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Transition operators for the collision of two clusters composed of an arbitrary number of charged and
neutral particles are represented as a sum of pure Coulomb and Coulomb-modified short-range operators.
Sandwiching this relation between the corresponding channel states, correct two-fragment scattering
amplitudes are obtained by adapting the conventional two-body screening and renormalization procedure.
Furthermore, integral equations are derived for off-shell extensions of the full screened amplitudes and of
the unscreened Coulomb-modified short-range amplitudes. For three particles, the final results coincide with

those derived previously in a different approach. The proposed theory is valid for pure Coulomb scattering
as well as for systems containing, in addition, two-body interactions of short range.

NUCLEAR REACTIONS N-body scattering theory for charged particles. Scat-
tering amplitudes for two-fragment collisions defined via screening and renor-
malization procedure. Derived effective two-body integral equations. Formal-

ism also applicable to atomic problems.

I. INTRODUCTION

In recent publications three-body scattering pro-
cesses with two' ' or three' charged particles have
been investigated by employing the quasiparticle
method' which consists in replacing the original
three-body integral equations by fully equivalent
Lippmann-Schwinger (LS)-type matrix equations
for effective two-body operators. By making use
of the close analogy between this effective two-
body formalism and the well-established genuine
two-body Coulomb theory, scattering amplitudes
for (in)elastic and rearrangement collisions of two
fragments could be defined, and at the same time
manageable integral equations for their calcula-
tion have been obtained.

In the present paper we develop an alternative
approach which is based on the fundamental opera-
tor relations between the relevant quantities of the
problem. Hereby, the previously derived expres-
sions for the on-shell scattering amplitudes are
reproduced in a direct and transparent manner.
Consequently, their generalization to collisions of
two fragments consisting of an arbitrary number of
charged particles' '4 becomes straightforward.
We, moreover, show that these amplitudes may
again be calculated from manageable integral equa-
tions.

he general idea of our procedure can be stated
in the following way. As suggested by the results
of Refs. 1-4, which are very much in accord with

physical intuition, a center-of-mass Coulomb po-
tential, acting between the total charges of the two
fragments concentrated in their respective centers
of mass, is introduced besides the original Cou-
lomb interaction. We then derive a representation
of the full transition amplitude as a pure center-of-
mass two-body Coulomb amplitude, plus a Cou-
lomb- modified short- range transition operator
sandwiched between the bound state wave functions
of the fragments and between the two-body Cou-
lomb scattering states associated with their rela-
tive movement.

As in Refs. 1 to 4 the derivation of this repre-
sentation is first performed for screened Coulomb
potentia1. s. Applying then the usual two-body re-
normalization and limiting procedure, ""the oc-
curring two-body Coulomb scattering amplitudes
and states go over into the corresponding, explic-
itly known, unscreened quantities. However, no
renormalization is needed when performing the
zero-screening limit in the Coulomb-modified
short-range transition operator sandwiched be-
tween bound states. For, in this expression there
occurs, besides any short-ranged potentials, the
difference between the original Coulomb interac-
tion and the center-of-mass Coulomb potential.
Expanding this difference into a multipole series
with respect to the relative distance of the two
fragments, the first nonvanishing term is the
dipole term. Since it decreases sufficiently fast
for large spatial separations, the transition to in-
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finite screening radius, indeed, poses no problems
in this amplitude. Qf course, the justification of
the multipole expansion rests on the localization
property of the cluster wave functions.

The screening technique used to define the rele-
vant transition amplitudes represents also an ap-
propriate practica/ method. For, it allows us to
apply any method of short- range collision theory
to calculate fir st the screened scattering amplitude s,
and then to perform after renormalization the zero-
screening limit, e.g. , numerically. ' One of these
short-range methods is the quasiparticle approach of
Ref. 5 whic h has the advantage of providing us with
exact integral equations for off- shell extensions of
the two-fragment amplitudes considered. Hence,
we describe its application to the present problem,
reproducing in this way the integral equations
given for three particles in Refs. 1-4, and deriv-
ing their generalization to arbitrary particle num-
bers. In addition, the quasiparticle method leads
to a second approach which is based on integral
equations directly for the unscreened Coulomb-
m odif ied short-range transition amplitude s .

The paper is organized as follows. The simple
example of the scattering of two particles interact-
ing via short-ranged plus Coulomb potentials is
recalled in Sec. G. Two-fragment collisions of
three particles are dealt with in Sec. III, utilizing
the close structural analogy of the three-body
formalism of Ref. 5 with the two- body theory. 'The

generalization to the scattering of two fragments
built up of an arbitrary number of charged partic-
les is contained in Sec. IV. Quasiparticle equations
for the full screened amplitudes and for the un-
screened Coulomb- modified short-range ampli-
tudes are described in Sec. V for three, and in
Sec. VI for & particles.

H. TWO-BODY COLLISIONS

We recapitulate in this section some aspects of
the scattering theory of two charged particles" in

a way which suggests straightforward generaliza-
tion to two-fragment arrangement collisions with
an arbitrary number of (charged) particles.

A. Operator relations

Let the Hamiltonian 8'R' be composed of tiie
kinetic energy part IIp, a short- ranged potential
y, and a screened Coulomb potential y",

~(R) —~ + yS + yR
0 (2.1)

with R denoting the screening radius. Then, the
full resolvent, the free, and the "Coulomb-dis-
torted free" resolvents, are given by

G'"'(z) =(z —Ho —V —V") ' =(z —H'"') ', (2.2)

G, (z) =(z-H, ) ',
G"(z) = (z -H, —V") ' .

(2.3)

(2.4)

Factoring out from O' R' the resolvents Gp and G",
respectively, and from G" the resolvent Gp, by
means of

G =Gp +GQT Gp

R +GRII(SR

GR =G +G ERG

(2 5)

(2 ~ 6)

T(s) —Vs + VB + (Vs + BV) (GB)( V+sVR)

ySR yS + ySG(R) yS

rl(R yR + yRgR yR

(F 9)

(2 ~ 10)

(2 ~ 11)

B. Zero-screening limit

We are now going to perform the zero-screening
limits of the transition ampl. itudes obtained by
sandwiching the operators (2.9)-(2.11) between
plane waves ~p). This is unproblematic for T
since in its definition (2.6) the singularities of G"
corresponding to the Coulomb distorted fr-ee move
ment of the particles are separated off from Q'R)

~

In fact, the explicit representation (2.10) shows
that the full resolvent O' R' appears in
(p'~Ts (E i0)+(p) between states Vs ~p) which are
norm alizable and smooth under appropriate condi-
tions on y . Thus, the existence of the limit g
-~, which is denoted by (p'(Tsa(E+i0) ~p), is
gu ar anteed for all values of the initial and final
momenta.

In contrast, the amplitudes g 'R' and II(R are ob-
tained by extracting from the respective Green's
functions only those singularities which correspond
to the undistorted free relative motion. Since such
an unperturbed movement does not exist in the
presence of unscreened Coulomb potentials, the
performance of the limit R -~ requires the well-
known renormalization procedure. " " In fact, the

the full transition operator T'R', the Coulomb-
modified short- range operator 7 ", and the pure
Coulomb transition operator gR are introduced.
These definitions emphasize the basic fact that ap-
propriate singularities of the Green's functions
have to be removed when going over to 7 opera-
tors. Moreover, the fundamental interrelationship

T'"' = T" + (1+T"G,)T'"(1+G,T") (2.8)

is obtained in a particularly simple manner by
equating the right-hand sides of (2.5) and (2.6), and
by replacing the occurring resolvent G by the
representation (2.7). Let us recall, however, that
the definitions of the various g operators via Eqs.
(2.5)-(2.7) are equivalent to the more conventional
ones
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Ips& ) = [1+Go(Ejio)T (Etio)] Ip) . (2.13)

When these wave functions are multiplied by the
appropriate renormalization factors Z~"~'(p), and
the amplitude &p'IT"(E+to) Ip) by Zs '(p), the un-
screened Coulomb scattering states Ipc& "& and the
Coulomb amplitude Tc(p', p), respectively, are re-
covered in the zero screening limit. (For in-
stance, in the case of exponential screening, V"(r)
=e,e, exp(-r/R)/r, we have Z„(p) =exp[ 2ie,-e2(p/
p)(ln2pg —C)]. Here, e,. is the charge of particle
i, and C=0.5772. . . the Euler number. ) Hence, the
limit & -~ exists in both terms on the right-hand
side of Eq. (2.12) after renormalization by Z„'(P),
thus providing the full transition amplitude for a
short-. ranged plus an unscreened Coulomb potential
according to

T(p' p) =T'(p' p)+ & pc' 'I 7'"(z+to)Ip&;&&.

(2.14)

C. Integral equations

These considerations immediately suggest two
different approaches of how to proceed in practice.
One of them consists in solving the partial-wave
LS equations for 7'. R' and g for finite values of
A, and subtracting the result of the latter from
that of the former. Summing up these partial-wave
contributions yields the Coulomb-modified short-
range amplitude in the (screened) Coulomb repre-
sentation, & ps' 'I Ts"(E+io) Ip&s~&. Renormalizing
then by Zs '(p) the corresponding on-shell ele-
ments, and repeating the calculation for succes-
sively increased values of B, the transition to
large ("infinite") screening radii is performed
numeric ally."

Alternatively, we can calculate directly the un-
screened Coulomb-modified short-range amplitude
occurring in (2.14) by making use of the LS equa-
tion

Z SC yS + ySgCTSC (2.15)

and of the analytically known Coulomb wave func-
tions. Equation (2.15) follows from (2.6) or (2.10)
in the zero-screening limit which exists according
to the above discussion.

In both methods we then have to add the explicit-

momentum representation of the relation (2.8)
takes on the energy shell [p'=p=(2t&E)'~', with t&

being the reduced mass] the form

& p I
7'& &(E+;0)I p&

=
& p I

7 (z+ io) I p&

+&p," 'I7'"(E+to)Ip' &,

(2.12)

with the sc'reened Coulomb scattering states de-
fined according to

ly known Coulomb amplitude Tc(p', p) in order to
get the full amplitude via (2.14).

III. SCATTERING AMPLITUDES FOR TWO-FRAGMENT
COLLISIONS OF THREE CHARGED PARTICLES

For short-ranged potentials the three-body the-
ory was formulated in Ref. 5 in structural analogy
to the two-body case. The same concept is now
being used to extend the considerations of Sec. II
to three particles interacting via potentials with
Coulomb tails. We remark that the pure Coulomb
scattering is contained as a special case in our
treatment.

«.-"'(z) = (z —a, —g v,' —g v, )
'

v

—(z ff &R))

G& &(z) =(~-a, —v.'- v". ) ',
gs(z) =(z a, v.'-—v".——H) '.

(3.3)

(3.4)

(3.5)

We emphasize that in two-fragment reactions of
the three particles the channel resolvents (3.4) and
(3.5) play the same role as the resolvents (2.3) and
(2.4) in the two-elementary particle case. This
fact suggests defining the full transition operators
UB~~, the Coulomb-modified short-range operators
U&s", and the pure center-of-mass Coulomb opera-
tors ts, in analogy to Eqs. (2.5)-(2.7), via

G(R) g G(R) +G(R) U(R)G(R)ga tX Pn fX

g(R) g g R + RUSRgR

n. R = g (R) + C (R) t RC,(R)
& CX Cf fX fX Cf

(3.6)

(3 7)

(3.8)

A. Operator relations

The interaction in the total Hamiltonian
I

II' ' =H +g V'+g V =P + V'+ V" (3 1)
y

is assumed to be a superposition of short-ranged
pair potentials P and screened Coulomb potentials
V"„acting between particles c&, p t y (here and in
the following, the familiar cyclic notation is used).

Let us introduce, in addition, the screened Cou-
lomb interaction vR„between particle n and the
center of mass of particles P and y. In coordinate
space this potential reads

v„"(p„)=e (e8+e~)f„"(p )/p„, (3.2)

with p denoting the corresponding relative coor-
dinate, and e~, e, e„ the charges of the three par-
ticles."" The screening function fg( p„) has to be
suitably chosen, e.g. , exponentially decreasing.
Now, the full resolvent, the channel, and the Cou-
lomb-distorted channel resolvents, are introduced
as
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Equating the right-hand sides of (3.6) and (3.7) and
inserting the representation (3.8) of g" we end up
with the fundamental relation

U( & —6 t + (1 + t G&R))U R(1 +G&B) ts) (3 9)

which generalizes Eq. (2.8).
We mention that in writing the definitions (3.6)

and (3.7) of Ug) and Ug", respectively, we have
followed the idea of Ref. 5, namely to introduce
transition operators by extracting subsystem sing-
ularities from the full resolvent in a most sym-
metric way. Similarly to Eqs. (2.9)-(2.11), the
various transition operators can also be represent-
ed in the explicit forms

Let us first consider the action of

[I+G&")(E„+i0)t (E stO)] = [I+g"(E„+iO)v„]
(3.15)

on 14 „&. For this purpose we associate with the
operators vg, G„'"'(z), and gz(z), which act in the
three-body space, potentials b~, "free Green's
functions" 8, (z), and "Coulomb Green's functions"
I "(z), respectively, which are restricted to the
relative momentum states lq„). I.e. , we define"

(3.16)

(3.17)

G{")«+ v(R&+ v( )G{»v{&)
Ba Pln a 8 8

UsR 6 (P)-) + (P(R) R)

+ (P(R& R)G(R) (71&R) R)

(3.10)

(3.11)

(3.12)

(3.18)

where Q„are the relative momentum operators
with eigenstates lq ). Moreover, two-body Cou-
lomb transition operators are defined by

In (3.10) and (3.11) the channel potentials P(R) act-
ing between the colliding fragments are

v(~& = v'+v —v'- v" = v'+ v"a a ' (x 7 y'
)( &CX y&a

(3.13)

And, as usual, we have 5&a =1 —6«. Note, that the
lack of symmetry of (3.10) under interchange of o.'

and p is only apparent. For, we have 6z„G'") '
+ VB{")=68.GH{') '+ V{"). A slmllar remark applies
to (3.11). Of course, as in any short-range theory
we could work also with unsymmetric post and
prior transltlon operators24 US{Ra)~, which are re-

to U(R) via U(B) 6 G&R) ) + U)R)+ 6 G)R)
+ V&~) . Analogously, post and prior operators
Us„' can be defined according to U~zz =6&)„(g"„)'
+U8„"' =6&)„(g&)) '+ U()„" . All these operators
yield the same on-shell amplitudes when introduced
in the respective expressions of relation (3.22)
given below.

B. Zero-screening limit

The limit A ~ is now investigated for the on-
shell matrix elements of (3.9) between channel
states"

(3.14)

belonging to the energy E„„=q„2/2M„+E . Here,
) is the mth bound state wave function of the

pair (ii, y) with binding energy E„, and the plane
wave lq ) describes the free motion of particle ()&

relative to this bound state (M„ is the correspond-
ing reduced mass). To simplify the notation the la-
bel R is suppressed on the states (3.14) and on the
energies to which they belong.

t))( )
—t)R + uR 9)(( )u)( (3.19)

All these quantities satisfy, of course, the usual
resolvent and transition operator LS equations as
known from the two-body theory.

With these definitions we find

I:I+8".(E..+ iO) v."]
I ~&..& I q.)

2

=It..»+9" + 0 u" lq. &

2 2

a a

(3.20)=14..&4;~ lq.) =
I 4..& 1 q.",,'&

That is, [1+G(R)(E„+i0)t"„(E„xiO)]acts on

IC „&as a M&)(lier operator u&'z& with respect to

lq ), mapping the latter onto screened Coulomb
scattering states

I
q''„') which characterize the

Coulomb-distorted free movement of the two frag-
ments. We furthermore see that

& q. I & y„„lt„(E + i0)1$ ) I q„)

=6„(q„'Itz(q„'/2M +iO) lq„&

=6. (q' I()"lq",z)&

=6 tg(q', q ) (3.21)

O'I &A.IU'"'(E .+ o)14.&lq.&

=6&)„6„„t„"(q',q„)
+ (q&) „- I(g()„IU&)."(E.„+to)I&1)a-& Iqh;s)&

(3.22)

represents the screened two-body Coulomb scat-
tering amplitude for particle e off the center of
mass of particles P and y. Sandwiched between
channel states (3.14), our basic relation (3.9) con-
sequently reads on the energy shell
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V —v = g V„+ g V„—v„=V„+V —v
y gaea y sea

(3.24)

but holds for the Coulomb terms, too. For, in po-
sition space the contribution of the latter is

pa ra Pg -&a am qa

=[e„es(r„'—p„')+e e„(r8 ' —p„')]
e&qa ~n

&1 ad�(r(x} (2v)3/2 (3.25)

with the relative coordinate r„between particles
&2 and p being expressed as a linear combination of

p and r ,

r„=p — "- r„(a,P, y cyclic)
m~+ m„

and similarly for re (see Fig. 1). For sufficiently
fast (e.g. , exponentially) decreasing bound state
wave functions P„(r ), a multipole expansion of
ry

' and r&
' in powers of pa

' is justified. Thus,
in fact, the first nonvanishing terms of (r

(3.26)

ea

erat ep/ry

ea

e„ey /rp e[ep+e&)/p&x

ey

ep+ev

FIG. 1. Graphical representation of the difference be-
tween the Coulomb channel interaction P and the Cou-
lomb potential v acting between particle o.'and the cen-
ter of mass of particles p and p, in position space [cf.
Eq. (3.25)].

Proceeding as in Sec. II, we first demonstrate
that the limit R -~ can be performed without any
problems in the effective two-body ope2ators
& gs„l Usssl&t„&, the resulting unscreened quantities
being denoted by & )8„1Ussc

1 g „&. This is easily
demonstrated with the help of the explicit repre-
sentation (3.11) which yields

& qsl & Ss.l Ug."I e..& 1 q.&

='
& qs i&08.1[68 (z") '+(vI"'- ~e)l lt -&lq &

+ & q'«I & ee. I
(v&2"' v8'-)&.""'(v'„"' v".-)1 y„.& 1 q„) .

(3.23)

As in the momentum representation of the corres-
ponding two-body equation (2.10), the full Green's
function Q&"' occurs here between states (V~&"&

—v~) lg„m& 1q~) which are normalizable, a proper-
ty which is shared even by their zero-screening
limits (V„—v ) 1 g „)1 q„). This is obvious for the
short-ranged part ~as of

—p„') and (r8 ' —p ') are of the order p
herewith the proof of our statement is completed.
Consequently, when the screening radius goes to

infinity, divergencies can originate in (3.22) only
from the t&vo-body amplitudes i"„(q„',q„) and scat-
tering states lq'„'„'). These divergencies, however,
can be eliminated by the renormalization proced-
ure of Sec. II. In fact, with the renormalization
factor Z„„(q„)defined as in the two-body case,"
we obtain the on-shell two-body Coulomb amplitude
for scattering of particle e off the center of mass
of particles p and y via

t„"(q„',q„)Z„„'(q„)~ tc(q„', q„), (3.27)
R~~

and the corresponding Coulomb scattering states
via

(3.28)

Thus, multiplying the whole equation (3.22) by
Zs'st2(q8)Z '~'(q }, we arrive in the limit R-~ at
the representation

»mZ2'sl (q2)&q21&(2. 1U2"'(& .+i0&I( .&Iq &

68=6 „ic„(q q„'„,)

+&q8& '1&0 „1U".(& +i0)14 .&Iq&

=r,„„(q Bq ) (3.29)

for the transition amplitudes describing two-frag-
ment processes of three charged particles.

Of course, our formalism remains valid if one
of the bound particles in the incoming and outgoing
states is neutral. This case has been discussed in
detail in Ref. 3. Only the corresponding charge
has to be set equal to zero in the above formulas.
Furthermore, E q. (3.29) simplifies considerably
if the bound state or the elementary particle in the
initial or in the final state is neutral. 'Then, the
pure Coulomb amplitude is absent and the corres-
ponding Coulomb scattering state has to be re-
placed by a plane wave. If, in particular, both in
the initial and in the final state, one of the frag-
ments is neutral, the limit A -~ exists in the ar-
rangement amplitudes without renormalization,
i.e., no screening is necessary at all and conven-
tional short-range scattering theory is applicable. "

Let us emphasize that the basic result (3.29} is
valid also for pure Coulomb scattering, i.e., if
V$ V2 V3 = O. For, our treatment yields also in
this case a splitting of the interaction between the
two fragments irito a part which is of short range
[cf.Eq. (3.25)] and the long-ranged Coulomb po-
tential o~. In other words, even zoithout short-
ranged pair potentials p„our formulation of two-
fragment collisions of three particles is structur-
ally equivalent to the genuine two-body problem



with a Coulomb plus a short-ranged interaction,
as discussed in Sec. II.

rV. GENERALIZATION TO N-PARTICLE SYSTEMS

For two-fragment collisions the formalism de-
veloped in Sec. DI can be extended to arbitrary
particle numbers in a straightforward manner. 6

(4.1)

with the short-ranged potentials P,-j =p&, and the
screened Coulomb potentials V„. is split, accord-
ing to

~(&) —H ~»+ y(&)
a a

into a channel Hamiltonian

(4.2)

H,'"& =Iio+ Q (V)~+V)J)=HO+V, +V,"
j&j

( &j)~a

and the channel interaction

(4.3)

(Vs~+V ) Vs+VR
j&j

(fj) ga

(4.4)

Here, as usual, (ij)c:a means that both particles i
and j are contained in the same fragment of the
partition a.

Denoting by p, the relative coordinate between the
centers of mass of the two clusters of fragmenta-
tion a, we define as in (3.2) the Coulomb interac-
tion v,"between them. In position space it reads
explicitly

~R(p ) Q ) gfR(p ) (4.5)
f(j pa

(Q) ua

'That is, it is obtained by replacing in all potentials
V~j which occur in the Coulomb part V," of the
channel interaction, the relative coordinates be-
tween particles i and j by the center-of-mass vari. -
able p, . This allows us to introduce, besides the
resolvents G(") of a(") and G(") of II("), the gen-
eralization of the Coulomb-distorted channel resol-
vent (3.5),

g R(z) = (z - e&R& —vR) ' (4.6)

Then, analogously to (3.6)-(3.8), transition op-
erators are defined as follows:

(B) —g g(&) + C(&) U(&) G(&)
ba a 5 Sa a

G(R) —6 +R++RUSRQ

(4.7)

(4.8)

A. Operator relations

We denote by a, b, . . . two-fragment partitions of
B distinguishable particles 1, 2, . . . , ¹

'Then, the
total 8amiltonian

g(R) +C(R) ~R+(R)aa a a a a (4.9)

B. Zero-screening limit

Sandwiched between channel states belonging to
the energy E„Eq. (4.10) becomes, by means of a
generalization of the arguments leading to Eq.
(3.22),

& q'. I& ~, l
U'"'(E. '0) I ~.& I q. &

= 5,.tR(q.', q. )

+ & qgR- I& y, l vV(E. +io}lg. & I q.'R» . (4.11}

Here I)t), &
=

I g,"»
I p,' » is a product of the bound

state wave functions of the two asymptotically free
fragments of partition a, and q, their relative mo-
mentum. In order to simplify the notation the
quantum numbers characterizing the bound states
are suppressed Furthe. rmore, tR(q,', q, ) denotes
the Aoo-body on-shell amplitudes for screened
Coulomb scattering of the total charges of the two
clusters situated in their respective centers of
mass, and lft('R» are the corresponding scattering
states. Note that both quantities go over for infin-
ite screening radius into their unscreened counter-
parts t, (q,', q, ) and lq,"c», respectively, after hav-
ing been subjected to the usual taboo-body renormal-
ization procedure [compare Eqs. (3.27} and (3.28)j.

Thus, it remains to be shown that the zero-
screening limit exists for the matrix elements of
the Coulomb-modified short-range transition op-
erator between channel states,

& q&l& 0&"I( |t O'I ~~."I ~t'."&
I 0'."& Iq.& . (4.12}

Making use of their explicit representation, Eq.
(3.11) with a, t) substituting o., ti, we recognize that
for A -~ the full Green's function G occurs sand-
wiched between normalizable states which in posi-
tion space read as

& p. I& x.'" I & x.'"I (V.—6.') l 0.'"&
I 0'."&

I q.&

)&j
(ij)+a

[ 'V„(r„) e+, e, () „'—p. ') J

sq
)& it)(&)(x(&)) (s)(x(s)}

(2R''
(4.13)

:Here, Q) collectively denotes the internal vari-
ables of cluster kof the partition a. Note that the
relative coordinates r,j between particles i and j

Their interrelationship is expressed by an equation
similar to (3.9),

U(R) —5 tR+ (1 + tRglR))PsR(1 +G(R) tR) (4 10)

For the various transition operators, explicit rep-
resentations can again be derived which are of the
form (3.10)-(3.12), with a, P replaced by a, b.
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are given as a sum of p, and a, linear combination
l(x 2', x,"') of the internal variables,

r, , =+p. + l(x'." x&'&) (4.14}

V. INTEGRAL EQUATIONS FOR TWO-FRAGMENT
SCATTERING AMPLITUDES: THREE-BODY CASE

The screening procedure used in Sec. III to de-
fine scattering amplitudes for two charged par-
ticles, one of which is composite, can also serve
as a means to perform practical calculations. We
may, indeed, evaluate for finite R the on-shell
amplitudes (3.22)

TP....(q&), q. ) = &qI I( Os. IU(&&".)(E..+i0}II..& lq. &,

(5.1}

with the help of any method known in short-range
multichannel scattering theory. Subtracting from
(5.1) the screened Coulomb amplitude (3.21) ob-
tained by means of a two-body LS equation, and re-
normalizing this difference, the transition to infin-
ite screening radius can be performed numerically
(cf. the corresponding discussion at the end of Sec.
II). In this way we arrive at the correct Coulomb-
modified short-range transition amplitudes occur-
ring in (3.29)

Tpn~ am(qI&~ qn)

= &q,(c)I(@.IU;:(E..+i0}l~..&iq-".)c& (5 2}

Adding the explicitly known two-body center-of-
mass Coulomb amplitude, the full transition ampli-
tudes T&&„, (qI&, q„) are obtained according to
(3.29).

In view of the strong decrease of the bound state
wave functions g+)(x+)), again a multipole expan-
sion of r„- ' in powers of p, ' is justified, so that
the first nonvanishing term of (r() ' —p, ~) is of the
order p, '. This, however, implies that U~ sand-
zvich'ed between channel states exists zvithout
screening. C onsequently, after renormalization
the zero-screening limit of both terms on the
right-hand side of Eq. (4.11) exists, providing us
with the two-fragment transition amplitude

Ts (q&) q ) =5),t, (q,', q, )

+ &q,'..'I& ~.l Us'(E. +f0}I ~.& I q".&,

(4.15)

represented as a superposition of a pure Coulomb
two-body amplitude and a Coulomb-modified short-
range amplitude in the Coulomb representation.

We finally mention that the discussion at the end
of Sec. III concerning neutral fragments and the
pure Coulomb problem carries over directly to the
present general case.

One special method to calculate the two-frag-
ment amplitudes (5.1) is provided by the quasiPar-
ticle approach' 29 which is particularly well suited
for the present problem. For, it yields exact inte-
gral equations directly for transition operators
sandwiched between two-body bound states, i.e.,
for effective two-body amplitudes the on-shell ele-
ments of which coincide with the expressions (5.1).
And just for such amplitudes our zero-screening
procedure has been established. ' We, therefore,
describe in the following the application of the
quasiparticle concept to N=3.

A. Quasiparticle equations for the full amplitudes

The transition operators U(sz) defined by (3.6) or
(3.10) fulfill the Faddeev-type integral equations'

g(R& ~(R) +~(R&g g~R& (5.5)

Here, the elements of the amplitude, potential, -

and free Green's function matrices are defined by

v P) (z) =
&q 8„(z*)

I
(" (z) U(&&") (z)( 0(z) I q ~ (z)), (5 6)

&8("..'..(z) =
&9 8.(z*)I(=.(z)Ul(.")(z)G.(z) I q ..(z»

&o;().. (')=5&) & .. (z) (5.8)

The operator UB'„"' occurring in (5.7) satisfies Eq.
(5.3) with T'„"& replaced by T'„'"'.

U~(B) —5 g 1++ 5 T (s)g U (s)

In praxis, the splitting (5.4) is usually based on
a splitting of the potential

Ny

x„ ~„ x„

(5.9)

(5.10)

Then, I q)„„(z)) iS related to the form factor I)&„„),
which itself may be energy dependent, via

Iq„(z» =P+T,""(z}(."0(z)] ix„.&
with

(5.11)

(5.3)
y

Here, T&"& is the two-body T matrix (2.9) for sub-
system y read in the three-body space. Following
the treatment of Ref. 5 (see also Ref. 29) we de-
compose T'R' into a sum of & separable terms and

y
the rest T ~R~

y
Ny

T,'"'(z) = g I q „,(.)& ~,.„.(z}&q „,(z*) I

r,s=l

+ T1(s)(z) (5.4}

Making use of this representation the three-body
equations (5.3) are reduced exactly to effective tu)o

tzvo-body equations of the Lippmann-Schwinger type
which can be written in matrix notation as
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B. Modified off-shell extension of the full amplitude

For the generalization of the second practical
approach it proves convenient to introduce another
off-shell continuation of the amplitude (5.1). It is
defined by a LS equation of the form (5.5), but with

g0 replaced by a more appropriate free matrix
Green's function j . Namely, for indices enumer-
ating the two-body bound states, p0 is chosen to
have only diagonal elements which are of the sim-
ple structure of a genuine two-body free Green's
function, i.e., of the form (5.15) with S~ „(z)= 1

for gll values of z. In other words, we define the
elements of j0 via

~ ~I 68„6„„9O„(z—E„), for n =1, . . . , ~
9'o,.s„, (z) =

~

~

g, .8, „„(z), otherwise, (5.16)

or tÃ. = 1, , n

with 90 „given by (3.17). Multiplying (5.5) from
the' right by Q0g0, we obtain again a matrix
equation of the Lippmann-Schwinger structure

+(R) .—(R) + Q(R) g g(R)
0 (5.17)

7/(R) y/(R) + y/(R) G y/(R) (5.12}

And the inverse of the matrix ~ is given by

!:&, '(z)],.=6,.& '- &x„lG.(z}lv,.(z})

It is advantageous to choose the form factors lx~,)
orthogonal to the bound states lP„):

z,„&}t,„l y ) = 6„ for r =1, . . . , +„(5.14}

at the binding energies E, m= 1, . . . , n„with n„
~~ . Then the corresponding bound state poles
show up only in the diagonal elements ~

&q„'l&,...(z)lq„) =6(q,'-q„} ./~'~ E-z —q 2M„—

(5.15)

with S (z) being, in general, a complicated func-
tion of z which, however, as a consequence of
(5.14), becomes unity for z =q /21ld +E~. Conse-
quently, the quantities

vg, ' .(q's, q }=&qsl7'g', --(E -+to}lq )

with n = 1, . . .,n& and m = 1, . . . , n~ labeling two-
body bound states, coincide on the energy shell
with the transition amplitudes (5.1). In other
words, solving Eq. (5.5) numerically and proceed-
ing as described after (5.1), we end up with the de-
sired arrangement scattering amplitudes for three
charged particles. 'This procedure corresponds to
the first practical approach described at the end of
Sec. II.

for, the matrix operator

g(R) —y (R) g g
j.

0 0 (5.18)

C. Quasiparticle equations for the unscreened Coulomb-
modified short-range amplitudes

The two-body structure of the quasiparticle equa-
tions (5.5) and (5.17) suggests generalizing also
the second practical approach described at the end
of Sec. II. As mentioned above, the form (5.17) is
particularly convenient for this purpose. In order
to be able to perform all algebraic manipulations
as in the genuine two-body case, an effective two-
body. Coulomb potential matrix 6 and an amplitude
matrix ts are associated with the operators (3.16)
and (3.19) by means of

58nen. l Ra
y

for n and m

bound state indices

0, otherwise (5.20)

68„6„ ts(z —E„„},for n and m
)

tR ( )

0, otherwj. se .
bound state indices

(5.21)

To introduce nonvanishing elements in thes'e ma-
trices only for bound state indices is suggested by
the desire to reproduce the on-shell relation (3.22}
for the physical two-fragment amplitudes which
are characterized by these indices [compare Eq.
(5.27)]. The other y's„„ in (5.6) for which n and

m do not correspond to bound state indices, are
purely auxiliary quantities, introduced in order to
improve the accuracy. Hence, no renormalization
procedure, and consequently no splitting of the
form (3.22), is needed for these terms. In this
context it may be helpful to recall the argumenta-

which contains the simpler free matrix Green's
function g0 instead of Q0.

From the above mentioned properties of g0 and

9, it follows that all elements (g,9, ')„with m de-
noting a two body bound state vanish, when applied
onto lq„) at the corresponding channel energy E„,
exceptthe one with n =rn which, infact, has the val-
ue one. Therefore, on the right-hand energy shell,
~'") coincides with W(")

(E +io) lq„) =v'8"„' (E +io)lq„)

for m=1, . . . , n„. (5.19)

In other words, j' ' and « ' represent different
off-shell continuations of the amplitude (5.1). A

relation similar to (5.19) holds true also between
'U(R) and 'O' R'. Henceforth, we will work with Eq.
(5.17) instead of (5.5).
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tion employed in Befs. 3 and 4. There, by inspect-
ing the kernels of the effective two-body integral
equations, it was found that, due to the absence of
physical-sheet poles in the effective propagators
for nonbound state indices, no overlap with the
singularity of bR in the zero-screening limit can
occur. Consequently, no renormalization proced-
ure is necessary in these unphysical channels.

'The Coulomb resolvent matrix corresponding to
the definitions (5.16), (5.20), and (5.21) is then in-
troduced by the conventional two-body relation

ing limit of the latter by V'z~„~„(E +iO) we,
therefore, end up with the representation

T8.'...(qg, q. }=&qg'. 0 ly8.'...(E..+fO) te
(5.29)

for the unscreened Coulomb-modified short-range
transition amplitude (5.2).

An integral equation for v'sc itself now follows
directly by letting 8 go to infinity in Eq. (5.26}. In
this way, we arrive at the generalization of Eq.
(2.15),

= &o+ &o& &0 y (5.22) cl'SC - gS C+ gSCgCcl'SC (5.30)
or equivalently by

gR g + g yBgB ~ (5.23)
Here, the Coulomb-modified short-ranged potential
matrix

Then, in complete analogy to (2.8), a Coulomb-
distorted short-range amplitude V

sR is defined via

cj(R) tz+ (1 +tR9 )v'sR(I + 9 P) (5.24)

Introducing a potential matrix U " by means of

p(R) gSR+ yR (5.25)

we find that this amplitude satisfies the integral
equation

cpSR ~SR + gSR jBy SR (5.26)

The definition (5.24) is closely related to (3.22),
as becomes transparent by going over to the ex-
plicit notation. Indeed, for bound state indices
n = j, ~ ~ ~, n8 and m = 1, .. . , n it reads

v',"„&„„(z)= 5,.5„.tz(z —E..)

+ [(I+tz~(z -E",„)g, 8(z —E8„)]
x r'" (z) [1+9 (z-E )t'(z E)j-

(5.27)

Taking into account (3.20) and (3.21), we see that
both the left-hand side and the first term on the
right-hand side of (5.27), when sandwiched between
plane waves (qz~ and (q„), coincide on the energy
shell with the corresponding terms of (3.22). This
implies on-shell the equality of the respective sec-
ond terms, too, namely

&qs'.z'i&Os. (UBz.'(&. + f0)lg .&I@.",z&

= «8'.Jl~e.".a.« .+f0}14'z'& (5.28}

From the investigation leading to Eq. (3.29) we
know that the states (qII& z'( and jq"z'), multiplied
by Zz'~z2(qs) and Z '~z2(q„), respectively, go over
for A -~ into the unscreened Coulomb scattering
states. Furthermore, as has been shown in Sec.
III, this limit can be performed immediately in
(ps„(UBzz(E „+iO)(p ), and consequently due to
the equality (5.28) the same holds true for the
quantity 'g„"„(E + iO). Denoting the zero-screen-

gSC g fC (5.31)

with

,&68„„(z}—58„5„nc, for n or m

Vg„c„(z)= &

, 'UB„„(z), otherwise,

bound state
indices

(5.33)

(z) =

5z„5„9c(z—& ), for n or m

bound state indices

(5.34)go. 8„„(z), otherwise .

and the Coulomb Green's function matrix gc are
given by Eqs. (5.25) and (5.22), respectively, after
having switched off the screening.

Let us briefly comment on the relation between
the present approach and the one developed in Befs.
1-4. There, we demonstrated explicitly that U

does not contain contributions of infinite range.
From this fact the validity of Eq. (5.30) and, as a
consequence, the existence of Ksc could be infer-
red. Alternatively, in the present paper we started
by directly proving the existence of W from which
then the validity of the integral equation (5.30) fol-
lowed. However, whether Eq. (5.30) is also useful
for practical calculations depends on properties of
its kernel which go beyond those required for prov-
ing its validity. In fact, since Usc is still of fairly
long range it is even questionable whether the ker-
nel U 6 falls into that class for which standard
integral equations theory is applicable. Certainly
further investigations are needed to clarify this
point.

For convenience we present our result (5.30) in
explicit notation,

r,'„c„( ) =uf„~„( )+ g &fc „(z)
yb, rs

x 9c @(z)V'~, „„(z), (5.32)
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We mention that from (5.21) and (5.27) it follows
immediately that the full unscreened amplitude

equals &&„ if neither n nor m denote two-
body bound states, i.e., if n w1, . . . , na and
nt g1, . .. , n~. This is consistent with the fact that
(5.32) goes over into (5.5) in this case. Solving
Eq. (5.32) we therefore obtain, besides the full
amplitudes for unphysical channels, the Coulomb-
distorted amplitudes VB„~ for physical channels
enumerated by n()n) = 1, . .. , ns(n~). Sandwiching

the latter ones between &qz c) l and lq'"c&, the full
unscreened arrangement amplitudes are obtained
via (5.29), (5.2), and (3.29).

This procedure is considerably simplified if the
Coulomb interactions yc between the colliding clus-

y
ters are repulsive. For, inserting the spectral
decomposition of gc(g —E ) occurring via (5.34} in

Eq. (5.32), we obtain relations which directly yield
off-shell continuations of the amplitudes (5.2). In
fact, we have for m=1, . . ., n and n=1, . .. , n8

& qI)', c) I&ss'.. (z) I 4 ),& =
& qs'c) I&s c..(s) I 4'.)c &

n

y r=
N

+P jd'Ss(s)s'. 'I&s..„(s)ls),") S s(s. K, s, . s))s.s'..s. ))sl ."s,)'),
y (~,g = ffy+ 1

(5.35)

and a similar relation with & q't)& Jl replaced by

&qs( for the elements with n=ns+„. . . , Ns.
A final remark concerns the case of attractive

Coulomb. forces in one or more subsystems. As-
sociating to each of the infinitely many two-body
bound states a separable term in (5.4) would blow

up the system of equations (5.5). In this case, it
might be preferable to represent by separable
terms in (5.4} only the dominant bound states, in

particular those which are explicitly considered in
the special physical situation, and to absorb the
remaining ones via, T„' into the definition of U&,
cf. Eq. (5.9). Whether the quasi-Born series,
which perturbatively determines the effective po-
tential 'U, and consequently also 'U, then still
converges deserves further investigation.

D. Modified screening procedure

In the above definitions of three-body transition
)

operators and effective two-body amplitudes all
Coulomb potentials had been screened before ap-
plying the renormalization and limiting procedure.
From the reasoning following Eq. (3.22) we know,
on the other hand, that such a screening is actually
required only for the center-of-mass Coulomb po-
tential &~ when it i:s being used to define the two-
body amplitudes t~ and the scattering states
l q„'"c&. In contrast, for the definition of the Cou-
lomb-modified short-range amplitudes ~ we
could have worked from the very beginning with
unscreened Coulomb potentials.

This fact has already been utilized in the second
approach where, as shown in Sec. V C, the Nn-

screened amplitude F is obtained directly as
solution of (5.30). But we expect that also the
first practical approach, based on solving Eqs.

(5.5) or (5.17), can be simplified in a correspond-
ing manner. Indeed, according to the above con-
siderations, the screening of the Coulomb interac-
tion is expected to be unnecessary in most terms
of the effective potential (5.7). To make this ex-
plicit we introduce the modified effective potential

sotR) gSC+ gR (5.36)

which originates from (5.25) by replacing the Cou-
lomb-modified short-ranged part 0 by its zero-
screening limit 'Us c. The representation (5.31) al-
lows us to write (5.36) in the form

Q(R) Q gC + ~R (5.37)

which clearly shows that U~R) is obtained from the
unscreened potential U by screening only its long-
ranged contribution jc.

Inserting U'R' instead of U'") in (5.17), a new

screened amplitude F'R) is defined as

P») —Q&» + Q&R) ~ ~» (5.38)

Making use of the splitting (5.36) of 'U'"' we obtain
the representation

Ts(R) .1R+ (I +tR9 )TsSR(I +9 tR)

where F'~R is given as sot.ution of

TsSR sUSC+ sUSC9RTsSR

(5.39)

(5.40)

Since this relation, which contains the screening
only via NR, goes over into (5.30) for R -~, its
solution becomes identical with E~c in this limit.
Comparison of (5.39) and (5.24) then reveals that
g' ) and i' ' lead to the sayne unscreened ampli-
tude (3.29) when subjected to the. renormalization
and limiting procedure. In other words, the first
practical approach discussed in Sec. VA yields the
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same on-shell arrangement amplitudes when being
based on the solutions of (5.38) instead of (5.5) or
(5.17). However, the amount of work required for
the numerical solution is drastically different for
both types of equations. For, when solving Eqs.
(5.5) or (5.17) the full effective potential has to be
recalculated every time the value of R is increas-
ed. This, however, is a most time-consuming
task. In contrast, when Eq. (5.38) is used the bulk
of 'Q'"' namely, , has to be computed only once
(for a fixed energy) since the R dependence resides
solely in the trivial term yR. Ther'efore, the pro-
cedure described in the present section represents
a considerable simplification of the first practical
approach.

In addition, the present version is even more
closely related to the corresponding method in the
genuine two-body problem. Namely, as is the case
there, only that part of the potential has to be
screened which behaves like a pure Coulomb po-
tential in the relative two-fragment coordinate,
whereas '0, which is of shorter range with re-
spect to this variable although it contains two-body
Coulomb potentials, remains unscreened.

Sections. VD and VC, therefore, contain the
most natural generalizations of the first and the
second practical approach discussed for the two-
body case in Sec. II. .

U„by exact equations for off-shell extensions V,",

of the effective tfeo-body amplitudes
I Ub. (E.+iO

g(R) g(R) + ~~R) ~ p(R&
ba ba bc Qo;cd da

Cb

(6.3)

For details of the definitions of the effective poten-
tial 'U'"' and "free Green's function" gb we refer to
Ref. 30. There it is also shown that on the energy
shell the physical reaction amplitude (6.1}can be
obtained via

T~ '(qb', q. ) =
& qual y'g'(E. + to}lq. &. (6.4)

&O;ba
= bound state channels

Therefore, solving Eq. (6.3) and proceeding as
discussed after Eq. (6.1), represents the N-body
generalization of the first practical approach de-
scribed in Sec. II. We remark that this method
may again be simplified along the lines described
in Sec. VD.

Of course, the second approach developed in
Sec. VC can be extended to arbitrary particle
numbers, too. For this purpose, it is again ad-
vantageous to work with, instead of (6.3), an equa-
tion containing the simpler free Green's function
matrix g„with elements

b~gb, (z —E,), for b or a denoting

VI. INTEGRAL EQUATIONS FOR TWO-FRAGMENT
AMPLITUDES: N-BODY CASE

Here

gb.„, otherwise . (6.5)

he method discussed at the beginning of Sec. V
for ¹3can be extended immediately to arbitrary
particle numbers. First, the screened amplitude
(4.11),

T',", '(q,', q.) = ( q,' [ ( pb ~
fJ'„"'(E,+ iO) ( p, ) [ q, ), (6.1)

is calculated for finite A by means of any method
applicable for purely short-ranged interactions.
Subtracting from it the center-of-mass Coulomb
amplitude t,"(q,', q, ) yields, on account of (4.11),
the screened Coulomb-modified short-range ampli'-
tude. Renormalizing the latter, and repeating the
calculation for increasing values of 8, the zero-
screening limit is approached numerically. By
this procedure we end up with the unscreened
Coulomb- modified short- range amplitude

T~'(qb q.) =
& qb'c'I& )bi fi~&&E, +iO) t tt. & lq.",c'& (6 2)

and according to (4.15) with the full unscreened
scattering amplitude T~(qb, q, ).

Particularly appropriate for the calculation of
the screened amplitude (6.1) is the generalization
of the 'three-body quasiparticle method to N-body
problems proposed in Ref. 30. For, it replaces in
(N —2) steps the original operator identities for-

(6.6)

is a genuine two-body free Green's function which
acts on the relative momentum states (q, ) only
fcf. Eq. (3.17}t. Multiplication of (6.3) with

Qbja
' results in the N body analog-of (5.17):

bb ba Z Ubc 60;cd ~dc '
c,d

(6.7)

&q.'In". iq. ) = &q.'I& e. I + I tI. & lq. &

= ns(q,' —q, ) . (6.8)

The corresponding two- body C oulomb resolvent
j, and Coulomb transition operator tR, are

Since we assume g, to be chosen such that it dis-
plays the same pole behavior as j, (compare the
discussion in Secs. V A and V B for the three-par-
ticle case), the solution y'"' = &'"'8,8, ' of (6.7)
equals &'R' on the right-hand energy shell.

Next we introduce a two-body Coulomb potential
&R describing the interaction between the charges
of the two colliding fragments concentrated in
their centers of mass, which is related to the N-

body operator (4.5) according to
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2

g.'(z) =
(z

—
2~a

(6.9)
the long-ranged Coulomb contribution,

'U —&~y, , for a or b denoting
and

)R gR +~%gR ~R (6.10)
C

ba bound state channels

Q „, otherwise . (6.13)
respectively. With the help of these quantities we
define for bound state channels g and Q an effective
two-body amplitude 9 z~", in analogy to (5.27), via

~'"'(z) =6 t "(z & )

+ [1+t~ (z —E„)go.,(z —E~)]

&& v,". (z)[1+90..(z —E.)t."(z —E.)].
(6.11)

7'~'(q&, q.) =
& ql'. c'I ~l.'(E.+f0) lq! (6.12)

An integral equation directly for Esc is noir
easily derived. For this purpose we introduce the
zero-screening limits of the potentials g',R, & and
uR, and of gR, to be denoted by „, p, , and g, ,
respectively. As in (5.33), the short-ranged part
'U of 0 is obtained by subtracting from the latter

For a or b not characterizing bound state channels,
the first term on the right-hand side of (6.11) and

either the right or the left bracket in the second
term are missing. Sandwiching (6.11) between
plane waves (q,'( and ~q, ) and comparing with

(4.11) we see that the left-hand sides and the first
terms on the right-hand sides of both equations,
respectively, coincide on the energy shell. Gen-
eralizing the argumentation following (5.28), we
infer that the zero-screening limit of f', which
we denote by E, is indeed related on the energy
shell to the Coulomb-modified short. -range ampli-
tude (6.2) according to

Familiar algebra, then, leads immediately to the
generalization of (5.32),

gsc cps c + gscgc g s c
5c ba bc cd da

c,d
(6.14)

Here the elements of the matrix Coulomb Green's
function P(z) are defined by [cf.Eq. (5.34)]

6~, 9, (z —E,), for 5 or a denoting

j;.(z) =

g,.~(z), otherwise .
bound state channels

(6.15)

~"(q' q ) =
& q" ' Iy'"

I
q"'

& (6.16)

which we need not write down explicitly since it
generalizes the three-body equation (5.35) in an
obvious way.

Solving (6.14) we, therefore, get without any
screening procedure an amplitude g~. When
sandwiched between the explicitly known two-body
Coulomb states (q,"c'[ and ~q,"c'), it yields via
(6.12) the Coulomb-modified short-range amplitude
(6.2), and then by means of (4.15) the full transi-
tion amplitude T~ (q~, q, ).

As emphasized in Sec. V C this method is sim-
plified considerably if the Coulomb potential oc is
repulsive. For, insertion of the spectral decom-
position of the Coulomb Green's function gc oc-
curring in (6.15) results in an integral equation
directly for
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