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A modified version of the usual single channel N/D equations is presented, which makes possible a
mathematically sound parametrization of the effect of those distant parts of the left hand cut and right hand

cut for which the discontinuities are not known. A conformal mapping technique is used to develop a
generally valid parametrization involving only real parameters. An application to the Phillips plot of triton

energy versus doublet scattering length is given so as to demonstrate the superiority of the present scheme

over ones used earlier by us.

NUC LEAR REACTIONS Parametrization of unknown discontinuities in N/D
equations, Phillips plot.

I. INTRODUCTION

The N/D method was devised by Chew and Man-
delstam' in order to overcome the difficult
problem of solving the nonlinear singular integral
equations that describe the analytic structure of
partial wave scattering amplitudes. The method
immediately found widespread application. 2 In
the last decade the method has been used exten-
sively in the few-body problems of nuclear
physics. 3

In its simplest form the N/D method allows one
to construct single-channel partial wave ampli-
tudes that are analytic in the complex energy
plane except for a right hand cut (RHC) asso-
ciated with two-particle unitarity, separated from
a left hand cut (LHC) whose discontinuity is ob-
tained from the underlying dynamics, as well as
bound state poles. One of the earliest extensions'
of the method made it possible to account for de-
viations from single-channel, two-particle uni-
tarity by using inelasticities taken from experiment
or a model as part of the input. Schemes for
handling multichannel, two-particle unitarity have
been in existence for some time now. '~' The
first attempt toward the inclusion of three-parti-
cle unitarity within the N/D framework was made

by Blankenbecler, ' and worked out in detail
shortly the reaf ter .

The presence of three-particle channels com-
plicates the unitarity relations significantly. The
2 -3 and 3 - 3 amplitudes depend not only on the
total energy, but on the energies of the two-parti-
cle subsystems as well. For this reason various
approximate methods 6 "'" have been proposed
for treating the three-particle contribution to the
unitarity equations. In the N/D approach scat-
tering amplitudes are determined by their singu-

larities in the whole energy plane, which implies
that in principle contributions to the unitarity
equations from channels with arbitarily large
numbers of particles must be considered. This
is impractical, therefore one must truncate the
unitarity relations, which means that the RHC is
treated exactly only over a limited energy range.

A similar problem exists for the LHC. In gen-
eral as one moves off to the left, calculation of
the discontinuity across the cut involves proces-
ses in which more and more particles are ex-
changed. In the field theory approach the various
particles exchanged are described explicitly. "
In many of the nuclear physics applications" '

only the nucleon exchanges are put in explicitly,
and the pionic degrees of freedom are absorbed
in form factors or vertex functions. In any case
it is only possible to treat the low energy end of
the LHC carefully. Model calculations '" indi-
cate that it is often necessary to treat a signifi-
cant part of the LHC correctly in order to obtain
satisfactory results.

The purpose of the present paper is to present
a method for parametrizing in a systematic and
mathematically satisfying way the effect of the
distant parts of the RHC and LHC. In recent
calculations on the three-nucleon system, we have
presented methods for parametrizing the effect
of the distant part of the LHC by means of power
series in the square root of the energy, " and in
a variable obtained by a conformal mapping tech-
nique. ' '" However, no systematic treatment of
the RHC was given. We assume the partial wave
amplitude is analytic in the complex energy plane
except for an RHC separated from an LHC, and
possible bound state poles. We also assume the
discontinuity is known across the low energy end
of the LHC, and allow for input of the inelasticity
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parameter over a limited part of the RHC.
Everything else is parametrized by means of a
power series in a variable obtained from a con-
formal mapping technique. The method presented
here is an improvement over our earlier work" "'"
in that it makes it possible to parametrize the
effect of the neglected parts of both the RHC and
LHC by means of one mathematical form.

The outline of the paper is as follows. In Sec.
II we present a modification of the usual N/D
equations which is convenient for our purposes.
In a sense these modified equations are a mixture
of those that have been in the literature for some
time. ' ' Here we also develop the conformal
transformation which is the basis for our para-
metrization scheme. In Sec. III we present an
application of our method which demonstrates the
improvement over our earlier work. ' '' '7 Our
application is to the well known Phillips plot
which summarizes the relation between the triton
binding energy and the doublet scattering length.
Section IV gives a brief summary as well as sug-
gestions for future work.

ImF(z) = Imf(z)/R(z), z & -a .

We assume that Imf(z) is known on the interval
-b &z &-g. We write

F(z) =N(z)/D(z), (6)

with N(z) carrying the entire LHC and the RHC
for z&c, while D(z) carries the RHC for 0 &z &c.
From Cauchy's theorem it follows that we can
write

A'(*)= (f—+J )dy
™I

(7)

C

D(z) = 1+— dy)/, y(y —z}
'

In writing these equations we have assumed that
N(z) -0 and D(z) —constant when

l
z

l
—~. Also

we have chosen D(0) = 1. From (4) and (6) we
have

ImN(z) = D(z) ImF(z), z &-a, z &c

II. THE METHOD
ImD(z) = -z( N(z), 0 &z &c . (10)

We shall use a dimensionless energy variable
z, defined so that z =0 is the elastic threshold
and z = 1 is the first inelastic threshold. We
write the elastic scattering amplitude in the form

f(z}= (2)e '6 —1)/(2iz' )

Using the above equations, putting (7) into (6), and
interchanging the order of integration we find the
following equation for D(z):

where

f(z) 1 1
R(z) 2iz'/2 R(z)

(2)

where 5 is a real phase shift, g is the inelasticity
and has the value g=1 for 0 &z &1 and satisfies
g &1 for z &1. We assume g is known on the in-
terval 1&z&c. We also assume that f(z) is a real,
analytic function of z with an RHC beginning at
z=0, an LHC beginning at z=-a (a&0), and pos-
sible bound state poles on the real, negative z
axis. We introduce an effective amplitude F(z)
through the relation

where

with

I(z(/2) 1 ' dy
y(/2(y z)

'

Carrying out the integration in (13) we have

1/2
ci/2+ zt/2

I(z ) (/2 zi/2 ln ct/2 z2/2

(12)

(13)

(14)

iz'/ ' In2)(y)R(z) = exp- dy (/2
(y - z} -

' (3)

The function R(z) has one RHC for z ~ 0 and an-
other one for 1 &z &c, but no LHC's. It has been
defined so that F(z) satisfies a two-body like uni-
tarity relation for 0 &z &c, i.e.,

ImF '(z) =-z'", 0&z&c.

Whenever we write the imaginary part of a func-
tion on one of its cuts, we shall mean the value
just above the cut. On the LHC we have

Hecause of the logarithm, I(z~ ) is a multivalued
function in the z' ' plane. We choose the branch
defined below,

&/2+ z&/2 I

ln (/2 (/2 )I
= In(22/1 () + i(82 8(+ 2/)c —z

-m&8, &m

where r„r2, 8, and 8, are shown in Fig. 1. This
gives an RHC and an LHC in the z' ' plane, be-
ginning at z' =c' and z&/2 -ci/2, respectively.
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see that as z' approaches yy', c &y &~, through
negative, imaginary values, the numerator in (12)
does not vanish, so we get singularities on both the
positive and negative, real z' ' axis from the van-
ishing of the denominator in (12). These singular-
ities contribute to the discontinuities of D(z)
across L and R.

It is not difficult to determine the discontinuity
of K(z'/', y'/~) across the various cuts. The re-
sults are

(zl/2+ e,y1/2) —K(z1/2 —z,yi/2)

=4zb(y —z)/z'/', z' ' on A (18)

FIG. 1. z plane.

We denote the location of the RHC and LHC by R
and L, and we distinguish the two sides of the cuts
by plus and minus signs. The values of I(z'/')
just above and below these cuts are given by

zi/2+ c'/' l
I(+z +ie) = — f/p ln f/g f/7 [ z on Ri/2 ~ C i i/2

7rz z —c j
(16)

K(+z + iz y ) —If(+z —ie, y

z'/' on R. (19}
z y —z+z&

The corresponding discontinuities in D(z) —= d(z' ~)

are obtained from (11) and are given by

d(z' + e) —d(z —e) = -4z' ' ImN(z), z' on A

(20)

i/2f 2 2z 1 z +I(+z' ' —ie) = + f/t f/p ln f/p f/pz 'ljz z
d(+z' + ie) —d(+z' ' —iz) = +2iz' N(z v iz),

z' ' on R. (17)

Throughout we assume 0 &«& 1. It should be kept
in mind that if z is just above (below) the real,
positive z axis, z' ' is just above the real, positive
(negative) z'/~ axis. Using this it is easy to verify
that the function defined by (14) and (15) has the
singularity structure in the z plane implied by
(13), namely, a cut on the real z axis for 0 &z &c
and no other singularities.

We now discuss the singularities of D(z) in the
z'/ plane. From (11) we see that these are de-
termined by the singularities of the kernel
E(z'/, y'/ ). Singularities can arise from the
branch cuts at L and R in I(z'/'), as well'as
from the vanishing of the denominator in (12},
i.e., when z' '=+y' '. It appears as if we have
singularities given by z'/'=+i

~y ~'/', with -~ &y
&-p, but actually there is no singularity for z'
=+i ~y ~

'/~, since the numerator in (12) vanishes
when this occurs. The singularity given by z' '
= -i

~
y

~

'/, -~ &y & -a, leads to a branch cut in
D(z) on the negative, imaginary axis as shown in
Fig. 1. We denote its location by P. In deter-
mining whether or not there are singularities
given by z' 2=+y' ', with c &y &~, we have to be
a little careful. In (12), I(y'/') is given by (16)
with z=y. With this in mind and using (17), we

D(zoic) =d(+z'/ ), 0&z'/ &c'/' (22)

LS (z + ie) = D(z —iz),
which when combined with (10) leads to

N(z) = —[d(z'") —d(-z"')I/(»z"') ~

(23)

(24)

Since the right hand side of this equation has a
well defined analytic continuation, it can be used
everywhere. It is easy to verify this relation by
using (9), (11), (12), and (14) to reproduce (7).
This relation can be used to check (20) and (21),
by expressing the discontinuities of N(z) across
its LHC and RHC in terms of d(z' ).

By assumption ImF(z) is not known for z &c
and z & b, so we write -(11) in the form

Z
0

D(z) = 1+ U(z'/ ) —— dy K(z', y'/ )D(y) ImF(y),
7T

(25)

where U(z'/~) is an unknown function. From the

z'/ on R. (21)

Here we have also used (7) and (9). It should be
noted that the z appearing in the argument of 1V in
(20) and (21) is on the physical sheet.

For z real, we have
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discussion above, we know that U(z'/') is an ana-
lytic function in the z' plane, except for the cuts
L, R, and B in Fig. 1, where B starts at z'
=-ib' . Also, we know that

U(0) =0. (26)

This information can be used to obtain a mathema-
tically meaningful parametrization of U(z'/').
For example, if b &c, U(z'/') can be expressed as
a power series in z' ' which will converge when

~z
~

&5 A.more sophisticated parametrization
can be obtained by a conformal mapping tech-
nique. If u/(z'/2) maps a region T of the z'/'
plane, in which U(z'/') is analytic, conformally
onto the interior of the unit circle in the zo plane,
centered on the origin, then the series

I/2 I/2

—u(-ib'")

FIG. 2. u plane. L'„L ', . . . are the images of L„
J ~ ~ ~ ~

U(z'~) =pc„m"(z' )
n~o

(27)

converges for z' ' in T. The c„'s which are con-
strained by (26) can be determined by fitting the
amplitude obtained from (25) to experimental in-
formation. In general, it is not necessary to
completely solve (25) every time a new choice for
the c„'s is made. If a quadrature rule is used to
replace (25) with a matrix equation, only one ma-
trix inversion need be carried out, since the c„s
appear in the inhomogeneous term. In some sit-
uations it is possible to eliminate the c„'s expli-
citly by using the techniques of Ref. 16.

Here we shall develop a transformation that
maps the entire z' plane cut along L, R, and B
onto the interior of the unit circle in the se plane.
This leads to a series for U(z'/'), which con-
verges everywhere in the cut z' plane. We
carry out the mapping in three stages. First,
we map the cut z' plane onto the upper half of
the u plane, cut along part of the imaginary axis,
with the transformation

(Z1/2) —Z1/2+ (Z — )1/2

Z1/2 ~ (& & )1/2ZI&81k72&/2 0 &e &2z

-m &8, &m

(28)

where p„p„Q„and Q, are shown in Fig. 2. The
cuts along L, R, and B are now spread out along
the real v axis, as shown in Fig. 3. Finally, by
means of the linear fractional transformation, we
map the upper half of the v plane onto the interior
of the unit circle in the Io plane (

~

w
~

& 1) . We
have

0+ i2/(Z" ')
w(z ) = . , 1/2, g&0.f —ivjz )

' (3o)

We have arranged things so that the line Re(z' )
=0, b'/2 &Im-(z'/') &~, is mapped onto the line
Im(w) =0, -1&Re(20) &1, with z'/2=-ib'/2 going
into w=1 and z' '=i~ going into go=-1. The
cuts are completely wrapped around

~
wi = 1.

It is straightforward to show that for real posi-
tive z, we have

w(-z' ') =m~(z'/') -c' '&z'/'&c' ' (31)

which according to (22) and (23) is also a property
of d(z'/'). From this it follows that the coeffi-
cients c„ in (27) are real.

where ~„r&, 8„and 8, are shown in Fig. 1. As
indicated in Fig. 2, the cuts along L and R have
been opened up along the real u axis, and the cut
along B has been mapped onto the imaginary
u axis between 0 and u( ib'/ ). No-w we map the
cut, upper half of the u plane onto the upper half
of the v plane by means of the transformation

—Iu(-ib ) I

n
LJ

II II
I — I
L I

- v(c' )

lu(-ib )1
CiII II

Ll+ 1 4 I \+

( i/2)

( 1/2) [ 2( 1/2) 2( )51/2)P /2

(p p )1/2zi(g1+y2) /2

-II/2&1), , 1f, &32//2 (28)
FIG. 3. v plane. L +', L", .. . are the images of

IL+j L~ e ~ ~ ~
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III. AN APPLICATION

U(Z /2) Z1/2 (32)

where c& is real. " Since we are completely ig-
noring three-particle unitarity, such a series
converges for' ~z

~

(b. Adjusting c1 to a„we
find E, = 7.74 MeV which is to be compared with
the exact result of E, = 8.48 MeV. The range of
z values we are dealing with is -12.134 & z &0,
so there is no reason to expect the approximation
of keeping the leading term of the series to be a
good one.

For our next calculation we use the conformal
transformation of Ref. 16, which maps the z' '
plane, cut along the negative imaginary axis from
-i~ to -zb', onto the interior of the unit circle
in the w plane, centered on the origin. The map-
ping is given by Eqs. (3.22) and (3.23) of Ref. 16
with d=(2b) '/4, and maps b& z - 0 onto --0.0864
&s/ &0.0864. We expand U(z'/') in powers of
w(z' ') and keep the two leading terms, i.e., we

Here we shall apply the N/D approach to the
three-nucleon system in an attempt to calculate
the triton energy from a knowledge of the doublet
scattering length and the discontinuity across the
low energy end of the LHC which for this system
begins at z= ——,'. For the discontinuity we shall
use the reference f/otentfal model of Refs. 16 and

17. This model for the discontinuity includes
contributions from the one- and two-nucleon ex-
change cuts and from the b ' cut. In Ref. 16 the
discontinuities are given by Eqs. (3.5), (3.6), and

(3.13), and are displayed in Fig. 2. The reference
potential model gives the discontinuity out to b

=12.134. This potential is a spin-dependent, cen-
tral, s-wave separable interaction which has been
fitted to the low-energy two-nucleon data. '6 It
reproduces the experimental triton energy of
E, = 8.48 MeV when used in the Amado-Love-
lace ' equatj. ons, and leads to a value for the
doublet scattering length of a&

——0.986 fm.
We consider three N/D calculations in order

of increasing sophistication. In each of the cal-
culations there is one free parameter which is
adjusted to the above value for a„and then a
value of E, is obtained by locating the zero of the
D function. In our first two calculations we set
the inelasticity parameter g = 1 and the high-
energy cutoff parameter c =~. This means we
have completely ignored the effects of three-par-
ticle unitarity, and are essentially treating the
three-body problem as a two-body problem. In
our first calculation we follow the treatment of
Ref. 14 and expand U(z'/') in (25) in powers of
z' and retain only the first nonvanishing term,
i.e., we write

write

U(z' ) = c1[s/(z' ') —s1(0)), (33)

zo(ib'/') = -I/(0),

which when solved gives

g= [4(1 —d ) b(1+b)]' /d

with

d=(1+ 5) /

(34)

(35)

(36)

l

8-

7—

i l l

0 2.0

10—

j

I.5
I

—I.O -0.5
i

I.O05
a (fm)

FIG. 4. Triton energy as function of doublet scatter-
ing length. Cross hatching from Ref. 25. Dashed line
and solid line use mappings of Ref. 16 and this work,
respectively.

where we have used the constraint (26). Adjusting
cq to a&, we find E, = 7.95 MeV, which is an im-
provement over the previous result.

For our last calculation we choose c = 1 which
is the breakup threshold, so we do not need any
inelasticities in (3), and, of course, R(z) = 1.
From (12) and (14), it follows that the kernel in
this calculation is different from the one in the
previous two calculations where c =~. Here we
write U(z'/') in the form (33), and use the mapping
described in Sec. II for co(z'/'). We choose the
parameter t' in (30) so that the interval b& z &-0
maps onto an interval of the real w axis for which
the end points are as close to the origin as possi-
ble. This leads to the condition
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Adjusting c& to a&, we find E, = 8.39 MeV, which
agrees to about 1$ with the exact value.

We have carried out ' calculations using other
choices for the parameters in the reference po-
tential, thereby producing different "exact" values
for E, and a2. When we fit to these values of a2
and compare the approximate N/D results for the

E,'s with the exact results we find the same trend
as reported above. Thus the method described
in Sec. II is an improvement over the ones used
previously, """at least insofar as the type of
calculation reported here is concerned.

Figure 4 shows two sets of N/D calculations
in comparison with the Phillips plot data as
summarized by Kim and Tubis. ' The dashed and
solid lines were obtained by following the methods
used above for the second and third calculations,
respectively. It is seen that the mapping of Sec.
II, which takes into account the presence of the
three-particle unitarity cut, gives consistently
better results than the mapping of Ref. 16 which
ignores this cut.

IV. SUMMARY AND DISCUSSION

We have developed a set of single channel N/D
equations which can be used to calculate partial
wave scattering amplitudes when the LHC and
RHC discontinuities are known only over a limited
energy range. The unknown information is char-
acterized by the function U(z'~') appearing in Eq.
(25). The location of the singularities of U(z'~ )

is known, which makes it possible to parametrize
it in a mathematically sound way. We have pre-
sented one parametrization based on a conformal
transformation. Our representation of U(z' ),
which is by no means unique, is valid everywhere
in the cut z' plane, and involves only real para-
meters. Of course one is usually not interested

in calculating everywhere in the complex plane,
so it is not necessary to map the entire cut z'
plane into the unit circle. This possibility allows
for a, wide variety of representations for U(z'~').

As it stands our method is of use in carrying
out uncoupled phase shift analyses. The con-
straints implied by knowledge of the low-energy
LHC structure can be useful in eliminating the
ambiguities that can arise in such analyses. Also,
since the N/D method gives the amplitude over a
range of energies, it is of value in checking the
consistency of phase shifts obtained at different
energies.

The application presented in Sec. III indicates
that our scheme is useful in checking the consis-
tency of binding energies and phase shifts. Our
earlier work' suggests that the type of parame-
trization considered here can lead to reliable
extractions of asymptotic normalization parame-
ters from experimental data.

In our scheme it is straightforward to analyti-
cally continue the partial wave amplitude into the
lower half of the z' plane or, equivalently, onto
the unphysical energy sheet. This makes it quite
easy to determine the positions and strengths of
virtual state and resonance poles. We have al-
ready done a successful virtual state determina-
tion along these lines with our earlier mapping. "

It should be possible to generalize our method
so as to allow for multichannel, two-particle uni-
tarity, and Coulomb effects. This would give the
method an even larger range of applicability.
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