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Exactly central heavy-ion collisions by nuclear hydrodynamics
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We study the dynamics of heavy-ion collisions using the hydrodynamical description and focus our
attention on the head-on collisions which provide the most favorable case for such a description. Angular
distributions and energy distributions were obtained for various combinations of projectiles and targets of
equal and unequal masses in the energy range from 50 to 400 MeV per projectile nucleon. It is found that
regions of high density (the shock regions) are formed during the collisions and that the angular and energy
distributions for many of these collisions have prominent features. In the collision of a small projectile with
a heavy target, there is the forward angular peak of slow dissociated particles which represent much of the
projectile nuclear matter stopped in the larger target nucleus, in addition to the nucleons from the
expansions of the shock region. There is the side angular peak corresponding to the sidesplash of the target
nuclear matter due to the impact of the projectile. There is also the backward angular peak due to the
expansion of the shock region into the backward direction. In the collision of two equal nuclei, there are
only the forward angular peak and the side angular peak. The effects of viscosity and thermal conductivity
are investigated and found to affect the angular and energy distributions of the reaction products.

NUCLEAR REACTIONS Heavy-ion reactions, nuclear hydrodynamics, Ne
+'97Au and Pb+ Pb at 50, 100, 250, and 400 Me& per projectile nucleon.

Nuclear viscosity and thermal conductivity.

I. INTRODUCTION

I

Qur recent interest in high-energy, heavy-ion
reactions stems in part from the possibility of
probing the equation of state of nulcear matter,
both with regard to its behavior at zero tempera-
ture and at high temperatures. Many exotic
phenomena such as the pion condensation and
density isomers manifest themselves in peculiar
shapes of the equation of state. ' As the equation
of state enters prominently in the hydrodynamical
description of the reaction process, it is desir-
able to ascertain to what degree the heavy-ion
collision process can be described by hydrody-
namics. Although much discussion and investi-
gation has been made on the theoretical founda-
tion of nuclear hydrodynamics, in the final
analysis, it is a direct confrontation of the re-
sults of hydrodynamical calculations with experi-
ments which will validate or negate the hydrody-
namical description. The recent observations
by Gutbrod and collaborators' that many features
of the heavy-ion collisions at intermediate ener-
gies may have hydrodynamical origin gives addi-
tional impetus to the treatment of heavy-ion
collision in terms of nuclear hydrodynamics.

The advantages of a hydrodynamical treatment
of the reaction process, if successful, are mani- .

fold. As different energy heavy ions lead to

different compressed densities, the equation of
state can, in principle, be traced by using pro-
jectiles of different energies. Furthermore,
one may also obtain the transport coefficients of
nuclear matter which otherwise cannot be obtained
by other means. For these reasons, one may
wish to push the hydrodynamical description as
far as possible and see how it could perhaps
describe some aspects of heavy-ion collisions.

It is clear from the outset that not all the
nuclear collisions can be described properly
by nuclear hydrodynamics. For example, periph-
eral and transfer reactions are unlikely to be
described well by nuclear hydrodynamics as the
interaction time involved is short compared with
the time necessary to bring the system into local
equilibrium. It is necessary to be selective in
choosing the proper case for treatment. The in-
teraction time increases as the impact parameter
decreases. Head-on collisions involving large
nuclei present favorable cases where nuclear
hydrodynamics may perhaps be a valid descrip-
tion. For this reason, we focus our attention on
head-on collisions, with the hope of exploring
only the region around l =0 at a later time.

Past treatments of numerical nuclear hydro-
dynamics"' centered on the comparison of theo-
retical results with the experimental single-
particle inclusive data. The objective is to ob-
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tain the angular distribution after a summation
over all the impact parameters. Earlier work
deals with the case of head-on collisions. ' The
numerical technique used is the PIC (particle-
in-cell) method .As no long-range interaction
is used, the nuclear surface is given as a sharp
surface which introduces the problem of negative
pressure. Furthermore, viscosity and thermal
conductivity are not taken into account. Another
treatment of the bydrodynamical problem made
use of the assumption of irrotational flow" and a
qualitative representation of the mach cone con-
cept." Conjectures based on the latter are,
however, not substantiated by the detailed calcu-
lations of Amsden et al." Still another treatment
by Wong, Tang, and collaborators" "discussed
shock waves in supersonic heavy-ion collisions
and later introduced the long-range interaction
to describe the nuclear surface. The numerical
method is based on the FCT (flux-corrected-
transport) method of Boris and Book" which
allows simple incorporation of viscosity and
thermal conductivity. One-dimensional hydro-
dynamical calculations based on such a modei
have been reported previously. ' Two-dimen-
sional calculations for the collision of one infinite
cylinder of nuclear matter with another were also
performed and will be reported elsewhere. "
This paper deals with three-dimensional head-on
collisions. A preliminary report, based on the
work of Wong, Welton, and Maruhn, was pre-
sented previously. "

This paper is organized as follows. In Sec. II
the basic equations of nuclear hydrodynamics are
presented. A brief description of the genealogy
of nuclear hydrodynamics and its connection with
the many-body theory is given. A criterion of
its validity in terms of the thermal relaxation
time is also discussed. In Sec. III an estimate
of the nuclear transport coefficients is made.
The shear viscosity and the thermal conductivity
are estimated from the Landau-Fermi liquid
theory and the compressional viscosity from the
width of the giant monopole resonance. In Sec.
IV we discuss our choice of the equation of state
and other parameters for the nulear fluid. Section
V presents a detailed description and discussion
of the results. They are the calculations for
head-on collisions of "Ne+'"Au and "'pb+"'pb
at the bombarding energies of 50, 100, 250, and
400 MeV per projectile nucleon, both with and
without viscosity and thermal conductivity.
Special features of the hydrodynamical descrip-
tion and the significance of dissipation in the dy-
namics are emphasized in order to facilitate
future conf rontations with experiments. Finally,
Sec. VI summarizes the main results and remarks

on future investigations along this line. An ap-
pendix is attached in which some technical as-
pects of the numerical problem are discussed.

A very important parameter in the present
discussion is the initial kinetic energy of the
colliding nuclei. For simplicity, we shall adopt
the convention of measuring the energy in terms
of the kinetic energy of the projectile per pro-
jectile nucleon while the target is at rest. Fur-
thermore, in the collision of unequal nuclei we
shall take the lighter nucleus as the projectile.
The energy parameter is then expressed as E,~/
A~, where E,~ is the laboratory kinetic energy
of the projectile and A~ is the projectile mass.
For simplicity, this quantity is sometimes ex-
pressed as simply as E/A

II. BASIC EQUATIONS OF NUCLEAR HYDRODYNAMICS

The connection between nuclear hydrodynamics
and a more fundamental quantum many-body
theory has been extensively studied by various
workers. ' ' "~' We shall briefly discuss the
results of Refs. 20 and 21 with regard to the con-
nection between nuclear hydrodynamics and the
many-body theory. This connection can be de-
picted in Fig. 1. One can start with the exact
many-body theory and obtain the extended. time-
dependent Hartree-Fock (ETDHF) approximation. "
In this approximation, both the effect of the mean-
field and particle collisions are considered. Next,
one goes to a classical transcription" by inter-
preting the Wigner function in the ETDHF approx-
imation as the classical distribution function.
The resultant approximate Vla, sov-Boltzmann
equation forms the basis from which much sta-
tistical dynamics can be extracted. One can in-
troduce the quantity of local entropy field and
prove with the Vlasov-Boltzmann equation that
the total time derivative of the local entropy never
decreases. It is natural to speak of the situation
when the local entropy is stationary as the state of
local (thermal) equilibrium. One can prove"
further that when local equilibrium is attained,
the local momentum distribution is character-
ized by a Fermi-Dirac distribution. The param-
eters in the distribution are (l) the local tem-
perature, (2) the local Fermi energy which is
related to the local density, and (3) the displace-
ment of the Fermi-Dirac spherical distribution
from the origin which is related to the local
velocity field. Thus, when there is local equi-
librium, the local stress tensor, as obtained
from the momentum distribution, depends only on
the local temperature, the local density, and the
local velocity field. Then, by using the well-
known Enskog-Chapman procedure, one can ap-
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the time evolution of the density field. The
Navier-Stokes equations (2.2) are equations for
the current density. In Eq. (2.2}, m is the nucle-
onic mass and P is the total pressure which can
be obtained from the equation of state of the nu-
clear fluid. The dissipative behavior of the sys-
tem is accounted for by the viscosity stress
tensor P,'& which is defined as
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P. .=—— 7j '+ ' ——, 5-,V'uij ax ax i'
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f

proximate the Vlasov-Boltzmann equation by
those of hydrodynamics, " namely the continuity
equation

an—+ V ~ (nu) =0
at (2.1)

the Navier-Stokes equations

B(nu,.) ~ 1+ ~ V~ nutu~ +—(P5t~ +P,~)
/=1 m

FIG. 1. Genealogy of nuclear hydrodynamics and its
connection with the many-body theory.

where q and g are the transport coefficients of
shear and compressional viscosity, respectively.
The force-density term on the right hand side of
Eq. (2.2) is due to the long-range part of the nu-
cleon-nucleon interaction. In the thermal energy
density equation (2.3), Pr is the thermal pressure
which can be related to the equation of state, z is.
the coefficient of thermal conductivity, and T,
the temperature field of the nuclear fluid. The
choice of the transport coefficients q, g, and w,

the parametrizations of the equation of state and
the auxiliary quantities P, P~, and T will be sub-
jects of discussion in the later sections.

As the establishment of local equilibrium is
necessary for the reduction of the Vlasov-Boltz-
mann equation to nuclear hydrodynamics, the
crucial question becomes whether the relaxation
time leading to local equilibrium is short com-
pared with the total time involved in the interac-
tion. The magntiude of this relaxation time is
yet to be firmly established, although attempts
are being made to calculate it for some model
cases. We can, however, make a rough esti-
mate of the magnitude. Previously, in connec-
tion with the ETDHF approximation, "we argued
from the magnitude of the level densities and of
the two-body matrix elements that (global} ther-
mal equilibrium for a slightly excited nucleus of
mass number A could be established within a time
of

d'x'n r', t V~ r, r', 2.2 4000
arel enation (2.5)

and the thermal energy density equation

3(nE,}at'r + V ~ (nEru) = -prV u+ V («VT)

(2.3)

Here, in the hydrodynamical picture, the basic
dynamical variables are the number density field
n, the velocity field u, and the thermal energy
field Er The continuity .equation (2.1}describes

Indeed, recent experimental studies" of the spec-
trum of evaporated neutrons from the deep-in-
elastic collision fragments indicate that the re-
laxation time for thermal equilibrium of the com-
posite system is approximately 10~' sec (-30
fmjc). The estimate of Eq. (2.5) agrees with
these experimental results. A model calculation"
of the approach to equilibrium of an irregular
momentum distribution leading to a temperature
of 8.5 MeV also gives a relaxation time of 40 fm/c.
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In heavy-ion collisions, the momentum distribu-
tion of the nucleons in the colliding region is ap-
proximately a Fermi bisphere whose centers are
separated by the relative momentum determined
by the kinetic energy per projectile nucleon. As
the blocking due to the Pauli principle becomes
less inhibitive when the separation of the centers
in the Fermi bi-sphere increases, the fraction of
nucleons capable of making a two-body collision
and the phase space of the final states increase
with bombarding energy. One expects that the
relaxation time decreases with-increasing bom-
barding energy until the energy is so high that the
bisphere separates into two disjointed Fermi
spheres. Thereafter, the relaxation time becomes
less sensitive to the change of bombarding ener-
gy. 24 Thus, for the bombardment energy in the
range of 250 MeV per nucleon to 2.1 GeV per
nucleon (where the Fermi bi-sphere becomes
disjointed) the relaxation time was found to be
of the order of 5 fm/c. " This result agrees with
the estimate of Bertsch" based on the moment of
the collisiori integral for low-energy heavy-ion
collisions

III. TRANSPORT COEFFICIENTS

K 1 Pg
ks 3v m'k~T (do/dQ)

(2v+ 1}
v(v+ 1)[v(v+ 1)—2X„J

where

(3.1)

Not much is known about the transport coeffi-
cients of the nuclear fluid. At the present, they
can only be estimated from the theories. Direct
comparison of the predictions by assuming differ-
ent sets of transport coefficients and confrontation
with experimental results will eventually allow
one to determine these transport coefficients.

We shall estimate the shear viscosity and ther-
mal conductivity from the Vlasov-Boltzmann
equation which is embodied in the Landau-Fermi
liquid theory. We shall estimate the compres-
sional viscosity from the width of the giant mono-
pole resonance. Using the Born approximation
and a procedure developed by Baym and Pethick"
which was suggested earlier by Sykes and Brook-
er,"we obtain the thermal conductivity as

1000 MeVfm/c
(E„b/A, )

(2.6) do dQ(8, p) do
dQ 4m

g—(e»(8, P)] 2 cos — (3.2)
8

2

where A.~ is the projectile mass number. The
relaxation time in the intermediate energy range
is therefore roughly 50 fm/c for an energy of

E~/A~= 20 MeV per nucleon and 4 fm/c for E,~/
A~= 250 MeV per nucleon.

Hydrodynamical description will be a proper
approximation if the interaction time for the
reaction process is large compared with the
thermal relaxation time. The interactiori time
for a head-on collision of "Ne on "'Au is about
200 fm/c for a collision with an energy of E„/Ab~

50 MeV per nucleon, 130 fm/c for a collision
with an energy of E„JA~=100 MeV per nucleon,
and 100 fm/c for a collision with energy of E,~/
A~= 250 MeV per nucleon. Therefore, it appears
that at least for these collisions involving large
nuclei, the hydrodynamical description may be
appropriate. Of course, one is reminded that
these estimates of relaxation time are based on a
nuclear matter equilibration. There are effects
due to finite sizes, nuclear surface, and shell
structure which, may affect these estimates. In
the final analysis, a direct confrontation between
experimental and theoretical results is needed to
establish or reject nuclear hydrodynamics for
some aspects of heavy-ion collisions.

g e„e,

&&(1+2 cos8) 2 cos —.8
2' (3.3)

0.4224 MeV c/fm'
k~ @~7.

' (3.4)

where A~T is given in MeV. One can follow the
same procedure of Baym and Pethick" to obtain
the shear viscosity coefficient

P 5

15v3 m'(k, r)2 (do/dQ)
2v+1

v(v+ 1)[v(v+ 1) —2q] '

where (do/dQ) is as given before and

(3.5)

In the above expressions, 8 is the angle between

p, and p„while P is the dihedral angle between
the planes p, &&p2 and p, &&p4, e» is the angle be-
tween p, and p„and g is the degeneracy of the
nuclear fluid which is 4 in this case. Upon tak-
ing a constant value of 1.0 fm'/sr from (p, p)
scattering" at a relative kinetic energy of ez -40
MeV for do/dQ, we obtain

g [e„(8,P}] -1+3 sin4 —sin'Q 2 cos-do dQ(8, $) do . , 8 . , 2
8

dQ 4g dA
(3.6)
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Again, upon using a constant value of 1.0 fm'/sr
for do/dQ, we obtain

675.39 (MeV)'
(RENT)'

fm' ~ c (3.7)

z =0.014 c/fm', (3.8)

The transport coefficients are therefore sensi-
tive functions of the local temperature. It is
known, however, that the temperature reached in.

the collision of heavy ions with a few hundred
MeV per nucleon is about 30 MeV." So, for our
first estimate of an average transport coefficient,
we use 30 MeV as the temperature parameter to
obtain

IV. EQUATION OF STATE AND OTHER PARAMETERS

A. Energy density of the nuclear fluid

The use of an equation of state is a character-
istic of nuclear hydrodynamics. In the present
investigation, the internal energy per nucleon of
the nuclear fluid assumes a mathematically sim-
ple, but physically plausible, form

E,.„(n, c)=E,(n) + Er (n, o), (4.1)

where E, is the zero-temperature part of the in-
ternal energy per nucleon, depending only on the
local density field, and E~ the thermal part which
depends on the local density field as well as the
specific entropy o (or temperature T). The zero-
temperature part is taken to be of the form"

and
Eo(n) =b n' '+b,n' '+b2n' '+b n' '

3 (4 2)
@=0.75 MeV/(fm'c). (3.9}

To estimate the compressional viscosity coeffi-
cient from the width of the giant monopole reso-
nance, we consider the equation of motion for
small amplitude oscillations

6 2~3
E (n, o)=——— o'n'~',

2m 4g
(4.3)

and the thermal part is parametrized by the Fermi
gas model

an—+ V ' (nu) = 0
at

(3.10)
1m 4~ '~',

E (n c)=——— n'~'T'
25 6

(4.4)

which can also be re-expressed in terms of the
temperature as

—nu+0(n')=-a'Vn+(g —3q)V(V. u), (3.11}

where a is the speed of sound related to the in-
compressibility K by

With this form of the internal energy function,
the coefficients b s in Eq. (4.2) can be uniquely
determined as follows. The leading coefficient
Ap is taken to be the same as the corresponding
one in the Fermi gas model

a =(K/Bm)'~' . (3.13) b, =75.01 MeVfm2. (4.5)

From this set of equations, the monopole oscilla-
tion frequency becomes complex and is given by

The other coefficients can then be determined by
three known bulk properties of nuclei. They are
the normal density at equilibrium

(3.13) no=0. 17 fm 3,

the binding energy per particle

(4.6}

where 5&o, =(Sm/R)(K/9m)'~' is the eigenenergy
of the monopole oscillation in the absence of com-
pressional viscosity, R is the radius of the nu-
cleus, and n, the normal density of nculear mat-
ter. Identifying the imaginary part of the fre-
quency with the width I' of the giant monopole
resonance, we have

E~ =-16.5 MeV (4.7)

K(no) = 186 MeV. (4.8)

and the coefficient of nuclear incompressibility
at equilibrium density [estimated from giant
monopole resonance of 'OBPb (Ref. 33)]

(g —-'. q)~'z'
2mn

(3.14)

With the equation of state given, the pressure
terms can now be obtained from standard ther-
modynamic relations. The total pressure of the
nuclear fluid is of the form

/=18. 76 MeV/(fm'c). (3.15)

For "'Pb the width of the giant monopole reso-
nance is 2.5 MeV. ' Thus, the compressional
coefficient is

p(n, cr) =po(n) + pr (n, a ), (4.9)

where the zero-temperature part is now given by

p =n' '(-'b +b n' '+-'b n' '+-'b n' ')0 3 0 1 3 2 3 3
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and the thermal part is given by

2
P~ ——gnE~ .

B. Interaction parameters

(4.10) and

q, /=10 ' MeV/fm' c

@=104 c/fm',

(5.1)

For the effective nucleon-nucleon interaction
we adopt a parametrization similar to that used
in microscopic theories such as the time-depend-
ent Hartree-Pock theory. ' This interaction is
taken to contain a short-range part V~ and a long-
range part V~. The short-range component can
be characterized by a delta function with density
dependence. This, however, can be incorporated
into the internal energy, while the long-range
component can be taken to be the sum of a Yukawa
interaction and the Coulomb interaction. The
Yukawa interaction is

e-e I r-r' I

Vz(r, r'}=p Ir —r'l

with

and

P = -85 MeV fm (4.12)

~ = 1.5 fm"'. (4.13}

These parameters, P and o, , are chosen to fit
the binding energies and root-mean-squared
radii of nuclei along the P-stability line. The
Coulomb interaction is given as

2 2(,)
Z~+Zr e

(A~+A~
(4.14)

where (Z~, A~) and (Zr, Ar) are the atomic and
mass numbers of the projectile and target nuclei,
respectively, and e the charge of an electron.

V. RESULTS OF CALCULATIONS AND DISCUSSIONS

We shall discuss the specific features of several
exactly central collisions which we have studied
in the energy range from 50 MeV up to 400 MeV
per nucleon. Here and henceforth, the bombard-
ing energy is given in terms of the energy per
projectile nucleon with the target at rest. Syste-
matic studies of the other cases of non-head-on
collisions will be reported elsewhere. " Our dis-
cussions will concentrate on the bombarding of

'Au targets and also that of 'Pb on' 'Pb at various energies. In the subsequent
discussion, we shall also refer to the case of
equal projectile and target as the symmetric
collision (or system) and the unequal projectile
and target as asymmetric collision (or system}.

To study the effects of dissipation on the dy-
namics, we shall compare calculations using two
different sets of transport coefficients. They are

which will be referred to as the "small" viscosity
or simply the nonviscous or inviscid case in the
text, and the values estimated in Sec. III

and

q =0.75 MeV/(fm'c),

& = 18.76 MeV/(fm' c), (5.2)

tc =0.014 c/fm',

which, for simplicity, will be referred to as the
"large" viscosity or simply the viscous case in
the text.

Each calculation is started with the nuclear
surface of the projectile and target nuclei barely
touching. The density distribution of each nu-
cleus is obtained individually in a self-consistent
manner as the distribution leading to static
equilibrium. The nuclei are given velocity fields
corresponding to the bombarding energy in ques-
tion. With the initial conditions established, the
complete set of hydrodynamical equations (2.1)—
(2.3} is then solved for the subsequent times.
Some numerical aspects of this problem will be
discussed in the Appendix.

A. 20Ne on &~Au at 250 MeV per nucleon

Figure 2 depicts the time evolution of the den-
sity field in the center-of-mass system for the
collision for 250 MeV per projectile ("Ne} nucleon
on ' 'Au. The plots shown are the cuts of density
contours in the reaction plane, graded in levels
of 0.025 fm '. To standardize our notations in
subsequent discussions, we take the value 0.15
fm ' to be the "normal nuclear density. " The
calculation shown in Fig. 2 is done with the small
values of transport coefficients given in Eq. (5.1).
At about 10 fm/c, a region of compressed nuclear
matter is formed and has attained a density of
about 1.5 times the normal value. The density
continues rising in this region until a maximum
value of 0.35 fm ' is reached at about 25 fm/c.
During the stage of compression, the density
profile of this region has a very sharp jump as
one goes from this region to the rest of the sys-
tem or normal density. The thickness of the
shock front is only slightly greater than the mesh
size of 0.6 fm. The compressed region undergoes
a forward displacement to the right as a whole as
time proceeds. At about 25 fm/c, the Ne nucleus
is entirely embedded in the target system and the
maximum density of 0.35 fm ' is also reached.
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~ONe+'~~Au
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FIG. 2. Time evolution of the density field for Ne
+ ~~Au at 250 MeV per nucleon with small viscosity.

The compressed region maintains this maximum
density for a few fm/c and then begins to relax.
At 32 fm/c, due to the size of the target and the
consequent time delay in transmitting the impulse
of the collision, roughly half of the target system
is still unperturbed. There are currents going
into the compressed region directed from the
target. However, this current encounters the
forward propagation of the shock region and gives
rise to an ejection of nuclear matter along a
"side-wing" direction which is approximately
120' in the center-of-mass system. This side-
wing expands outwards as the density in the com-
pressed region drops from the maximum values.
After 60 fm/c, the central density of the compos-
ite system drops back to the normal value and
continues to decrease monotonically in time,
while the volume of the system expands outwards
irretrievably. This feature in the collision is
similar to what was obtained previously. " To
determine the angular and energy distributions,

we adopt the operational criteria that for such a
case, the calculation is to be terminated once the
maximum density drops to below 50%%uo of the
normal nuclear matter density. This is a rea-
sonable operational criterion. For, when the
maximum density drops below 50/, of the normal
matter density, the shortest separations between
nucleons increase by 26%%uo of the equilibrium
separation. The average separation between
nucleons increases even more than this value of
26%%uo for the shortest separations. As nuclear
interaction is a short-range interaction, the sep-
aration between nucleons in this dilute gas is
probably too large for the nuclear interaction to
become effective. The dilute gas can therefore
be approximately described as a free fermion gas
subject only to the Coulomb interaction. The
final result of this reaction is interpreted as a
complete dissociation into single particles. The
knowledge of the density field and the volocity
field at the end of the calculation allows us to
compute both the angular and energy distributions
of the outgoing nucleons. For our present calcu-
lations of angular and energy distributions, we
even neglect the final state Coulom interaction
and the thermal velocities of the particles. They
will probably shift and broaden the peaks in the
angular and energy distributions slightly, but will
not change the main features of the distributions.
We hope to include these effects in the future.

Figure 3(a) shows the angular distribution dN/
dQ in the center-of-mass system. The main
structure has prominent forward and backward
peaks which are, respectively, one and two orders
of magnitude higher than the rest of the distribu-
tion. There is also a peak at 90' with a width of
about 10' and a rather broad peak which extends
from 100 to 120' and centers at about 110 . The
corresponding angular distribution in the labora-
tory system is given in Fig. 3(b). Here, apart
from the prominent peaks in the forward and
bakcward directions (which are, respectively,
two and one orders of magnitude higher than the
rest), there is a rather broad peak which extends
from 66' to 100' and peaks at 85 . The underly-
ing components of this distribution can be further
analyzed in greater detail from the energy dis-
tributions d'N/dEdQ.

The forward peak comes from very slow parti-
cles of less than 5 MeV. They arise as a conse-
quence of the stopping of the small projectile
nucleus by a much larger target. The backward
peak in the laboratory system consists mainly of
low-energy particles of below 10 MeV and also
some slightly more energetic particles of about
15 MeV. This arises from the expansion of the
shock region to the backward direction. As the



EXACTLY CENTRAL HEAVY-ION COLLISIONS BY NUCLEAR. . . 1853

~Ne + '97Au

E/A*250 MeV b=Q fm(non~iscas)
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FIG. 3. (a) Angular distribution in the center-of-mass
system for 2 Ne+ ~~~Au at 250 MeV per nucleon with
small viscosity. This and all other angular distribu-
tions hereafter are given in the same, but arbitrary,
unit. To convert a given angular distribution into the
absolute unit, that is, nucleon number/sr, multiply it
by the factor of 180/s. (b) Angular distribution in the
laboratory system for Ne+ ~7Au at 250 MeV per nuc-
leon for the set of small transport coefficients given by
Eq. (5.1). .

expansion of the shock region at the early stage
(-25 fm/c) is unhindered in this direction in con-
trast to the forward direction, slightly more
energetic particles of about 15 MeV up to 30 MeV
are also found in the backward direction, whereas
the forward peak is restricted to particles below
5 MeV. The spectrum of particles in the side
peak between 60' and 100' falls into roughly two
groups. There is a large group of particles which
peaks at about 19 and 31 MeV and a much smaller
group of particles which peaks at about 65 MeV.
The mean energy and standard deviation for differ-
ent angular ranges are given in Table I(a).

To study the effects of the viscosity and thermal

conductivity on the dynamics, the calculation for
Ne on ' 'Au at 250 MeV per nucleon is repeated

with the larger values of the transport coefficients
given in Eq. (5.2). The time evolution of the den-
sity field for this calculation is depicted in Fig.
4. In this case, though some features appear to
be similar to the small viscosity case, there are,
in fact, several distinct differences. First, in

the small viscosity case, the thermal energy re-
mains negligible (about 1 MeV at the most}
throughout the entire reaction. In contrast, the
larger viscosity and thermal conductivity lead to
the generation of considerable thermal energy
during the compression stage, with a maximum
value of about 1400 MeV. The second difference
lies in the density field. With large viscosity,
the density profile is smoother and the maximum
density reached (0.23 fm ') is smaller. That this
is a viscosity effect can be understood as a con-
sequence of the Wavier-Stokes equations. There,
the compressional viscosity gives a diffusion
term associated with the current density field.
Therefore, the greater the compressional
viscosity, the greater is the rate of diffusion of
the current density field. It is clear that when
the compressional viscosity is large, any effect
of density accumulation in a region, due to the
influx of nuclear matter from the outside, will
be reduced due to a competing diffusion process.

With small viscosity, the central density begins
to drop below 0.075 fm ' at about 81.79 fm/c,
while with large viscosity, it begins to drop below
this value at about 96.87 fm/c. These are the
times at which the angular and energy distribu-
tions are extrapolated from the corresponding
calculations. Detailed comparisons of these dis-
tributions for the nonviscous and viscous. cases
provide some interesting insight. For the large
viscosity case, the angular distribution in the
center-of-mass system is given in Fig. 5(a}.
This distribution has pronounced and narrow
peaks in the forward and backward directions with
a width of about 2 . There is also a peak at 90
with a width of about 15'. This is a simpler
structure than the corresponding distribution in
the small viscosity case (Fig. 3) for which there
is a broad spectrum between 90 and 135'. The
laboratory distribution dN/dQ, given in Fig. 5(b),
has peaks at the forward and backward directions,
and also a broad distribution between 50' and 90'
with a peak at about 67'. In fact, except for the
positions of the various peaks which are shifted
by about 18', this is very similar in shape to
the corresponding distribution between 60' and
100' of the "small" viscosity calculation. (Com-
pare Figs. 3 and 5.) Accordingly, the effect of
viscosity in this case appears to given an over-
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TABLE I. The angular distribution, mean energy, and energy width for collision of Ne
+ 9 Au at an energy of 250 MeV per nucleon. Table I(a) is for the case q = g =10~ MeV/{6n c)
and ~ = 10+ c/fm and Table I(b) for q = 0.75 MeV/(fm c), & = 18.76 MeV/(fm c), and ~ = 0.014
c/fm . The quantity E is the average energy within the angular bin and oz is the root-mean-
squared energy within the bin.

(deg)

{a)

(Mev)

q = f = 10~ MeV/(fm'c)
~=10~ c/fpo'

dn (Mev)

(b)
q = 0.75 MeV{ &c)

f = 18.76 MeV/{fm~c)
&= Q.Q14 e/fm

n (Mev) (Mev)

0-20
20MQ
40-60
60-80
80-100

100-120
120-140
140-160
160-180

181.0
0
0.16
1.35
3.52
0.22
0
0.29

21.6

7.00
21.2
23.7
16.3

1.00
1.63

0.55

0.50
11.6
16.4
13.7

0.50
3.11

206.6
0.184
0.908
4.19
0.60
0.04
0.002
0
3.38

1.13
3.18
6.30

27.0
38.3
24.7
9.0

1.0

0.50
1.06
2.68

13.5
16.4
13.3
0.50
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FIG. 4. Time evolution of the density field for Ne
+ ~~~Au at 250 MeV per nucleon with large transport co-
efficients given by Eq. (5.2).

FIG. 5. (a) Angular distribution in the center-of-
mass system. for Ne+ ~~~Au at 250 MeV per nucleon
with large viscosity [Eq. (5.2)]. (b) Angular distribu-
tion in the laboratory system for ~ Ne+ Au at 250
MeV per nucleon with large viscosity [Eq. (5.2)].
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all shift of the side angle peak toward smaller
angles. This effect of dissipation will be
systematically examined at the other energies
and will be discussed again below. The mena
energy and standard deviation for different
angular ranges are given in Table I(b). The
energy distributions in the laboratory system for
the forward and backward peaks come from slow
particles of below 5 and 10 MeV, respectively.
This is a broad spectrum which first peaks at
about 15 MeV, but drops slowly after that in an
approximately exponential manner and extends
to about 70 MeV. In the peak at the angular
range 60'-80', the mean energy is 27 MeV with
a standard deviation of 16 MeV. These quan-
tities are greater than the corresponding quan-
tities in the small viscosity case. The effect of
viscosity is to shift the energy of the side pe'ak
to a higher energy and also to increase the ener-

.gy width.

B. 208Pb+ ~OSPb at 100 MeV per nucleon

Figure 6 depicts the reaction of Pb+ Pb
at 100 MeV per projectile nucleon and for the
small values of viscosity and thermal conductiv-
ity. At 18.24 fm/c, a central region of com-
pressed nuclear matter is formed (-0.25 fm ').
'This is only the beginning of the compression
stage. The rest of the projectile and target nu-
clei are essentially unperturbed. They continue
to come toward each other and maintain a con-
stant influx of nuclear matter into the central
compressed region. The maximum density
reached in this reaction is 0.30 fm . Similar
to the nonviscous case of "Ne+ "'Au discussed
earlier (Fig. 2), the density profile of the shock
region also has very sharp edges. A detailed
study of the intermediate steps between 18.24
fm/c and 81.58 fm/c shows that the diffuseness
of the "edge" of this shock region actually under-
goes oscillation. (A hint of such an oscillation
can be found by comparing the level spacing of
the contours from time steps 35.76 fm/c to 107.06
fm/c in Fig. 6.) This is due to the tendency of the
central region to expand outward even during the
compression stage. Beginning at about 36 fm/c,
there is ejection of nuclear matter in the 90
direction and eventually the composite system
becomes disclike before the final overall expan-
sion. The angular distribution dN/dQ in the
center-of-mass system is given in Fig. 7(a). It
has peaks at the forward and backward directions
and at 90'. The angular distribution in the labora-
tory system is given in Fig. 7(b). Its main struc-
ture has peaks at the forward direction at 7' and
at 39'. The forward peak consists of a group of

t=Q.QQ fm/c—5frn

208pb+ 208pb
E/g= IOO MeV b=Ofm (npnviscpus)

t = 3$.76 f m /ct= I8.24 fm/c

(,

' a(iQoj

(((

)I

t= S0.26 fm/c t=66.32 fm/c t=8I,58 fm/c

t= IOO. 99'fm/c t = I04.00 fm/c t = l07.06 fm/c

bl

t = I I0.06 fm/c t= I I3.06 fm/c t= II6.06 fm/c

FIG. 6. Time evolution of the density field for Pb
+ Pb at 100 MeV per nucleon with small viscosity
[Eq. (5.1)j.

particles of between 12 and 38 MeV, with a peak
at about 23 MeV. The angular peak in the range
between 35' and 55' consists of a broad spectrum
of particles from 30 MeV up to 60 MeV, with a
peak at about 39 MeV. The mean energy and
standard deviation for different angular ranges
are given in Table II(a). The mean energy and
standard deviation increase as the angle increases
until there is no cross section for 8,~ o- 60 .

Figure 8 depicts the reaction Pb+ BPb at 100
MeV per nucleon with the set of large coefficients
of viscosity and thermal conductivity [Eq. (5.2)].
The thermal energy generated during the com-
pression stage (-20-70 fm/c) reaches a maximum
of about 1300 MeV. The maximum density at-
tained in this reaction is 0.23 fm . A compari-
son of the density plots with those of the small
viscosity case (Fig. 7) reveals some differences.
With large viscosity, the density profile remains
very smooth during the entire compression stage.
The maximum density is smaller than the small
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ecM (dog)
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—I.27 x 10

center-of-mass angular distribution is very
similar to the small viscosity case, that is,
sharp peaks at 90', 0', and 180'. However, the
laboratory angular distribution (Fig. 9}displays
some small differences. The distribution be-
tween 30' and 70 has a shape which is roughly
the same as that between 20' and 60' for the small
viscosity case, with the exception that the posi-
tion of the peaks are all shifted to a slightly
larger angle. The mean energy and standard
deviation for different angular ranges are given
in Table II(b). The forward peak comes from a
relatively narrow spectrum of particles which
peaks at 23 MeV with a width of about 5 MeV.
In the angular range between 24 and 44'. the
particles have kinetic energies between 25 and 50
MeV, with the energy spectrum peaking at about
31 MeV. The energy distribution for the angular
range between 44 and 64' is a broad spectrum
extending from 30 MeV up to 100 MeV, peaking
at about 55 MeV. There is also a small group
of energetic particles of 90-100 MeV. This
broad distribution is in contrast to the relatively
narrower distribution for the small viscosity case
for the angular range between 35 and 55 .

C. Viscosity and energy dependence of angular
distributions

0
0 90

e (deg)
I35

FIG. 7. (a) Angular distribution in the center-of-mass
system fpr 208pb+208pb at 100 MeV per nucleon with
small viscosity. (b) Angular distribution in the labora-
tory system for pb+ pb at 100 MeV per nucleon
with small viscosity.

viscosity case. But once the maximum density is
reached at about 36 fm/c, the system sustains this
density for a longer period (-36--68 fm/c). The

In the detailed study of "Ne+ "'Au at 250 MeV
per nucleon and Pb+ Pb at 100 MeV per nu-
cleon, we have seen how the angular distributions
of the reaction products can be sensitive to the
presence of dissipation. To firmly establish
this dependence as a feature of the hydrodynam-
ical description and also to study further the
energy dependence of the angular distributions,
we extend our calculations also to other energies.

Figures 10(a) and 10(b} show the angular dis-
tributions for the reaction "Ne+ "'Au at 100 MeV

TABLE II. Same as Table I but for the case of Ne+ 9 Au at an energy of 100 MeV per
nucleon.

~lab
(deg)

(a)

dN/do (MeV)

q= g=10~ MeV/(fm'c)
~=10~ c/fm'

E
(MeV) dN/dQ

(b)
g = O.75 MeV(an'c)

K=18.76 MeV/(fm c)
& = 0.014 c/fm

(Nrev) (MeV)

0-20
20-40
40-60
60-80
80-180

31.5
9.81

14.8
0
0

23.7
35.8
47.43

5.21
5,65
8.26

66.29
3.39

13.7
0.90
0

23.4
35.4
60.2
90.0

4.67
5.98

11.8
10.2
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FIG. 8. Time evolution of the density field for 2 Pb
+ Pb at 100 MeV per nucleon with large viscosity.

per nucleon for small and large transport coeffi-
cients, respectively. In the small viscosity case
[Fig. 10(a)], there are forward peaks, and the
distribution between -50 and -100' is approxi-

0
0 45 l80

mately symmetrical and peaks at about 73'. In
the large viscosity case [Fig. 10(b)], apart from
forward and backward peaks, there is a broad

90

FIG. 9. (a) Angular distribution in the center-of-mass
system for 208pb+208Pb at 100 MeV per nucleon with
large viscosity. (b) Angular distribution in the labora-
tory system for Pb+ 2 8Pb at 100 MeV per nucleon
with large viscosity.

. TABLE III. Same as Table I but for the case of Ne+ ~OYAu at an energy of 400 MeV per
nucleon ~

(deg)

(a)

Og

dN/dO (MeV)

q=g=10~ MeV/(fm e)
~= 10+ c/fm2

E
(MeV) dN/dQ

(b)
q= 0.75 MeV(fm'c)

k=18.76 Mev/( 'c)
ff; = 0.014 c/fm2

(MeV)
0@

(MeV)

0-20
20-40
40-60
60-80
80-100

100-120
120-140

. 140-160
160-180

115.2
0
0
0.561
2.87
1.65
0.21
0.28

79.6

1.17

36.6
32.5
29.0
3.95
1.0
1.83

.0.55

7.47
18.0
13.4
2.07
0.5
3.94

210
0.48
0.519
3.66
1.21
0.10
0
0
4.88

1.41
5.31
9.66

48.5
71.68
45.2

1.25

0.082
2.06
3.00

22.4
25.5
32.1

0.086
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FIG. 10. (a) Angular distribution in the laboratory
system for Ne+ YAu at 100 MeV per nucleon with
small viscosity. (b) Angular distribution in the labora-
tory system for Ne+ ~Au at 100 MeV per nucleon with
large viscosity.

distribution extending from about 10' up to about
75, and this distribution is distinctly different
from that in the nonviscous case.

Figures 11(a) and 11(b) show the laboratory
angular distributions of Ne+ ' 'Au at 400 MeV
per nucleon for small and large viscosity, re-
spectively. In both cases, apart from the for-
ward and backward peaks, there is a peak at 103
for the small viscosity case and at 73 for the
large viscosity case. With respect to the angular
distribution, the effect of the presence of viscos-
ity is to shift the side peak due to the backsplash
of nuclear matter from 103' to 73 . The mean
energy and standard deviation for different angu-
lar ranges in the collision of "we+"'Au at 400
MeV per nucleon is given in Table III. One finds
that the forward and backward peaks consist
of nucleons with small kinetic energies. For
the side peak, the mean energy is about 33
MeV and the standard deviation is 18 MeV for
the small viscosity case. The mean energy

I
1ni

60 90
HLAB (deg)

I

120

. I

150 180

FIG. 11. (a) Angular distribution in the laboratory
system for Ne+ ~~Au at 400 MeV per nucleon with
small viscosity. (b) Angular dis'tribution in the labora-
tory system for Ne+ ~ Au at 400 MeV per nucleon
with large viscosity.

increases to 49 MeV and the standard deviation
to 22 MeV for the large viscosity case. %e hope
to compare our results with the relevant high-
multiplicity data of Gutbrod et al.' which is still
being analyzed. Preliminary results' indicate the
presence of sidesplash which is a feature of the
hydrodynamical result.

Figures 12(a) and 12(b) are the angular dis-
trjbutions of ~ Pb+ 0 Pb at 50 MeV per nucleon
for the nonviscous and viscous cases, respective-
ly. Figures 13 and 14 are the angular distribu-
tions for the same reaction, but at 250 MeV per
nucleon and Fig. 14, at 400 MeV per nucleon.
There are some differences in the detailed shapes
and heights of the peaks and small shifts in these
distributions due to viscosity. The energy dis-
tributions also show some differences for the
two cases, and the presence of viscosity tends to
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FIG. 12. (a) Angular distribution in the laboratory
system for Pb+ 20 Pb at 50 MeV per nucleon with
small viscosity. (b) Angular distribution in the labor-
atory system for Pb+ Pb at 50 MeV per nucleon
with large viscosity.
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FIG. 13. (a) Angular distribution in the laboratory
system for Pb+ Pb at 250 MeV per nucleon with
small viscosity. (b) Angular distribution in the labora-
tory system for Pb+2 Pb at 250 MeV per nucleon
with large viscosity.

broaden the spectra. From the comparison of
these results, one observes that the angular and
energy distributions of the reaction products are
sensitive to the presence of viscosity.

D. Compression ratio

Since the formation of compressed nuclear
matter and its consequences are among the most
important motivations for high-energy, heavy-
ion physics, we shall study some of our results
with these questions in mind. The main results
of various calculations are compactly presented
in Fig. 15. The curves are the compression
ratios (maximum density/normal density)
achieved in the "Ne+'"Au and "'Pb+"'Pb re-
actions, plotted against bombarding energy.
Each curve corresponds to one set of transport
coefficients. It is clear from the figures that
the compression ratio increases monotonically
with increasing energy. Also, it appears that a

high compression ratio is favored more by large
projectile-target systems.

The role played by the transport coefficient is
rather significant. Large viscosity and thermal
conductivity results in the generation of consid-
erable thermal energy. Not only is the density
profile smoothed out by a large viscosity, but
the maximum density reached is also substan-
tially reduced.

E. Other features

Though we are mainly concerned with high-
energy reactions in this paper, it is noteworthy
to remark that there are also many other special
features of nuclear hydrodynamics which mani-
fest themselves, particularly at lower energies. "
A notable example is that for an expanding com-
posite system, there is a tendency in the density
field to form clusters when the colliding energy
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FIG. 14. (a) Angular distribution in the laboratory
system for Pb+ @Pb at 400 MeV per nucleon with
small viscosity. (b) Angular distribution in the labora-
tory system for Pb+ Pb at 400 MeV per nucleon.
with large viscosity.

is less than a certain limit. Above this energy,
the nuclear matter is so much compressed in
the shock region that when it expands, it keeps on

expanding without collapsing back into clusters
with normal nuclear matter density. This kind
of behavior can be understood in terms of the
shape of the equation of state E(n). For small
deviations of the density from equilibrium value,
E(n) is approximately a parabola. However, for
large values of deviation, it is a high wall for
large densities but an open and relatively flat
region for low densities. A highly compressed
nuclear matter, after relaxing to the equilibrium
density and going to the low density region, will
have too high a kinetic energy in the density
degree of freedom to come to a turning point.

Systematic studies of two-dimensional xnodel
collisions of columns of nuclear matter indicate
that asymmetric collisions at an energy of F. ~ 60
MeV per nucleon lead to a complete dissociation
of the composite system, while collisions at
E ~ 40 MeV per nucleon lead to self-bound clus-
ters. In the three-dimensional head-on colli-
sions, a clustering in the direction of the colli-
sion axis corresponds to a fissionlike behavior,
while a clustering perpendicular to the collision
axis corresponds to the formation of a ring of
nuclear matter. In order to investigate this
aspect, we perform calculations for Ne+ ' 'Au

at 50 MeV with zero impact parameter. Figure
16 depicts the results for the small viscosity
case. At about 70 fm/c, the composite system
relaxes in response to the compression of nuclear
matter. At 114.13 fm/c, we begin to see some
clustering effect in the radial direction. At
198.70 fm/c, this eventually leads to the forma-
tion of a vortex ring of nuc1.ear matter, with den-
sity of about 0.075 fm '. The central cluster has

E
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FIG. 15. Compression ratio attained in the collision
of Ne+ Au and Pb+ Pb, with and without vis-
cosity, as a function of bombarding energy.

t = II4. )3 fm/c t=l55.3I fm/c t=198.90 fm/c

FIG. 16. Time evolution of the density field for
Ne+ Au at 50 MeV per nucleon with small viscosity.



21 EXACTLY CENTRAL HEAVY-ION COLLISIONS BY NUCLEAR. . . 1861

a normal density. At the end of the calculation,
this ring goes toward to the right, while the
central cluster goes in the opposite direction.
The calculation is terminated here, since we do
not know whether this configuration is a stable
one. Nonaxial sausage-type instability is a very
important mode. ' Future calculations for very
small but nonzero impact parameters will help
to determine more firmly the detailed dynamics
beyond this stage. The same calculation but
with large viscosity shows that at the comparable
time scale, the "clustering effect" and the ring
formation are much less pronounced.

When we increase the energy of the projectile
"Ne to 100 MeV per nucleon, the density contour
indicates that the density of the composite'system
keeps ondecreasing after the shock region relaxes.
There is no restriction of the nuclear matter
density back to the equilibrium value, as was the
case for the central cluster in the case of 50 MeV
per nucleon (Fig. 16). One infers that 100 MeV
per projectile nucleon is approximately the ener-
gy above which a head-on collision of the projec-
tile "Ne with '"Au will lead to a complete disso-
ciation of the composite system. For the colli-

ion of 208Pb on ' 'Pb, one finds that a head-on
collision with an energy above 50 MeV per nucle-
on will lead to a complete dissociation of the
composite system.

F. Comparison with other results

Despite the difference of the emphasis in the
present studies and the previous hydrodynamical
calculations' ' which apply to the PIC method, it
is still of interest to compare the two types of
results whenever possible. Figure 3 of Ref. 8
presents the proton energy distribution for the
reation "Ne+'"U at 250 MeV per nucleon at
zero impact parameter and for the laboratory
angles 30, 60', 90, and 120'. This can be com-
pared with our calculation of ' Ne+' 'Au at the
same bombarding energy and with small viscosity.

The general features of the energy distributions
at 60, 90, and 120, predicted by the PIC meth-
od and the FCT method, agree well. In order to
make some more quantitative comparisons, we
reconstruct the four points in the angular dis-
tribution for the PIC energy distributions by a
summation over the energy, taking into account
that the proton spectrum is only —,',', of the whole.
We found that the two types of calculations using
the PIC and FCT methods agree very well in the
nonviscous case.

VI. SUMMARY AND CONCLUSION

Our systematic studies of "Ne+"'Au and "'Pb
+' 'Pb at different energies have revealed several

interesting features of the hydrodynamical de-
scription. The angular distributions of the reac-
tion products have prominent structures. Apart
from sharp peaks in the forward and backward
directions, there are distinct side peaks. The
positions of the peak in this angular range tend
to move toward larger angles with increasing
bombarding energies. This is true in both the
symmetric and asymmetric systems. The
presence of dissipation also displays significant
effects on the dynamics, in particular, on the
maximum density in the intermediate steps of
the reaction and also. in the angular and energy
distribution of the final reaction products. The
viscosity dependence of the angular distribution
is much more prominent in the asymmetric than
the symmetric collisions. In the former case,
thepresence of viscosity can lead to a difference
of as much as 10' to 20' in the positions of the
angular peaks. The underlying energy distribu-
tions also show differences for the viscous and
nonviscous cases. In general, they tend to be
broadened by dissipation. Accordingly, future
detailed comparisons with experimental distribu-
tions will provide a useful means to obtain the
transport coefficients.

However, head-on collisions are rare events
in heavy-ion reactions. In order to substantiate
the present results, it is also necessary to ex-
tend the calculations to collisions with small,
but nonzero impact parameters.

'
Investigations

of the three-dimensional calculations for near-
head-on collisions which exploit axial symmetry,
are now in progress (see Appendix) and the re-
sults will be available in the near future.

Even though head-on and near-head-on colli-
sions are of special interest as a testing ground
for nuclear hydrodynamics, these cases cannot
be of much use if there were n.o way to sel.ect
these events for scrutiny. Recently, a method
for selecting these events was proposed" by one
of us (C. Y.W.). This was based on the introduc-
tion of the concept of centrality as a measure of
the deviation of the reaction products from the
azumithal symmetry. It is hoped that the method
can be well developed and supplement the usual
selection based on multiplicity, so that a direct
confrontation of the present results with experi-
ments can be made to provide the critical test on
the validity of the hydrodynamical description
for heavy-ion collisions.

Finally, it should be remarked that the studies
reported here are done with a particular choice
of the equation of state for the nuclear field.
It is clear that to further our investigation, other
functional forms can be attempted. It will be of
great interest to compare various theoretical
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predictions based on different forms of the equa-
tion of state. Final confrontations with experi-
mental results will provide a unique probe into
the details of this and also other properties of
nuclear matter.
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APPENDIX: NUMERICAL METHODS OF NUCLEAR
HYDRODYNAMICS

The numerical algorithms to solve the hydro-
dynamical equations (2.1)-(2.3), are based on the
flux-corrected-transport (FCT) method and the
time-step-splitting (TSS) method of Boris and
Book

These methods lead to a class of Eulerian
finite-difference schemes which are found to be
numerically stable and accurate. The FCT
algorithm solves a one-dimensional generalized
continuity equation (i.e. , with source term) in
the following manner. The propagation of a
dynamical variable over a time step is achieved
in two stages. In the convection stage the dynam-
ical variable is followed in time in a Lagrangian
manner. The transient profile of the variable is
then extrapolated back onto the original Eulerian
grid points in such a way that the conservation of
total mass is enforced and the positivity of the
mass density and energy density guaranteed.
This, however, introduces inherent errors due
to diffusion. These are corrected in the anti-
diffusion stage which leads to the final solution.

The multidimensional problem is solved by
means of the TSS method in the following way.
Each time step is divided into two halves. A
dynamical variable is propagated (by an operator
from the FCT algorithm) in one direction through
the first half step. The velocity along this direc-
tion is estimated. Then the variable is propagated
through the entire time step using this velocity and
the initial values at the beginning of the time
cycle. This procedure is then repeated to the
other directions.

Various details of the implementation of the
FCT and TSS methods have been discussed pre-
viously" and will not be repeated here.

In computations which treat the three-dimen-
sional geometry exactly, there are unavoidable
problems of storage and speed. However, since
we are mostly interested in head-on and near-
head-on collisions in nuclear hydrodynamics,
such computational problems may be circum-
vented. The results discussed here are obtained
from a special 3D code which solves the problem
as follows. In near-head-on collisions, the con-
figuration of the density field is approximately
symmetric. Hence, at each time step, we search
for an approximate symmetry axis about which
the density field is then axially symmetrized.
All the dynamical variables are solved on the
reaction plane. In this way, the three-dimen-
sional problem is treated by a set of two-dimen-
sional equations which include additional terms to
take into account the other degree of freedom in
an approximate way. In the limit of zero impact
parameters, however, this method is exact for
both collisions of symmetric and asymmetric
systems.

As a consequence of these special considera-
tions, this 3D code achieves a speed comparable
to a 2D code but requires no additional storage.
For a typical configuration of 64&&64 grid points,
with a grid size of 0.6 to 1.2 fm and a time step
interval of 0.6 to 1.5 fm/c, depending on the
actual input, output, and other special imple-
mentations, this 3D code requires only 3 to 3.5
cpu second per time step on the 360/91 computer
at Oak Ridge National Laboratory.

This can easily accommodate studies of heavy
systems such as 2osPb+2osPb. For low energies
(E/A &50 MeV), a typical reaction requires 400
to 600 time steps. For energies over 100 MeV/
nucleon, however, it takes only about 100 to 200
time steps. Hence, from a practical point of
view, such hydrodynamical calculations are well
within the realm of possibilities of present com-
puting facilities.
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