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We develop a systematic approach to the calculation of self-consistency effects in core plus valence

nucleon systems. A detailed calculation of the effective one-body Hamiltonian for A = 17 in an 11fiQ
model space is readily extrapolated to a 2(HiQ model space which is sufficient to-develop accurate tails for
the single-particle wave functions. The effective one-body interaction is found using a Brillouin-Wigner type
perturbation theory which eliminates folded diagrams and leads to a manifestly Hermitian interaction. A
renormalized Brueckner calculation is performed for A = 16 and the results are employed in a shell-model

study of A =17. The self-consistent results still have a weak dependence on the initial unperturbed

Hamiltonian. However, we find a single unperturbed Haniiltonian which yields a reasonable binding energy
for A = 16 and, except for a weak spin-orbit splitting, reasonable results for the lowest states in the A = 17
system. This agreement is important for continued valence s-d shell studies.

NUCLEAR STHUC TUBE Brueckner theory, self-consistency effects, ~Q spec- '

tra and wave functions, 160 properties.

I. INTRODUCTiON

Since the pioneering studies of microscopically
derived effective nuclear shell-model Hamiltonians
in the mid-1960's, ~ much attention has been devoted
to assessing the role of corrections. Primary in-
terest has centered on the order-by-order conver-
gence (in the Brueckner reaction G matrix), the
convergence of intermediate state sums, 3 and the
role of self-consistency effects. 4'5 The results in-
dicate that all three problems provide major hur-
dles for the perturbation approach based on the 6
matrix. We develop a systematic approach to the
particle-core case in order to establish a consis-
tent but flexible framework, incorporating self-
consisteney effects in a large model space, for an
eventual study of the multinucleon shell-model
problem.

A number of previous investigations '5 have dem-
onstrated that self-consistency effects on valence
orbits can be quite large even in light nuclei, and
when included to high orders, can substantially al-
ter contributions to the multinucleon effective
shell-model interaction. Primarily, these results
have been obtained for the A = 17 and A = 18 sys-
tems in a 250 model space where the valence par-
ticles are initially in an oscillator basis. The main
differences among. previous studies seem to be the
choice of diagrams to include as "self-consistency"
effects and whether single-particle energies and
wave functions are both corrected or just the en-
ergies.

From these earlier works, we draw two impor-

tant conclusions that motivate the present efforts.
First, self-consistency effects are large and defy
approximate or low- order treatments. Second,
when included, the self-consistency effects dra-
matically reduce higher order effective shell-
model interaction diagrams and improve the rate
of convergence of the linked cluster expansion.

The major emphasis of the present effort is to
solve the A =17 problem in a large valence space
using a realistic nucleon-nucleon interaction in or-
der to develop self-consistent single-particle en-
ergies and wave functions. These results will be
employed in later studies of electromagnetic prop-
erties of A =17 and in eventual multinueleon stud-
ies in the sd shell.

A secondary interest in the present study, is to
obtain a single choice of the unperturbed Hamilto-
nian such that the results for the effective Hamil-
tonians (through second order in G) are in agree-
ment with experiment for the A = 16 and A = 17
systems. This addresses the question of whether,
even with'inadequacies in our current realistic nu-
cleon-nucleon potentials, we might nevertheless
achieve reasonably good descriptions of the val-
ence properties of nuclei.

Section II contains a brief review of the linked
cluster expansion for a single particle outside a
closed core in an unperturbed representation. In
addition, we outline the expansion for the situation
where a renormalized Brueckner (RB) calculation
is performed for the core state. We then show in
the most complete calculations performed here
how the valence and core states are treated con-
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sistently ip an RB and shell-model diagonalization.
In Sec. III we introduce the model space, inter-

action, G-matrix, Pauli operator, and representa-
tion selections. Section IV contains the results, a
discussion, and conclusions. is
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II. SINGLE-PARTICLE EFFECTIVE SHELL-MODEL
HAMILTONIANS

(a) (c)

Here, we introduce a progression of effective
Hamiltonians in order to display the methods we
-employ that systematically include larger classes
of diagrams. We develop these Hamiltonians spec-
ifically for a large model space (11KQ initially) in
order that valence self-consistency effects and
converged intermediate state summations may be
included. Later we extrapolate the effective Ham-
iltonian to a 2010 space to achieve accurate tails
of single-particle wave functions.

Within the Bloch-Horowitz-Brandow theory of
the effective shell-model interaction we solve for

G(&o) = V+ V —G(&o) .
(u —H, (y)

(2)

Here V is the nucleon-nucleon interaction deter-
mined by fitting the two-nucleon data, Q is the two
particle Pauli operator preventing scattering to
those intermediate states that are normally occup-
ied or to those two particle intermediate states in
the model space. The parameter u specifies the
G-matrix starting energy appropriate to the posi-
tion of G in the diagram. A detailed presentation
of the method used to solve for the G matrix exact-
ly in a harmonic oscillator single-particle basis
has been given in Ref. 7.

The unperturbed one-body Hamiltonian H', has
been expressed as H, (y) in Eq. (2) where y indi-

where the superscript v denotes quantities defined
within the valence space. Furthermore, l4t& is
defined as the projection of the exact eigenfunction
of the full Hamiltonian on to the valence space.
The effective Hamiltonian is composed of an un-
perturbed one-body part Ho which, in principle, is
arbitrary and a residual effective interaction V,«
given by the linked cluster expansion in terms of
the Brueckner reaction matrix G. For the A =17
nucleus, the effective interaction is also a one-
body operator and henceforward we refer to it as
U,«. , A complete set of linked diagrams for U,«
through third order in G has been given by Kassis. e

For handy reference and for purposes of assigning
convenient labels we show the series through sec-
ond order in Fig. 1.

Wavy lines represent G-matrix elements where
G is given by the standard form

]4
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FIG. 1. Lowest order single-particle potential dia-
grams included in the diagonalization. The x's in the
bubbles represent —Uo insertions. In the SM calculation
all single-particle energies are defined by Ho(p). In the
BBSM calculation the hole energies are obtained from a
self-consistent calculation of ~60 and all bubbles are
multiplied by occupation probabilities.

cates the set of parameters specifying H",. These
parameters are discussed in detail in Sec. III.
U, «depends on H, (y) in a number of ways. The
diagrams shown in Fig. 1 contain Uo(y) insertions
[where H, (y) = T+ U, (y)] which are indicated by the
X's within the bubbles. U,«depends on H, (y)
through G, and all intermediate state energy de-
nominators depend on H, (y).

The intermediate state energies, including those
hidden in G, also depend upon the diagram starting
energy which is determined by the form chosen for
the perturbation expansion. This starting energy
Eo is usually chosen as the unperturbed energy of
the valence particle entering the diagram. This
choice of Eo leads to a folded diagram expansion
and a non-Hermitian effective interaction.

Qn the other hand Eo may be chosen self-con-
sistently to equal the energy of the lowest eigen-
state found in the diagonalization of the effective
interaction. This choice yields a Brillouin-Wigner
valence perturbation expansion and has usually
,been avoided in effective interaction calculations
since it leads to unlinked valence diagrams. How-
ever, there can be no unlinked valence diagrams in
the A =17 system, nor in the A =18 and A =1S sys-
tems if self-consistent valence orbitals are used
in the calculations. In the calculations presented
here we will use self-consistent Eo's for the d5~2,
s f / 2 and d, ~ 2 eff ective interac tions .

It is instructive to carry out the calculation of
H,«at two different levels of self-consistency.
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The first level consists of including only the dia-
grams of Fig. 1 and using Ho(y) to describe the
core orbitals. This calculation, which treats only
Eo self-consistently, we refer to as a (shell-mod-
el) (SM) calculation. The, second level of calcula-
tion (RBSM) is obtained by carrying out a renor-
malized Brueckner (RB) calculation of the core
and using self-consistent core results as input to
the A. =17 effective interaction calculation.

The RBSM calculations include explicitly only the
diagrams of Fig. 1 with the additional features that
all bubbles are multiplied by self-consistent occu-
pation probabilities. , However, the RBSM approach
implicitly includes two additional classes of dia;
grams into the calculations. The first class of
additional diagrams, obtained by using self-con-
sistent hole energies, is indicated to low order in
Fig. 2. In the first diagram of Fig. 2 we have
opened up the G matrix of Fig. 1(a) to indicate the
fact that the G-matrix elements themselves, as
well as the intermediate energy denominators, are
influenced by the use of self-consistent hole ener-
gies. The two other diagrams in Fig. 2 indicate
some higher order terms which are implicitly in-
cluded.

A second class of diagrams is included by utiliz-
ing the self-consistent occupation probabilities ob-
tained in the A. =16 calculation. All bubble inser-
tions are multiplied by the occupation probability
of the hole represented by the bubble. As shown in
Fig. 3, this has the effect of replacing the bubble
insertion by the sum of two insertions. Analytic
expressions for all diagrams included in the core
and valence calculations are given in the Appendix,
along with additional details of the calculational
proc edure.

b
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FIG. 3. Lowest order diagrams included by the use of
self-consistent occupation probabilities in the BBSM
framework.

e, =(2n, +f, +-,')Sfl, (4)

e„=e„-Vo for h in Os and OP shells,

e&
—e&- (Vo- C) for P in sd shell and above.

(6)

(6)

We choose SQ =14 MeV. To illustrate the utility
and motivation for choices of Vo and C, we con-
sider three cases depicted in Fig. 4. Column 1
displays the pure oscillator energied e, whereas
column 2 displays the spectrum with a physically
sensible choice of V0 that places the s and P shells

60— pf

50 sd

40—

30—
sdg

then Ho(C, Vo) has a single-particle spectrum given
by

III. METHOD OF CALCULATION

We select the harmonic oscillator for Ho and em-
ploy an overall shift V() and a boost C for the par-
ticle space for additional flexibility. Therefore

Ko(C, Vo) =H„,—Vo+QCQ,

where Q projects on to the particle states. Thus,
if we signify pure oscillator energies by

20
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FIG. 2. Some low-order diagrams included by using
self-consistent hole energies. The major effect arises
from the starting energy dependence in the G matrix of
Fig. 1 (a). This effect is indicated diagrammatically in
the first diagram shown in this figure.

-50
Vo=O
C=0

S
Vo=63
C=O

S
Vp=63
C =2I

FIG. 4. Oscillator spectra (M= 14 MeV} for three
representative choices of the overall shift Vo and the
particle space boost C parameters.
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near where we expect them to lie as a result of
our calculations. The flexibility provided by C is
exercised in column 3 to place the sd shell closer
to where it would be if the average oscillator po-
tential energy were removed (24.5 MeV). Thus C
may be employed to account, in an average way,
for the desire to place low-lying unoccupied oscil-
lator orbits near their average kinetic energy val-
ues and thus diminish the oscillator potential in
these states.

We wish to emphasize two points here. First, a
converged calculation of the properties of ' 0 and
' 0 wi:ll be independent of Vo and C. Dependence on

Vo and C in the physically sensible region describ-
ed above will be studied here as a gauge of our ap-
proach to convergence. Second, since convergence
is not fully achieved we will employ the same Ho in
the calculations for the binding energy of ' 0 and
for the valence properties of 'VQ. It is planned that
this consistency will be maintained for studies of
other valence systems. An important feature of the
RBSM calculation, with its self-consistent treat-
ment of both core and valence single-particle en-
ergies, is that the results depend only on the ab-
solute energies of the remaining particle states.
Hence the RBSM results depend only on Vo —C and
not independently on Vo and C. This simplifies the
presentation of results below. We have not made
a study of the IO dependence of our results.

To maintain the calculational effort within rea-
sonable limits, we have elected to preserve the Os

and OP orbits as pure oscillator states throughout
this work. The corrections to these orbits are a-
chieved through perturbation theory by adding the
necessary diagrams to our study. Thus the dia-
grams in Figs. 1(b), 1(d), and 1(e) are nonzero.
We find the contributions of these diagrams are
quite small which is consistent with our perturba-
tive approach. The valence orbits extend to all or-
bits beyond the core states. Thus we must diagon-
alize ' 0 in increasing spaces in order to assess
convergence with size of basis space. For some
cases, convergence for energies of the lowest ly-
ing bound states is well achieved in a space span-
ned by five oscillator shells. The corresponding
wave functions are converged out to approximately
6 fm. We describe techniques which allow us to
extend our space to 10 major shells, which we feel
is adequate for the present study since the bound
state wave functions t;hen have an exponential fall.—

off out to 8 fm.
The 6 matrix is solved on a four point ~ mesh

(&o =79, 51, 23, -5 MeV) and numerical interpola-
tion is employed to obtain the required intermedi-
ate values. The Pauli operator is of the Brueck-
ner-Hartree-Fock type but simpler since the Os

and OP states are maintained as pure oscillators.

This Pauli operator is treated exactly, in a single-
particle basis, according to the methods described
in Ref. 7. The realistic nucleon-nucleon interac-
tion here is the Reid soft-core potential.

IV. RESULTS

We present in Tables I and II the individual dia-
gram contributions to the effective single-particle
Hamiltonian. Hesults are presented for RBSM
(first line of each n, n' row) and SM calculations
with V'0- C =48 MeV and Eo chosen self-consist-
ently. We note first that Fig. 1(b) does not con-
tribute to the d5~2 interaction and that Figs. 1(d)
and 1(e) give very small contributions. These dia-
grams have a larger influence on the s&~2 calcula-
tions but are obviously small enough so the approx-
imation of. treating core excitations in perturbation
theory should be adequate.

The total diagram contribution to U,« is shown
in column 7. When added to Ho(C, Vo} it gives the
complete single-particle Hamiltonian H, «which is
then diagonalized to obtain self-consistent valence
wave functions. It should be emphasized that only
the lowest state of a given j is treated self-consis-
tently since Eo is chosen to be equal to the lowest
eigenvalue of the diagonalization. The total one-
body Hamiltonian is norm6, lly expressed as

+e« —+p + Uef f ~

and this approach has been used to carry out our
calculations where Ho is a function of C and Vo.
However, now that matrix elements of H are known
we are free to use the alternate expression

&e« =& + Ue«

Oscillator matrix elements of T and U,«are shown
in the last two columns of Tables I and II. The lat-
ter expression is particularly useful here since
oscillator matrix elements of U,« fall off in a reg-
ular fashion with increasing radial quantum num-
ber.

In Fig. 5 we show the behaviors of diagonal and
nearest off-diagonal matrix elements of U,«with
increasing n. These matrix elements fall off ex-
ponentially. We extrapolate from. n =5 to n =10

, based on a fit to the last two calculated values.
This extrapolation allows us to effectively expand
our valence space to include 10 oscillator orbits of
each symmetry (fj}and the numerical results be-
low are based on diagonalizations in this larger
space. The lowest eigenvalues are well converged
in the 5 oscillator shell space but the tails of the
resulting eigenvectors are greatly improved in the
region between 6 fm and 8 fm by use of the expand-
ed space.

Consider first the overall trends of the energies
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in our results as shown in Figs. 6 and 7. The
ground state energy per particle of '6O is consis-
tentwith previous RBHF (Ref. 8) results as may be
expected since we have argued that self-consisten-
cy of the core wave functions should provide minor
differences from oscillator wave functions.

A striking feature of these results is the simi-
larity of dependence of core and valence single-
particle states in the RB and HBSM calculations on
Vo- C. Thus one is encouraged to believe that a
similar degree of convergence has been achieved
for core and valence energies in this approach.
For the SM case, with its separate dependence on

V& and C, the C dependence (fixed V0) is somewhat
stronger than the HBSM results. On the other
hand, the V0 dependence (fixed C) is somewhat
weaker. Thus the SM convergence behavior seems
to bracket that of the RBSM. For comparison we
have shown in Fig. 6 the behavior of the unperturb-
ed d5~2 oscillator state as a function of Vo- C. The
contrast with the self-consistent results indicates
the progress towards convergence.

An important aspect of the RBSM calculation was
the role of 'choosing Eo self-consistently. This en-
hances the E(d5~2) independence of Vo —C. Since
the core single-particle states are treated self-

T+QLg $ H ff (4 5/&) . Contributions to the effective Hamiltonian matrix elements «r the d
& /2 states of 0 . The first

row for each n, n' entry (bra and ket principal quantum numbers) are for the BBSM Hamiltonian with Vo -C =48 MeV
and Eo chosen self-consistently as -3.0 MeV. The second row gives the SM effective Hamiltonian with Vo = 78 MeV and
C =30 MeV while &0 — 4 8 MeV, the self-consistent choice. We use the convention that the numbers not listed are
strictly zero, or are identical to the number immediately above since no confusion should arise.
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consistently for the calculations of the binding en-
ergy of ' O, it seems natural to employ the self-
consistent selection of Ep in the calculation of the
binding of -'YO with respect to ' O, i.e., for the
calculation of the d&~2 state in ' O. In this sense,
the similar residual dependence on Vp- C is sat-
isfying. This self-consistentphilosophy for Ep also
is responsible for the Vp dependence in the SM cal-
culation.

There are two questions that can now be answer-
ed with these results. Can a single value of Vp C
be found to yield approximate agreement with
experiment in. "0and ' O'P Similarly, can a Vo
—C be found to yield approximate agreement with

exp(s) (Ref. 9) results? In both cases the answers
are encouraging and the Vp- C values so found
provide further insights into these results.

If we take into account the c.m. correction to
E/A which should lower the E/A curve in Fig. 6 by
about 0.66 MeV and if we apply the effects of the
Coulomb potential which should raise the curve by
about 1.13 MeV, we find that Vp- C =48 MeV yields
E/A =8 MeV, which is in good agreement with ex-
periment. As shown in Table III, this choice of
Vo —C results in E(d~~2) =-2.97 MeV which is not
in such close agreement with experiment (-4.11
MeV), especially when we consider that no c.m.
correction has been applied. From the work of

TABLE II. Herr (qg2). Contributions to the effective Hamiltonian matrix elements for the s&g2 states of O. Again,
the first row of each entry corresponds to an RBSM calculation with V() -C =48 MeV but the self-consistent value of Sp
is -2.2 MeV. The second row gives the SM effective Hamiltonian with Vp = 78 MeV and C =30 MeV while &p =-3.5 MeV
the self-consistent choice. See caption to Table I.
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Krenciglowa and Bandos we would estimate the
c.m. correction to valence particle energies will
provide a repulsive shift of several hundred kilo-
volts. Thus the d&~2 state seems to be underbound

by approximately 1.5 MeV.
This underbinding could signal the importance of

some neglected diagrams for the valence and/or
core processes which cannot be included in the Vp
—C parametrization. However, if we look not only
at the d5~2 state, but also the s&~2 and d3g2 states,
we note that the overall average agreement is much
better. It could be that much of our problem with
the d, ~2 state lies in a lack of spin-orbit splitting-
a common problem with microscopic calculations.
Qverall, the agreement with experiment for the
combined 6Q and '~Q results is remarkably good.
Table III displays a capsule summary of EjA, the
core and valence single-particle energies, and the

core occupation probabilities for Vp C =48 MeV.
We also present some SM results for comparison.

It is additionally interesting that for Vp —C =48
MeV, if we choose Vp ——63 and C =15, the positions
of the lowest unperturbed levels are E(s, p, sd)
=(-42, -28, +1) which are rather close to thefinal
results that emerge. This is pleasing but not nec-
essarily of fundamental significance. However,
there. is one conclusion relevant to continued val-
ence sd shell studies that can now be made. The
self-consistent d5~2 is lowered from its unperturb-
ed value by only a small amount —about 4 MeV.
This implies that in A =18 there will only be a
small gap between the sd shell and the unperturbed
Pf shell. Thus the A =18 H„, will tend to be very
attractive on this score. However, the expected
moderating influence of self-consistent A =17
wave functions may well compensate for the small
A =18 gap effect so that the A =18 results might

-I000.0

(I) & nds«IUefflnds/2 & xl0
(2) & nds/alUeffln+Ids/a & xIO

(&) & ~ s)/21Ueffl ~ s)/p
(4) & n s)/qlUeff in+I s)/p

Is() l7O

ENERGIES

t

t~ E(dsgp) osc
l 'hn =i4Mev

0,-IOO.O

LIj

hJ

43

-10.0

-1.0
0 40 50

v, —c (Mev)
60

FIG. 5. Logarithmic plot of the diagonal and first off-
diagonal matrix elements of the d5~2 and s&~& effective
single-particle potentials U,ff given in Tables I and II
respectively. The indicated exponential falloff is used
to extrapolate these matrix elements to a 10 major shell
basis.

FIG. 6. Selected energies of 0 and 0 as a function
of Vp —C Curves labeled RB refer to the core, SM to a
shell-model calculation without introducing the core,
and RBSM to our most complete valence calculation. In
order to exhibit progress toward convergence we also
show the unperturbed Od&~2 energy.
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I t

SELF-CONSISTENT HOLE ( 0)
AND PARTICLE ( 0) ENERGIES

0 -2
0)

UJ

I

40

have a net attraction which is quite reasonable.
The other region of interest centers about Vo- C

=33 MeV where E/A (with estimated c.m. and
Coulomb corrections) agrees with the exp(s) re-

20 50 50
Vo-C (MeV)

FIG. 7. Self-consistent hole (solid lines) and valences
{dashed lines) energies resulting from the RB and RBSM
calculations, respectively. The hole energies have been
shifted upward to make the similarity in the Vo —C de-
pendence of all self-consistent hole and particle ener-
gies readily apparent. Only the 1sf/2 state which
should be coupled to the OsI/2 core state, exhibits a
slightly different behavior.

suits of -5.50 MeV. At this V0-C value, how-
ever, the d5/2 state (with c.m. correction) is bound
by only a couple of hundred kilovolts. The exp(s)
results are also underbound but not nearly by the
same amount. This again could signal the impor-
tance of some neglected valence diagrams but we
already know full convergence is not achieved since
some residual Vo C dependence remains.

In the exp(s} studies it has been noted'0 that a
weak attractive potential of (U)--8 MeV on parti-
cle states provides optimal convergence. To a-
chieve this with the sd shell would imply lowering
the pure oscillator value of 49 MeV first to the
average kinetic energy position of 24.5 MeV and
then an additional lowering by 8 to 16.5 MeV final-
ly. The total Vo —C is then 24.5 MeV+8 or 32.5
MeV. It is interesting that this results in the value
of Vo —C whereby we achieve, within RB, close
agreement with exp(s} for the binding energy of
16p

In Table III we also summarize the SM and RBSM
results for Vo —C =33 MeV. In the SM case where
there is Vo dependence due to the self-consistent
rather than unperturbed choice of E~, we choose to
display the Vo ——59, C =26 results. This is done in
order to put the unperturbed Os, /2 orbit at -38
MeV, the value it achieves in the RB calculation at
the same Vo- C. Incidentally, the SM results for
the valence states are then in reasonable accord
with experiment.

Figs. 8-10 portray the valence single-particle
wave functions that result from the first row of
calculations summarized in Table III. In each of
these figures we show for comparison the unper-
turbed harmonic oscillator wave function (@0=14
MeV). The. overlaps of these oscillator wave func-
tions with the full RBSM results are (0.981, 0.898,
0.945} for the (d5/2, s, /2, ds/2) orbits, respective-
ly. In Figs. 8 and 9 we also display Woods-Saxon
wave functions which have been found phenomeno-
logically successful in a recent fit to the '60(d, P)
'~O experiment at three energies. " The Woods-
Saxon parameters for the ds/2 orbit are Vo -—45.099
MeV, a=0.4514 fm, ro —1.350 fm, and V„=5.517
MeV. For the s, /2 orbit the parameters are Vo

TABLE ID. 0 ground state and ~O spectra. Calculated properties of the ground state of ~O in the RB framework
and properties of ~O in the RBSM and SM approaches. The unperturbed Hamiltonian is specified by Vo and C in the SM
studies but the ~~O and 0 results depend only on Vo —C in the RBSM calculation. Single-particle enexgies E and occu-
pation probabilities & are presented for the cases in which they are calculated.

BE/A E(Osf/pp Opg/pp Opf/2) P{Osi/2, Ops/2, Opt /2) E(ds/'2) E(s&h) E(d3/2)

48
48(V() =78, C =30)
33
33(VO =59, C =26)

8.30

6.11

(-40.5, -21.2, -19.0)

(-38.0, -18.5, -15.9)
no RB

no RB

(.83, .84, .83)

(.86, .87, .86)

-2.97
-4-.31
-0.52

3%12

-2.21
-3.46
-0.86
-2.58

1%31

1+33
1.45

-0.14
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APPENDIX: CALCULATIONAL DETAILS

We define for convenience a multiple delta function

——5(j,j())5(l, l8)5(mj, m, )5(t, , t, ) (Al)

and the generalized RB single-particle insertion

I(p, ~, c) =~, . l,„Z Ir(pazr Ic(~ =z+c) (~mr)p„ale -(v0„c) (~I,
hy J'

~ T
Jhs

where j=(2j+1}. The contributions of Figs. la- le to H„, can now be given as

I(b, a, Eo},

Q I(b& h, E() +Eg —E~)I(h, a, EO+E() E(,}-
h ED+Eh- E4- Eo

t)(),,—,'j + (1+5~, )'~2(1+5~,,)'~2ZT
4 h)h2

Pe ~aT

(bpJT I G(E~() +Eg( +Ep2 —E,) I h(h2ZT)(h(hrIT1G(ED+ A�(+E(2 —E()jap JT)
E( + E), + Eq —Ep —E, —E(,

(A2)

(A3a}

(A3c)

2j.
b, ~

2A

g ""(bMT I G(E() +E)))IapJT)I(p, h, Eo+E„E,)—
h, P E() +Eh- E —EP
J'

~ T

(bpJT ~ G (E", +E()laPd T)I(h, p, E,"+ E(,—E,)JT 0
hi@ ED+Eh- Eg —EP

(A3d)

(A3e)

The energy Eo in Eq. (A3) is the lowest eigenvalue of the diagonalized H,« for each j and must be deter-
mined self- consistently.

In the SM calculations all Ph's are equal to unity and all single-particle energies E are defined by
Ho(VO, C). The RBSM calculations determine the hole energies and occupation probabilities from the self-
cons is tent equations'

E„=&hIT Ih&+&hI~Ih&,

&hIfI I» =Z%h'I G(E.+E.,) Ihh')I.„
(A4)

(A5)

(A6)

and the total binding energy of the core is given by

E("O)=2 &h ITIh)+l~ &»'IG(E +E~) Ihh'» I' +~ (1 —I'~}&h IVIII» (A7)

Equations (A4)-(A6) are solved by iteration, after choosing initial guesses for the hole energies. The
reaction matrix elements are calculated on an e mesh and self-consistent values are obtained at each iter-
ation by interpolation.

A similar. self-consistent calculation is carried out for A =17. The d5~2, s&&2, and d3~2 calculations must
be performed as a function of Eo and the resulting eigenvalue iterated until separate convergence is obtain-
ed for each j value. It should be emphasized that only the lowest eigenstate for each j is treated self-con-
sistently.



1636 J. P, VARY, R. H. BELEHRAD, AND R. J. McCARTHY 21

*Permanent address.
C. Bloch and J.Horowitz, Nucl. Phys. 8, 91 (1958);
B.H. Brandow, Rev. Mod. Phys. 39, 771 (1967); J. F.
Dawson, I. Talmi, and J. D. Waleoka, Ann. Phys.
(N.Y.) 18, 339 (1962); G. F. Bertsch, Nucl. Phys. 74,
234 (1965); T. T. S. .Kuo and G. E. Brown, ibid. 85, 40
(1966).

2B. R. Barrett and M. W. Kirson, Nucl. Phys. A148, 145
(1970).

3J. P. Vary, P. U. Sauer, and C. W. Wong, Phys. Rev.
C 7, 1776 (1973); C. L. Kung, T. T. S. Kuo, and K. F.
Ratcliff, ibid. 19, 1063 (1979).

4P. J. Ellis and H. A. Mavromatis, Nucl. Phys. A175,
309 (1971); P. J. .Ellis and E.Qsnes, Phys. Lett. 41B,
97 (1972); H. N. Comins and R. G. L. Hewitt, Nucl.
Phys. A228, 141 (1974); A228, 153 (1974); Y. Stark-
and and M. W. Kirson, ibid„A261, 453 (1976);

J. Shurpin, H. Muther, T. T. S. Kuo, and A. Faessler,
ibid. A293, 61 (1977).

E. M. Krenciglowa and H. Bando, Nucl. Phys. A294,
191 (1978).

~N. I. Kassis, Nucl. Phys. A194, 205 (1972).
J. P. Vary and S. N. Yang, Phys. Rev. C 15, 1545
(1977).

K. T. R. Davies and R. J. McCarthy, Phys. Rev. C 4,
81 (1971).

SH. Kummel, K. H. Lurhmann, and J. G. Zabolitsky,
Phys. Rep. 36C, 1 (1978).
J. G. Zabolitsky, Phys. Rev. C 14, 1207 (1976).

~~M. D. Cooper, W. F. Hornyak, and P. G. Roos, Nucl.
Phys. A218, 249 (1974).

12R. J. McCarthy and K. T. R. Davies, Phys. Rev. C 1,
1644 (1970); B.R. Barrett, R. G. L. Hewitt, and R. J.
McCarthy, Nucl. Phys. A184, 13 (1972).


