I2"2(e, $) with

$ =-2.79, v=1.172 and y=0.2667 gong-dashed curve),
.aud q , (X) with A2 ——26..0 and 6= 2 (short-dashed curve;
note different scale on right-hand side).

5~=6 ln —1 (2.36)
1

under the condition yA &1. Notice that, quite
generally, the shift 5~ is independent of K.

Now we write

Cl;E(X) CI,K(kf)Vlf(kf)

=I'"'„(u, $)e ~ I'ri (A + ,'K)e ~~~, (2.-37)

and expand the phase functions in (2.27) linearly
about ~q =A~~,
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2~»()(y+2K)= 2~»(A»+2K)+(Ay -AK)8»

26—»(AK) + (&g -AK)8», (2.38) zr'6)= f z) ~,p)e'" (2.43)

where HK'(2) is the Fourier transform of r»(A),

(2.39)gr o(AT) 25»(A)

@=Ay

are the critical angles associated with the char-
acteristic angular momenta AK. After taking the
slowly varying functions c«()(y) from under the
integrals at the points Xf =AK, we obtain from
(2.27)

With (2.33) we obtain
OO T

H' '(2)= J dAyt (A+ 'K)e -y~e"~ AK'

T . — -T
e-yAK dA ~ (A)

i(). AK-) {2+i y)

e-yA»ei(AK-A»)(z+iy) t dA (A)ei() AK)-(z+iy)
'&El

. 12m' 8

yK sin

A T ~2~K(AK)

K where

=ie e ey»/ 2-yAK -i6rz +(A(K +2'l))
z+iy (2.44)

x Q exp[i2mw(A» —2)]7'»v(8»+2mw)

(2.40)
p(A ) dA

K( ) i() -AK)z
dA,

(2.45)

(2.4 1)
oo

(x-AT}T „(x)= dAAT, (A)e'"-AK)*J„(A8) .
0

These integrals are of the type of combined
Fourier and Bessel transforms that have been
evaluated in Appendix A of Ref. 28 with the re-
sult

2~»(A K) —~ rg»= 25»(AK)

and from (2.30) and (2.37) that

(Ar)ey»I2e-yAK f(z) (gT t)e')6T

(2.46)

(2.47)

is the Fourier transform of the derivative of the
mean reflection function.

Noting from (2.38) that

T,„(x)=-,'A,' fH(') (x —8) [J„(A'8)—iJ„„(A;8)]
+H(KT) (x+8) [J„(A»rg) +i J„„(AKT8)]},

(2.42)

where

8K »=2arctan(n/AKT);

we can write the final result as

(2.48)

(2.49)

I

X/2
0

pyii(8) =i '-;— E &»ii KIT.-K.(8',» t)e e " (&K" (8)[J (A 8) —i J(A 8)]'
+Sr(2") (-8)[J„(A,'8) + iJ„„(A,'8)]},

X'K "'(&8)= e'"" Z exp(i2mw [A» --,' (K+ 1)]}

I'(A(8»+2mw+iy+ 8))
X ~ ~

OK+ 2m@+ iyW 0

(2.50)

Close to the forward direction we have approxi-
mately

with

)( ey6rei26»(AK g~(KA) (0)K

B. Forward-angle excitation function

In the forward direction 0 =0 only the M =0
substate contributes, and we find

p, r()2)0pr, 6(0)5&6)

(2.53)
m"

pr, 6(0) =
~ ~,

— Q i "[d6»(2w)j'A»I'T", 'K(8-)2 „& $)
u,-uf'~

x e'"~AK)X(2") (0)J (A'8)

8= 0 (2.51)

so that the near-forward cross section behaves
like

X(»2") (0) = Q expfi2mw [A» -—,'(K+ 1)jj

&(b. (8»+2mw +iy))
X THK+ 2mm+iy

(2.54)

(y(r) (g) ~ [J (A Tg)]2~ g2liil g () (2.52) To discuss the energy dependence we consider
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L =0 transfer only. Then the forward-angle cross
section becomes

x eo) &~~(~A) (())~& (2.55)

From the expression for Ipp given ln Appendix B
it is seen that for +p ++Pl,

X/2 Tr" (e", i)= (a ((r exp[—((rr( r at e(a'/ap)]e
0

X/2

2KA0
(2.56)

so that

&z,
A, =A+ A ln cosh~ (2.58)

where for simplicity we have assumed 4; = b& = A.

O(~) (p)-g ~i ~/ A&e (O(e/[O/)a) ~3-C(eA) (p) ~O

2N 'g 'z'k' 7

(2.57)

with

Since well above the Coulomb barrier Ao/k de-
pends only weakly on energy, the main energy
dependence is described by ~3C(o

")(0)/kl'.
Normally only the m = 0 term gives a significant

contribution to the Poisson sum (2.54) so that

~(sA) (0)
&(&(8o +~y))

8.': y
(2.59)

As a typical example, for the parametric form
'g(([i) = (1+e ") ' we have &(z) =wc/sinh()[z), so
that

(~(SA) 0 ~[2 ()[&/~)'
[sinh(vA8o )]'+ [sin(wry)]'

(2.60)
Since &y= K(b,/0)= const, the main energy depen-
dence comes from b, 8or= n(/). /Aor) and is thus
chiefly determined by the energy variation of the
Sommerfeld parameter n, a feature similar to
what has been found for elastic and inelastic
heavy-ion scattering. "" In general, the struc-
ture of Eqs. (2.53) and (2.54) shows that as long
as only a single (m =0) Poisson term is signifi-
cant, the forward-angle transfer excitation func-
tion is smooth or at least not strongly oscilla-
tory.

HI. LARGE-ANGLE REPRESENTATION

A. Angular distribution

(3.1)

To evaluate the transfer amplitude for large angles 8 we use instead of (2.6) the large-angle asymptotic
form of the spherical harmonics,

y/2 1/2

2m ) Ising&

where 6 = m - 8, which is valid for 0 & 8 &m —~M~ /)(& and exact in the backward direction 8 = w. Then the
Poisson representati on becomes

2
L X/2 OO

(8) ( )()i(/ l( Q t rQ , -i(m+1/2)((
v'/ ~sine/[

x dA&A&RLz Af exP i 0~ A& +o' A, +E e' '""~J A. 3
0

Kith the same approximations as in the previous section we obtain

l/2 (
i /K (sl j

(3.2)

x (K„"(~)[J„(AK9)—z J „(A 8)]+XK (-8)[J„(AH)+zJ' „(A 8)]), (3.3)

where

3C' "'(+8)=e'"r' Q ex fi(2m l)((+[A --'(K+1)]j
Og + 2m + 1 7T + 2p w 8

For later use we note the relations, obtained by comparing (3.4) with (2.50),

(3.4)

3(r(LA) ( 8) i: i (((AK )/o)~(sA) ( 8)-
Close to the backward direction we have approximately

(3.5)
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P (8) f& L(—)(( Qf)L A TZ(K (8T t)e)() Tei 26 K(AK) K(LA) (0)g [A T(~ 8)] 8IN y PK KN IC I E B,E (3.6)

so that the near-backward cross section behaves
like

o'L'R(8) "f~K[A»(& —8)]P

'(+&) = -(e'"T P exp(i(2m+ 1}(([A»—(, (K-+ l)]$

)( a[8»+ (2m+ 1)((+ay + 8],
(v —8)'I"I, 8=m.

B. Backward-angle excitation function

(3.'f)

where

(3.12)

In the backward direction 8= w again only the
M =0 substate contributes, and (3.6} reduces to (3.13)

PL»(») PLo(&-)PRO

a/2
PLO(») =, ~" ' '[&o»(2~)]'A»fL'»( R, ») &)

$
f'K E

and where we have assumed for simplicity that
.the deviation q»(X) is centered at Y= A». Then the
condition for backward-angle enhancement is

X e) 5Te(25»(((»)K(LA)(Q) (3.8)
K' "'(0) ' 8 —((+iyIC

. K(LA)(0) F(A(8T )) (» I )

Comparison with (2.53) and using relation (3.5)
shows that the relative magnitude of PL, (7() and

P«(0) is determined by the ratio K'K")(-(()/K(~")(0).
If, as is normally the case, the m = 0 term domi-
nates in the Poisson sum, this becomes

K'»'")(-7() (8»T)'+ y' "' F(&(8»+ ((+ iy))
K'»")(0) (8»+)()'+y' &(&(8»+fy))

(3.9)

For example, with E(z) = wz/sinh(»z) we have for
the L = 0 backward-to-forward cross section ratio

(T'~(w) K"")(-») '
( (T)(Q) K(SA)(0)

(3.14)

if the m = -1 contributions to the Poisson sums in
(3.12) and (3.4) are dominant. Thus, except for
the effects of the transfer parameters y and ~~,
the enhancement conditions are much the same as
for elastic and inelastic scattering described in
Ref. 28.

Interference between the m = -1 and m = 0 terms
in (3.12) gives rise to oscillations in the backward-
angle excitation function. Assuming I = 0 transfer
for simplicity, we obtain

2ff

I 1+coth[»&(80T+ iy)] I' ' (3.10) )( ) 1
&(8 +(I'+fy)
(-(8;—»+ ay)

(3.16)

'This shows that the backward-angle transfer ex-
citation function has an additional energy depen-
dence: The ratio (3.10) decreases rapidly with
increasing energy since

yacc

E'~'.

C. Enhancement effects

In our discussion so far we have assumed that
the elastic S matrices in the initial and final
channels have "normal strong-absorption profile, "
in the terminology of Ref. 28. As described there
for elastic and inelastic scattering, backward-
angle enhancement can occur if T}»()() contains
rapidly varying deviations from the normal I pro-
file. If we write

(3.11)

then the transfer amplitude has an additional con-
tribution P(8) of a form similar to (3.3), but with
the functions K»(L")(+8) replaced by

which shows that, aside from more slowly varying
modulations due to y and 6~, the dominant os-
cillations are of period () A, = 1, as in the case of
elastic and inelastic scattering. [Odd-even stag-
gering effects in q(X) would cause an additional
modulation of period ()A, = 2; see Ref. 28.]

IV. INTERMEDIATE ANGLES

A Angular distribution

In this section we consider the intermediate-
angle region for which we may use the asymptotic
expressions

J' (x)+iZ „(x)—= —
~

exp[+i(x--,'w ——,~(()]. (4.1)
77X j

Then (2.49) becomes
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P (g) IIL [3C(SA)(g)e-j(AK()-(1/4)r)1 T
LM (s&ng)1/2 KM E

( )«36(sA)( 8)e j(AK()-() /4)r]]

~«),g, ~, , („„)j 2,« MF{/2(8,«+2mff+iy+8))
8„„+2m'+iy+ 8

(4.12)

where

(4.2}

N -L+].

(2 AT}1/2I«& (gT ()e»re (26«(AK)

i f
(4.3)

Thus the transfer cross section for multipolarity
(L, M) can be written as

' (8)=""(8)~l'lt (8)I

+ ( )"2 Im[tL„(8)e(2"Ms]], (4.13)

where
Similarly, from (3.3) we obtain

I T
p (g) IiL [g(LA)( g)~ jr(ANT-1/2)e-([A«-(1/4)r)

LM (sing)1/2[ KM E

+ ( )«36(LA&(8)e jr(AK -1/2&-T
K

X (r jfA -(1/4)r)] (4.4)

tIL„(8)= (-}"Qi 'd„«(2ff)PLM (8). (4.5)

which is the same as (4.2) by virtue of the rela-
tions (3.5}. Thus the expressions (2.49) and (3.3)
cover the full angular range, with the common
simplified formula (4.2) for the intermediate re-
gion.

Now it is convenient to change coordinate axes by
transformation to a f rame with the z axis in the
direction of k, x kf and the x axis in the direction
of k, . This rotation is performed by

I X«"(8) I'
sin8

(4.14)

f +M ILM{ R.«f ~) (jj(M ((M))f+-M
LM ~ I AT I(r) (gT g) 3C(+&(8) 1

and
(4.15}

M 2{ M+ AM} +2( M+

In (4.15) we have used

2[5„(A„)—5 (A „)]=(a„—a )8,

(4.16)

(4.1V)

where 8=8(A).
Equations (4.13)-(4.15) show that the transfer

angular distribution has a smooth (bell-shaped)
part determined by

&LM( )=&2 @2/' ~2'
~
22[dOM(lv}]'&'M[I'L'M(8R, ~ &)]'

d« « (lv}d« «(lv} =
. 5«»,

Af'
(4.6)

Then the summations over M' and K can be carried
out by using the symmetry and orthogonality re-
lations of the rotation matrices

(4.18)

and an oscillatory part described by the last term
in the curly brackets. Under normal conditions
only the m =0 term in the Poisson sum (4.12) is
significant, so that

z(-}"'d«d(lv}d« K( 'v) = (-)'5«, K A-
N'

(4.7) ~(.)(g F(&(8~ —8+ iy)) (4.19)

P(4) (g) y (8)gy(4)~(4)(g)eri(hr«(&41/4)r)

with

dL (1 )f)e j(1/2&M(r-(&)

(g) OM 2

(4)f sin8)'/'

(4.9)

The resulting amplitude can be written

p«(8) = p(L)N(8)+ (-pI3(L&M(8), L+M even (4.8)

(on the understanding that M from now on refers
to the normal of the scattering plane as quantiza-
tion axis), where

and for intermediate angles IXM(-&(8)
I

is much
smaller than IKM('&(8}I. The maximum of the angu-
lar distribution is at 8= 8~„, where the value of the
cross section is

L j 2 ~-N{ )=+2 @~'~'~ [(I,' {' )]2g g k, 'kfK sln8 „

(4.20)

y' (1 0) ej(1/2)M(r-(&)
LN 2+y

(2L+1)' ' (sing)' ' ' (4.10)

~(4) il L( ) (/iT )1/2-Pr) (g T
)A+6 reT(264«(«r«&(8~& /

LN ~ ~1 yJ)/I L„.yhf R,+My- '
k ~kf K''

(4.11)

If for example F(z) = f/«/sinh(&fr), we get

IF(i/&y) I' if'
y' sin()fhy'))

'

With the same parametric form we have

(4.21)
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X(-&(8) sinh[v~(g'„- 8+ zy)]
K~('&(8) sinh[»n(g„+ 8+iy)]

e-f/&(8 ~-8~)e-2'&&T T
(4.22)

transfer partial-wave amplitudes (2.29).

c~x(&()= qr(X)I~"'z((&(, $) = qr(&1)I~&"&x(n, t')e-"

(4.27)

with

(»r &(/21(2& /gr &:) r r
(g) I I

M ~ e (( (2&&- (/&e -((&2 (4 24-)
I'"& (8' 0)

This shows that the diffraction oscillations have
the angular period»/TQ, which is M dependent
because of
1 R, l K,l—2(&„+&„)=2&in ~ exp —' I+exp-'] ) 4s)

+2expl 'K,
I

cosh—
I 2A(6/

K,'&

——,'& lnl r2 cosh —'
I+ cosh—

+I + . & (425)
with the latter expression for &,. = &s. The M de-
pendence of the relative phase in (4.23) is given by

(2„-.M) (
SC. -~)

&~ —& ~=&1
I/Ko+M ( Ko+M'&I

cosh
-&ln (

hl
M +Ko'I
( 2&

=-'(IM -K.
I

—IM.K.
I

) ~ (4.26)

'This shows that the oscillations in the transfer
cross section are most pronounced at smaller
angles and become strongly damped with increas-
ing 6). It is also seen that at a given angle the
damping is controlled by the window parameter &.
Thus if & is relatively small, as in the case of
"surface transparency, " the oscillations are en-
hanced. This is the effect first discovered by the
Brookhaven group. "

Since the radial integrals for the asymptotic
form of the transfer form factor (2.5) are real
functions, we may write the cross section (4.13)
more explicitly as

":.'(8) = ~"..'(8)il [f..(g)]'

+ (-)"2f, (8) sin[2A„g+ (&~ —n~)gl],

(4.23)

cix(mm)=crx(X2)=qr(X&(. )Ir, -~(g&2 x $)

e 2orI("& (g g)e-2«
(4.28)

Using expression (2.19) for Ax yields

&I(~~)..~ &'-.",)j(.& (e.

{-:;-(:,! - '-':.')'.I"
gr&&) r. &-2«+or&I (((& (gr g) e-1&-&ol/2*I K R2Kt t

where

(4.29)

&'+ &s (4.30)

with index i or f depending on whether K-K, is
positive or negative.

It is instructive to. compare the X and K depen-
dence of c~z(A. ) with the phenomenological ansatz
used by Kahana et al. ,

' who assume the Gaussian
form

IK -K„
& g,

=I p —2

(4.31)

where the second expression is obtained for I',.
=1"&=j. and where

which describe the localization in X space. As
we have remarked earlier, these functions are
essentially asymmetric about their maxima at
A. =A~: the falloff rate at large X values is de-
termined by Z and thus by the binding parameter
v, while the rate of decrease at low X values is
determined by the absorption and measured by
g-1

The maximum of c~x(X) is given (approximately)
by

This can modify the transfer analog of the Blair
phase rule which would otherwise hold because of
the factor (-)" in (4.23).

2a/2g Z

2+ 2P2)1/2 (4.32)

B. Magnetic substates and Q-value dependence

The dependence on the kinematic conditions of
the transfer reaction can best be seen from the

Although in our c~x(X) the asymptotic dependence
on A. and K is exponential rather than Gaussian,
there is a correspondence between the parameter
g and our g*= 2/y, while the parameter I' corres-
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u;uy ~F(2~y)~'
y2 (4.34)

The M- and Q-value dependence of the functions
I ~„' is described by the expressions given in Ap-
pendix B. As discussed there, it is contained
mainly in a factor exp(-b N2/2pe „), where

() N= g'e N+ )+M & ~ —1

&-~+

= [(A' /n)'+1]' ' (4.35)

However, the most significant factor in (4.33) is
e-2r& J((I e-Iree-2r&- g

e 2@A

(~ I
) ( M-I)'I*"'

f
2

IM -M, l l= 4"~e ' "~ exp
~

—2
I(

2 g ) (4.36)

where Mp JfCp Af A, , and g* is defined by
(4.30) with index i or f depending on whether
M~ Mp or M &Mp For b, = 6f the M dependence
has the simple form exp( —y ~M —M,

~

}, showing
that the cross section is largest for M =M, .

Finally we consider the M dependence of the
amplitude (4.24) of the diffraction oscillations,
which can be written as

ponds to )(2 /y for large )( and to )(2 n. for small
)(, or rather to the harmonic mean I'*= )(2 6/
(1+y6}.

Since the DWBA-based expression (4.27) has
qualitatively similar features as the phenomen-
ological form (4.31), we have in the present treat-
ment removed the shortcomings of our earlier

/ transfer formalism" which were rightly criticized
in Refs. 20 and 21 for ignoring the significant
E dependence of the partial-wave amplitude. The
salient point where this is brought out here is
the determination of the mean S matrix (2.16) by
the method described in Appendix A. Most of the
properties of transfer reactions discussed in Ref.
21 by means of (4.31) are described by the present
formulation.

To display the M dependence of the transfer
cross section (in the coordinate frame with quan-
tization axis perpendicular to the reaction plane),
we consider the maximum value (4.20) written as

A
o T (max} g[dL ( v)]2 N[f-(td(8T (}]2822()T

"N

Ag[dL (& v)]2 N [I (rc)(8T t')]2 e-2)')(
pN SjneT LN R2 N~

-N

(4.33)

where

A'N ILN'(8N, -N 5}

X e ) AN 2.-N)e 26(() -() g 22'()( T T T T
(4.37)

g~N(8)= L„)" TN
"'

)
exp[-[y+vbe'(A)](SN —S N))

)& e 2th, e
7 (4.39)

where b N
—n N is given by (4.26). Aside from

this difference, because of 8'(A) & 0 the sign of the
exponential depends on the relative magnitude of
y and 7(~

~

0'(A)
~

. An estimate of the latter quan-
tity is given by the Rutherford value m(h/A) sin8N
which under strong-absorption conditions is small
compared to y. Thus the amplitudes are largest
for good l matching (small K,) in which case AN
—4 „is nearly independent of M, and the main
M dependence of t»(8) is given by the ratio of
the functions I~"„'. Since from Appendix B we know
that these are largest for M = -L and smallest
for M=L, the amplitude is maximal for M=L.
Further the magnitude of t~(8) decreases with
increasing L, so that the strongest diffraction
oscillations occur for L = 0 transfer and are weak-
er for higher multipolarities.

V. CONCLUSION AND OUTLOOK

The expressions derived in this paper give,
in closed analytic form, a rather detailed des-
cription of the significant wave-mechanical as-
pects of heavy-ion transfer reactions as embodied
implicitly in (first-order, no-recoil) DWBA cal-
culations. By accounting for the important kine-
matical and dynamical effects of magnetic sub-
state, angular momentum matching, and Q-value
dependences, a considerable improvement is
achieved over earlier closed-form evaluations of
the DWBA amplitude which glossed over many
subtle features by taking too rough averages over
initial and final state energies and angular mo-
mentum projections. The main improving device
is the introduction of the mean S matrix, which
leads to an explicit representation of the partial-
wave transfer amplitude that is more realistic
than the ad hoc forms assumed in phenomeno-
logical treatments.

Qf course, the formalism presented so far still
has many shortcomings because of the simplifying

Since +kkl+ gM+ ~T ~~ A and AN A N +N + N

and further

8N 8'-N= -—(AN) -8(A-'N} =(&N &N—)8'(A },
(4.38)

this becomes
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assumptions made at the outset: (i) the no-recoil
approximation, (ii) omission of higher-order and
multi-step processes, and (ii) the neglect of spin
and polarization effects. In subsequent work we
endeavor to remove or remedy these limitations
by suitable extensions of our method. One of
several ways to account for recoil effects is a
Taylor expansion of the final-channel distorted-
wave function, "' which results in the no-recoil
transfer amplitude being amended by a linear
combination of amplitudes pertaining to different
values L~ of the transferred angular monientum
and containing radial integrals with modified
transfer form factors. The additional amplitudes
can then be evaluated in closed form using simi-
lar approximations as for the no-recoil term.
Further, the contributions of higher-order pro-
cesses, such as inelastic scattering of the initial
and final nuclei before and after the transfer takes
place, can be taken into account by replacing the
initial and final S matrices with the modified ex-
pressions derived recently" from a coupled-chan-
nels extension of the closed-formalism for elastic
and inelastic heavy-ion scattering. Earlier, Uda-
gawa and Tamura" gave a qualitative description
by using a phenomenological form of the partial-
wave transfer amplitude. Similar extensions are
possible for multi-step, successive, or sequential
transfers and will be treated in subsequent papers.
Lastly, spin and polarization effects can be des-
cribed by including spin-orbit interaction in the
initial and final S matrices and taking the spin
dependence of the bound-state wave function into
account.

&i, (k)- q(&) = q(p} characterized by the parameters
A and 6 in the combination p= (&&. -A)/6, we re-
quire

where X= 2(», + &&.f) and K= »., —X&. Here and in the
following equations, a=" b means "a is required to
equal b." Then

25 (X)=5&'&(»..}+5«&(». )

(A.2)

(A.3)

with A~ and A determined as functions of A, , A&,

6, , bz such that (A3} is optimally satisfied for
functions &)(».}of general "strong-absorption pro-
file."

This is of course trivial. in the sharp-cutoff
limit where &7(», ) is a unit step function; then

A~=A+ ~ lK -K,
l

(sharp cutoff),

where A=~(A, +A&} and KO=A,.. -Az.
For smooth profiles we first solve the problem

by choosing a particular functional form of &)(i&,)
for which (A3} can be satisfied exactly, and then
use the result in the general case. If 4,.= 6&= 6,
this can be done with Kauffmann's function"

(A.4)

and our requirement for the reflection functions is
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APPENDIX A: DETERMINATION OF MEAN S MATRIX

Here we address the question of how to replace
the product of square roots of the S matrices in
the initial and final channels by a single mean
8 matrix. Assuming that S,(k) = &),(k) exp[i25, (k)]
can be interpolated by a function of the continuous
variable X= l+ &, with the reflection function

Ar = A+ 6 ln cosh)
&K -Kol

2b (A.7)

For A,.4 6& we obtain

—exp l

'
l
exp I—1 &K-K,l &». -Al

( K-K) & &&. -Al &&. —A
+ expl — 'lexp l

—
l

= exp—

(A.8)

which can no longer be satisfied exactly. How-
ever, w'e can determine optimal values of A~ and
a by the following requirements: First, (A8)

Then

1 / »., -Al, / »., -A&l—expl — ~ ~ l+ exp~ ) =exp& )
(A.6)

yields
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should hold exactly at &=A~. This yields

=&tanto —sxplt h
' ]+sap]-

(A--A-. '] ( Z -IC.']]'

(A-.9)

1.0—

Then we determine 4 such that in the case of E
matching, K=K„where (A8) becomes 0.5—

it minimizes the difference between the exponen-
tials,

~ ~1 1 ' (1 1~'
+ ———

i
= minimum,b, )

(A.11)

(A.12)

1 (1 1 — (1 1—;exp
~

———()[.-IY) + exp ! ———()[.-A )
2

(A.10)
208 30 40 50

FIG. 2. Mean reflection function gz(X) of Fermi func-
tion profile (solid curve), calculated from the initial-
channel reflection function q;(X) with A& = 30, 6,.= 2 (long-
dashed curve) and the final-channel reflection function

g&(X) with A&=32, b,&=3 (dot-dashed curve). gE(g) rep-
resents the optimum symmetric approximation fEq.
(A3)] to the asymmetric function fg&(X)gf(X)]

I' {short;
dashed curve), with parameters 4&=31 and 4=2.4 cal-
culated from Eqs. (A9) and (A12), respectively.

Clearly, for d,. = 6&, (A.9) reduces to (A.7), and both
expressions reduce to (A.4) in the sharp-cutoff
limit.

An example of how relation (A.3) with (A.9) and

(A.12) works for reflection functions of Fermi
function profile j()[t)= (1+e ") ' is shown in Fig. 2.

APPENDIX B: THE FUNCTIONS I~~~ {n,$)

The functions I~(~)(c[, g), defined in (2.22) as the WEB approximation to the Coulomb

(2.14) for the transfer form factor (2.5), have the integral representation

I«"„(o,t)= &tw(-i )h"'[ip(1+& coshw)]p((+ a coshw)cos (('s stnhwstwsM arctan
0

radial integrals

(a* —t)' 'stnhw

IE+ coshzv

(81)

where

(sin o[) 1 [()t/~)2+ 1]1/2 (8.2)

b'
I~("„)(c(,$)"-

~
~

exp — —p(1+ c) . (8.5)
(2pe ] 2pe

and p, $, g' are defined in (2.23) and (2.32). An
approximate expansion, with an accuracy of about
10/o for

~

$'
~

( 1.5, is given in Ref. 14 as

I(tt)(o[ ])- ] e-p(the)
2

i~

(L+ m)! ~~2~2~

(L —m)!m! [2p(l+ e)]" a'„(~

(8.3)

with

a„=pe+ m, b= g'e+ [+M]1+& ' (E+ 1)

(8.4)

For p(1+ e)) 1 and b s 1, the sum in (8.3) may
be approximated by the m=O term,

1+ $= -M tan —,(w -c[),
s ln2 Gt

(8.6)

and the steepness with which I~@' decreases for
increasing

~
Q -Q„,

~

is controlled by the binding
parameter v through pe = [(n/b sin2o. such that the
falloff is faster for weakly than for strongly
bound particles. The same relation shows that
for positive Q values, I~[~)is largest for M = L—
and smallest for M = I., and that the difference
is more pronounced at smaller than at larger
angles n.

For L= 0, (8.1) can be evaluated exactly in

As discussed in Ref. 14, this expression shows
the Q value and M dependence of I~"„' by the ex-
ponential of b'/2pe. For a given angle u, the op-
timum Q value is determined by the adiabaticity
parameters, giving maximum I~"„' for b=0, or
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terms of a modified Hankel function of imaginary
order,

I,'",'(n, $) = exp —p+ $ arctan —
~

K,.~(nye)

z/a )I
exp — p+ $ a.rctan —+ ny&

(2ny & p

(B.7)

of (B.7) obtained for nye» P ~

.
The main dependence of I~„' on X is given by the

factor exp(-nye), which becomes exp( —yX) for
X»n. This enables us to define

I(~)(~ t) —I (s)(& t)e-yx (B.8)

where I~&"„'(n, g) varies relatively slowly with X.
Finally, using an amended notation, we note from
(B.l) the symmetry relation

where y = (p'+ $")'/'/n, with the asymptotic form Iz, u(» $-( )=Ir.u(n t g ) ~ (B.9)

~W. E. Frahn and R. H. Venter, Nucl. Phys. 59, 651
(1964).

2V. M. Strutinsky, Zh. Eksp. Teor. Fiz. 46, 2078 (1964)
[Sov. Phys. —JETP 19, 1401 (1964)j; Phys. Lett. 44B,
245 (1973).

3L. B. Dodd and K. B. Greider, Phys. Bev. Lett. 14, 959
(1965); Phys. Rev. 180, 1187 (1969).

4P. R. Christensen, O. Hansen, J. S. Larsen, D. Sin-
clair, and F. Videbaek, Phys. Lett. 45B, 107 (1973).

~P. D. Bond, J. D. Garrett, O. Hansen, S. Kahana, M. J.
LeVine, and A. Z. Schwarzschild, Phys. Lett. 47B,
231 (1973).

M. C. Lemaire, M. C. Mermaz, H. Sztark, and A. Cun-
solo, Phys. Rev. C 10, 1103 (1974).

~M. J. LeVine, A. J. Baltz, P. D. Bond, J. D. Garrett,
S. Kahana, and C. E. Thorn, Phys. Rev. C 10, 1602
(1974).

W. Henning, D. G. Kovar, B. Zei.dman, and J.R. Ers-
kine, Phys. Bev. Lett. 32, 1015 (1974).

A. Dar, Phys. Rev. 139, 81193 (1965): Nucl. Phys. 82,
354 (1966).

~oA. Dar and B. Kozlowsky, Phys. Hev. Lett. 15, 1036
(1965).

'S. Varma, Nucl. Phys. A106, 233 (1968).
W. E. Frahn and B. H. Venter, Ann. Phys. (N. Y.) 24,
243 (1963).

~3W. E. Frahn and M. A. Sharaf, Nucl. Phys. A133, 593
(1969).
R. A. Broglia and Aa. Winther, Phys. Rep. 4C, 153
(1972).

~S. Landowne, C. H. Dasso, B. S. Nilsson, B.A. Brog-
lia, and Aa. Winther, Nucl. Phys. A259, 99 (1976).
J. KnoQ and R. Schaeffer, Phys. Bep. 31C, 159 (1977).

~H. Hasan and D. M. Brink, J. Phys. G 4, 1573 (1978).

8C. Chasman, S. Kahana, and M. Schneider, Phys. Rev.
Lett. 31, 1074 (1973).
M. Schneider, C. Chasman, S. Kahana, A. J. Baltz,
and E. H. Auerbach, Phys. Bev. Lett. 31, 320 (1973).

2 S. Kahana, P. D. Bond, and C. Chasman, Phys. Lett.
50B, 199 (1974).

2 S. Kahana and A. J. Baltz, in Advances in Nuclear
Physics, edited by M. Baranger and E. Vogt (Plenum,
New York, 1977), Vol. 9, p. 1.
W. E. Frahn, in Heavy-Ion, High-Spin States and Nu-
clear Structure (IAEA, Vienna, 1975), Vol. 1, p. 157.

3W. E. Frahn, in Classical and Quantum Mechanical
Aspects of Heavy Ion Collisions, Lecture Notes in
Physics (Springer, Heidelberg, 1975), Vol. 33, p. 102.
W. E. Frahn, Nucl. Phys. A272, 413 (1976).

~N. Austern, , Direct Nuclear Reaction Theories (Wiley,
New York, 1970).
M. J. Sopkovich, Nuovo Cimento 26, 186 (1962);
K. Gottfried and J. D. Jackson, ibid. 34, 735 (1964).

2~D. Trautmann and K. Alder, Helv. Phys. Acta 43, 363
(1970); K. Alder and D. Trautmann, Ann. Phys. (N. Y.)
66, 884 (1971); K. Alder, R. Morf, M. Pauli, and
D. Trautmann, Nucl. Phys. A191, 399 (1972).
W, E. Frahn, Nucl. Phys. A337, 324(1980).

29M. A. Nagarajan, Nucl. Phys. A196, 34 (1972).
3 A. J. Baltz and S. Kahana, Phys. Rev. C 9, 2243 (1974).
3'W. E. Frahn and M. S. Hussein in Proceedings of the

Symposium on Heavy Ion Physics from 20 to 200
MeV/amu (Brookhaven National Laboratory, N. Y. ,
1979), Vol. 2, p. 779.

32T. Udagawa and T. Tamura, Phys. Lett. 57B, 135
(1975).

33S. K. Kauffmann, Z. Phys. A282, 163 (1977).


