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A theory is presented in which approximations to quantum observables are obtained by applying the
stationary-phase approximation to an exact functional integral representation of the many-body evolution

operator. The requirement that the leading correction to the stationary-phase approximation vanish leads to
a time-dependent Hartree-Fock mean field. Application of the theory to the Fourier transform of the trace
of the evolution operator and the study of its poles yields quantized bound states with large amplitude. The
theory is shown to reproduce the familiar static Hartree-Fock and random-phase approximations in the

appropriate limits and yields an excellent approximation. to the entire spectrum of the exactly solvable

Lipkin model.

NUCLEAR STRUCTURE Derivation of time-dependent mean-field theory from
functional integr al representation. Quantum theory of large amplitude collec-

tive motion. Application to Lipkin model.

I. INTRODUCTION

The concept of a mean field plays an enigmatic
role in the physics of nonrelativistic many-body
sytems. Whereas the mean field is crucial to the
nuclear shell model, and thus one's entire under-
standing of nuclear structure, and provides the
foundation for understanding many solid state and
condensed matter phenomena, it does not exist
as a fundamental entity. It is purely an artificial
theoretical construction, ' it cannot even be uniquely
defined, let alone measured. Thus, it is inevitable
that serious questions of principle arise in the
application of a mean-field approximation, ' such
as the time-dependent Hartree-Pock approxima-
tion (TDHF) to quantum processes.

This present work therefore addresses the prob-
lem of developing approximations to quantum
observables in a formalism which retains the phy-
sical insight provided by a mean field. Rather
than asking how to interpret the time-. dependent
mean-field solution to a specific initial value
problem, we begin with an exact quantum expres-
sion for an observable and develop a mean-field
approximation to it. The resulting theory is thus
free of ambiguities of interpretation and philoso-
phy, and subject only to well-posed questions con-
cerning the accuracy of approximation. Given the
conviction that semiclassical pictures of collective
vibration, rotations, and heavy ion collisions em-
body much of the correct physics, we believe it is
extremely valuable to be able to embed this under-
standing in a proper quantum framework.

Motivated by advances in applying functional
integral techniques to quantum field theory, the
mean field is introduced through a functional inte-

gral representation of the exact evolution opera-
tor following the approach of Ref. 1. Evaluation
of the functional integral in the stationary-phase
approximation then yields a mean-field approxi-
mation to any observable expressed in terms of
the evolution operator. The range of applicability
of this method is thus in principle extremely broad,
encompassing bound state energies and expecta-
tion values of few-body operators, the density of
continuum states, tunneling decay of unstable
states, and scattering processes.

This present work is devoted to the problem of
obtaining the Hartree-Fock (HF) mean field, rather
than the Hartree field, from the stationary-phase
approximation (SPA) and to calculation of the
bound state spectrum by evaluation of the Fourier
transform of the trace of the evolution operator.
The exchange term in the mean-field approximation
is obtained by exploiting the freedom to write al-
ternative exact functional integral expressions
which yield different results in the lowest order
SPA. The particular choice whichyields the physi-
cally appealing HF mean field also has the advan-
tage that the leading correction to the SPA van-
ishes. The calculation of the bound state spectrum
follows closely the pioneering work of Dashen,
Hausslacher, and Neveu. In addition to recover-
ing familiar HF and random-phase approxima-
tion (RPA) limits, we derive a quantized theory
of large amplitude collective motion. Other ap-
plications will be published subsequently.

Corrections to the stationary-phase approxima-
tion can only be implemented in very low order,
if at all& giving rise to several significant open
questions. In all but the most artificial model
problems, there is no small expansion parameter
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(other than h ) so the quantitative validity is diffi-
cult to assess. Although the theory is formulated
in terms of matrix elements of the evolution oper-
ator, as in any many-body theory, we may at
most hope to calculate reliable expectation values
of few-body operators. To the present order of
approximation, the theory is particularly deficient
in dealing with the short-range correlations re-
quired by the repulsive core of the nucleon-nucleon
interaction or the potentials between atoms in
liquid helium. For present purposes, we simply
assume that the bare potential may ultimately be
replaced by an effective interaction or pseudopo-
tential such as the Skyrme interaction, and rele-
gate the rigorous formulation in terms of effective
operators to subsequent research. Finally, we
pote that arbitrary choices will often arise when
alternative exact expressions yield differing lowest
order approximations. Whereas one can manipu-
late the formalism to produce specific intuitively
appealing results or to minimize a particular
higher order corret;tion, there is no criterion at
present for generating an optimal approximation.

In many respects, this work is a complementary
alternative to the coupled-cluster hierarchy, which
also addresses systematic corrections to the
mean-field approximation. The coupled- cluster
theory focuses directly on the two-body correla-
tions which are beyond the scope of the present
work. The functional integral approach, on the
other hand, emphasizes the problem of quantiza-
tion of collective motion far more directly than

- the coupled-cluster method. The present theory
is thus especially relevant for bound states and
relatively low energy nuclear dynamics. At higher
energies, where two-body collisions and particle
emission from hard core interactions are crucial,
the coupled-cluster description becomes natural.
Whereas establishing detailed correspondence with
perturbation theory is in either case difficult for
dynamic problems, it is more straightforward
with the coupled-cluster language. The fact that
the functional integral formulation is essentially
nonperturbative, however, is an asset in formu-
lating tunneling problems such as spontaneous
fission.

The organization of this paper is as follows.
Section II addresses the question of how best to
define the mean field and explores certain simple
corrections to the stationary-phase appr oxima-
tion. A general technique for approximating eigen-
states is presented in Sec. III, resulting in self-
consistent periodic TDHF equations subject to a
quantization condition. " Linearization of this theo-
ry is shown to reproduce the familiar random-phase
approximation (RPA). In Sec. IV the general equa-
tions are solved for the I ipkin model and conclu-

sions and prospects for subsequent applications are
discussed in Sec. V.

II. ALTERNATIVE MEAN-FIELD APPROXIMATIONS

A. The simplest mean-field approximation

One simple way of rewriting the second quanti-
zed Hamiltonian

JI= V x V xdx

dx dx'g~(x) (I) (x')

x V(x -x') )t (x'))t (x) (2. I)

dhdx'ps Vx-x' ps', (2. 2)

Where p(x) is the density operator g (x)(t)(x). We
use units with h = 1, and K includes the self-inter-
action term

SC = vtl)'(x) vg(x)dx ——'V(0) dxp(x) .
2m 4

(2. 3)

The interaction representation evolution operator
is then given by the time-ordered product

i f
U(tt, t~) =& exp ——J] dt ].dxdx'p(x, t)

2 g

x V(x x')p(x', t)

(2. 4)

where & will always denote the time-ordering op-
erator and

p(x, t) —= e' ' p(x) e ' ' . (2. 5)

where

x(f[v.(t„t,)(t), (2 ~ 6)

(2. 7)

and in cases where no confusion should arise, we
define

As shown in Ref. 1, use of the Hubbard-Stratonovich
transformation allows one to replace the exact
evolution operator containing two-body operators
by a functional integral over expressions involving
one-body operators:

(f()r(rg, rr) (r') =f D[rr]exp~ —fff rr)'rr)
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JfJ
g( a 00

dt dx dx' x, t Vx-x' gx', t,
t~ aOO m eo

(2. 6)

where the single-particle wave functions are or-
thonormal and .satisfy the time-dependent equation

Pp2
iy, (», t) = --,'v(o)

Ii&
-=I e~(4)&,

and

(2. 9) + Vx —x' o x').t dx'
g x, t . 2. 16

&fl -=&eg(tt} I (2. io)

For the derivation of (2. 6) it was appropriate to
use the interaction representation. When conven-
ient, subsequently, we shall also use the Schro-
dinger representation without specific comment.
The measure D[g] in (2. 6) is as defined in Ref. 1.
Equation (2. 6) may be rewritten in terms of the
effective action

The expression for 0 is now simply

o'(», t}=&c'(t) I p(», t) I e(t})

=g Io, (x, t)I'. (2. IV)

Thus, the single-particle wave functions evolve in
the Hartree potential

S,«[(r]= 2~
— gVo

4 v„„..(») =J) ~'(»', t) v(» -»'}d»'. (2. 16)

-i ln 7 exp -i
&l OVp i, 2 11

where the lowest order stationary-phase approxi-
mation yields

(f IUIi&= J" D[o]e~e«"'=e"'«"'. (2. 12)

In (2. 12) ao is found by solving the equation

(f I 7'p(», t}exp (- i f ff +vp }I i&

&f Iexp(-if ffo'vp) Ii&

(e,(t) l p(», t) l e&(t)&

&e,(t) l e~(t)&
(2. ia}

where the time-dependent wave functions are de-
fined as

I e,(t)& =v.o(t, t, ) li&,

&e»(t) I
= &f I ~.0(t~, t) .

(2. i4)

Since U, o is an evolution operator in a one-body
potential it is obvious that I e(t)& in this case is
also a determinant:

A

le(t)&-=,„-Z (- I}' ... .e, ( ~, t),P (2. iS)

Equation (2. 12) gives a mean-field approximation
for the matrix elements of the many-body evolu-
tion operator U. Unfortunately, in the present
simple form this approximation does not take pro-
per account of the particle statistics in the many-
body system. This fact becomes more transpar-
ent if one considers the situation where I i& and

If& are determinants and

I e,(t)& =
I e (t)& =

I e(t)) .

In this special simple case, we see quite directly
that although we used antisymmetrized wave func-
tions, nevertheless we obtained the Hartree rather
than the Hartree-rock mean field. In fact, whe-
ther we antisymmetrize, symmetrize, or simply
write a product wave function, the character of the
mean field is unaffected.

The fact that the mean field depends on statistics
in the Hartree sense only constitutes a serious
conceptual as well as practical problem. Certain-
ly, in the case of nuclear forces, for which ex-
change matrix elements are systematically larger
than direct matrix elements, such a limitation
would be catastrophic. Conceptually, it is quite
disturbing not to understand the absence of ex-
change. Is the present approach intrinsically li-
mited to bosons with a more complicated formula-
tion being required for fermions? Or, is there
additional, unutilized freedom with which one can
impose a more desirable mean field? In order to
clarify these issues and obtain insight into gener-
ating alternative mean-field theories, it is useful
to explicitly calculate the quadratic corrections to
the stationary-phase approximation.

B. Quadratic corrections to the stationary-phase

approximation

We consider corrections to the zeroth order
stationary-phase result, Eq. (2.12), by. expanding
S,«[g] through second order in variations of g
from the stationary solution o . Definingf -=cr -p
and using the fact that the linear term vanishes
by the stationarity condition (2.13), we have
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I ii[e]e "t't =Jtt[t] exp iS [et]+— dxde did't ' 't' S(x, t) p(x t )''p i, , 58
2 6g(x, t) 6g(x't')

det[V(x- x'}6(t- t')] "2 „.„,.„
eff

6o(x, t)6g(x't')

(a. 19)

where the last identity is derived in Appendix A. The determinants in (2. 19) are understood in the func-
tional sense with respect to the matrix "indices" x, t and x', t', the spin-isospin indices are suppressed
throughout the subsection. The second functional derivative of S,~„E(1. (2. 11}, is evaluated at the station-
ary value of o=o, with the result

Q2
= 6(t —t') V(x —x') — ds ds'V(x —s)V(x'- s')Do(st; s't'), (a. 20)

where Do is defined by

(f lap(st)p(s't') exp i Jo Vp—li) (f I7'p(st) exp iJg'V-pli)(f lap(s't') exp-i Jg'Vp lf)
(f lT exp-i Jg'Vp li) (f I7 exP-i Jg'Vp li)(f l~exP-i J gVp li)

(2.22)

and using the matrix identity det4 = exp(tr lrA), we obtain the quadratic correction factor

The quantity Do is a natural generalization of the familiar density correlation function. Rewriting the
second functional derivative in an obvious matrix notatj. on

5 Se =Jf dx dt t(t -"t )")t(x- x")[il(t —t")5(x"x'')"-
+J Jd*-dt-i)(x-t- x t-)p(x x-)e(t--t-)]-=[pe][) it(pe)]

det(V6)
5$,
60&0

={det[1 Do(V 6)]j—' = exp[ —-', tr in[1 —Do(V6)]I = exp —,g tr —[g(V6)]
g-g S (2.23)

(a. 24)

The result (2. 23) is easily interpreted in the case of static stationary solutions of the theory, for which
the mean-field o is independent of time

g'(x) = y,*(x)q, (x)

and the single-particle wave functions satisfy

——,'V(0)+)t V(x —x')g (x')dx' (g(x) =agog(x) . (a. as)

The states i i) and if) in this case are identical determinants built of Q, and the zeroth order stationary-
phase evolution operator becomes

(i i &(t&, tq) i i) = exp' ,'i )

—gVg I exp —i(tz —t() g &&

2

=exp —i j ——,'V 0 j + —,
' jek V jk tf2m p

(a. as)

where ij) denotes the single-particle eigenfunetion
The total phase of (i i Uii ) evolves with the

Hartree energy, including the proper factor of —,',
plus the extra self-energy term ——,'V(0).

For such stationary solutions, the quadratic cor-
rections (2.23) simplify considerably. The ex-

pression (2.21}for Dp reduces to the density cor-
relation function of the noninteracting system in
the potential fV(x —x') g (x')dx',

iD"""(xt.x't) = iD"""(xx')-
=p(x)6(x-x')- p(x, x')p(xt, x) (a. aq)
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where the one-body density matrix is defined as

p(e, «) f ));(~)()(~') .
/=1

(2. ae)

With this result for Do" "the first term in the
sum over n in E(l. (2. 23) yields the leading order
corr ection

'trD-(V5) =-' dxdx'dt D" '"(xt x't)V(x x')

=-—,'i Ch dx'dt p x 5 x- x'

—p(x, x')p(x', x)]V(x x )

,'g(~I ~-v~~~) (f, -t,).. Nv(o)

jk
(2. 29)

This leading correction to the phase of Eq.
(2.26} modifies the expression for the energy in a
remar'kable way. The first term of (2. 29) pre-
cisely cancels the unpleasant self-energy term
whereas the second term inserts the proper ex-
change matrix elements. Although the single-
particle basis f)I),] is determined by the solution
of (2. 25} which includes the unphysical self-energy
and only the Hartree potential, at least the energy
is evaluated using the more physical Hartree-Fock
expression in this nonoptimal basis.

The sum over n & 1 in (2. 23) is easily understood
by noting that the product &0(v&) is just a closed
particle-hole fermion loop connected to an instan-
taneous potential interaction, so that [Do(V5)]"
generates an n term RPA chain of particle-hole
excitations connected by direct matrix elements.
The trace simply connects the chain back on itself,
creating an RPA ring and the 1/n corrects for the
n different ways one could pick the top of the ring.
The summation over n thus includes exactly all
direct RPA diagrams with no overcounting of the
second-order term. That the counting is correct
may also be checked from the familiar Green's
function formula' for a homogeneous system for
the energy per unit volume

Eav~, . d qd(d dX [&V(q)DO(q, (d)]
(2v)', ~ 1- ~V(q)D, (q, ~)

g ~
—D0 q, co V q

(2. 3o)

where &0(q, (d) and V(q) are the Fourier transforms
of &0(x —x'; f —f'} and V(x- x')5(t —t'), respective-
ly.

In summary, all the quadratic corrections bring
the stationary-phase evolution operator in the
static case to the form

(2. 31)

The changes relative to E(l. (2. 26) are twofold.
By (2. 29), the leading quadratic correction can-
cels the self-energy

A

and inserts the exchange term —P& (jk ~ V~ kj).
Also, by E(l. (2. 30), the sum of all higher order
corrections includes the direct RPA ring diagrams.

The corrected Hartree result, Eq. (2. 31), per-
mits a consistency check of our stationary-phase
approach in a special case for which it should
yield a known asymptotic result. For the case of
a one dimensional system of ~ fermions with
spin 28+ 1 &N interacting via an attractive delta-
function potential, the ground-state energy of the
N-particle bound state has a 1/N expansion.
Specifically, the contribution of any Goldstone
diagram with ~ interactions and & closed fermion
loops is of order N I".Thus, the direct Hartree
energy, with two loops and one interaction is of
order &' and the only diagrams of .order & are

the exchange Fock term and all the direct RPA
ring diagrams. In the present treatment, since
S,« is proportional to N, one expects application
of the stationary-phase approximation to yield an
asymptotic expansion in 1/&. The leading term is
the expected Hartree result, plus the annoying
singular constant self-energy term V(0). The
quadratic corrections are supposed to pick up all
terms of next order in 1/&, and indeed they do
reproduce the exchange term and direct RPA dia-
grams as well as removing the troublesome self-
energy. Thus, in this simple case where an asym-
ptotic expansion is already known, it is verified
that the functional integral technique is working
quite satisfactorily.

C. Nonlocal mean fields

The essential lesson from the last section is
that there is nothing intrinsically unsatisfactory
about successive functional integral approxima-
tions generated by corrections to the stationary-
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phase approximation. Statistics ultimately are
properly included and the self-energy term is
eliminated by the leading order quadratic correc-
tion. However, from a practical point of view,
it is quite unsatisfactory to be forced to deal with
a first approximation generated by the Hartree
potential plus self-energy terms. For static nu-

clear problems, even after taking care of the hard
core, the Hartree potential contributes less than
half of the potential energy, so nuclei would not
even be bound in this approximation.

The origin of the Hartree mean field in this for-
mulation is evident from Eqs. (2. 2) and (2. 6).
The mean field o in Eq. (2. 18}cannot escape be-
ing local because the Hamiltonian has been ex-
pressed solely in terms of )8(x). Since consider-
able freedom exists in how one chooses to express
the second quantized two-body interaction opera-
tor, it will be useful to consider the following
general expression for the interaction term.

trary single-particle representation. Repetition
of the previous derivation simply replaces the
former local density operator p(x} by the nonlocal
operator p ~. The functional integral (2. 6) is re-
placed by an integral over a nonlocal o () (t) so that
the stationary-phase result (2. 17) is replaced by

&4, (t) = &c (t} I t&., (t) I c (t)& . (2. Ss)

In coordinate representation, it is crucial to bear
in mind that o. denotes spin and isospin projec-
tions s ~ as well as the spatial variable x, so
that

a~0(t) =-o'~(x, x~, t)
h

~@ag ~1'a1'B jfg Ta a 0
/@GAB jp

(2.s4)

The evolution operator U, o then evolves single-
particle wave functions according to the one-body
operator h

V=-. Z 4.4, V.&.skag
f f

aBtd ip() = h()() ((), (2. s6)

—2 ~ Pal'"aB)'d~B5 2~ ~ad~aBB5 ~

apped aB5

where

(2. S2) where

4„= vrr-Q-, 'vr„, +Q r v, i„r)Prr ().M)
aT

f4.A-
and the indices o.Py6 are used to denote an arbi-.

and TB5 is the kinetic energy matrix element.
Similarly, second variation of the effective action
replaces Eq. (2. 22) by the result

Q2

()
' ' (,)

——jt dt"QV~()„66(t —t")

)

x il(t" —t')Pr ~ ttr —f dt'" Q t(t —t')V rr r"t)rtr, (t",„). t (2. 87)

where

iD,'„., (t, t")=((p„(t")ps, (t")))—((7, (t")))((P(t (t")))

and

(2. se)

»= &f ~ "o'"p(-i~(e&)V()J &4.(t)V(ttsV()P()()(t}}~i&

(f ~'r exp(-i+~„6f~„(t)V~()„,p()6(t)}~i)

The leading order quadratic correction is again given by the trace of (V6)D', and in the static case yields

(2. s9)

(2.41)

—', tr((vtt)ttt]=- —',if dt g vrr „(& l eplret&p-rr&elp„le&&elpr; le&&
B B'55'

4

Vr„„,.(pr, .) Vrr „,(Pr t) (Pr, )I(tr — t), (2. 40)

with the notation (p) =(I I p I 4)).
With the results of Eqs. (2. 88) through (2. 40), it is now straightforward to explore nonlocal mean fields.

because (2.82) is manifestly antisymmetric, we are free to replace V ~„~ by -V z~„. The previous Hartree
results for a central potential are recovered by the choice
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The mean field in Eq. (2. 36) is rendered local by the factor 5(x&-x, ) and depends only on the local density
p . The first term in the leading quadratic correction, Eq. (2. 40), is a self-energy term which exactly
cancels that in (2. 36) and the remaining correction is the familiar exchange term to the energy

(2. 42)

Using the equally valid expression for a central potential

V~q„6
—-5(x~ —x())5, ,55, ~65(x() —x„)6, ~6) ~„V(x~ —x~) (2.43)

yields a mean field with no Hartree term and precisely the Fock exchange term. Explicitly, the mean-
field term in (2. 36) yields

I(~;~)„,„,= V(~-x)g y*-,"(~)q -,-(x')6„6„. (2.44)

Although this Fock mean-field result is a prior as
unsatisfying as the Hartree result, the leading
second-order correction again yields just the Har-
tree-Fock energy expression. As before, the
self-energy terms in (2. 36) and (2. 40) exactly can-
cel. The overall ,' ff—fo Vo factor removes half
the exchange term so it is counted correctly.
Finally, substitution of (2. 48) into the last term
of (2. 40) produces the direct Hartree term. Thus,
the two exact expressions (2. 41) and (2.48) yield
very different mean fields but the same leading
order corrected energy expressions to be evalu-
ated using the respective Hartree or Foek wave '
functions.

At this point, it is suggestive to consider the
connection between the artificial 0 field and the
actual meson fields present if there were an un-
derlying field theory. In the case of a field theory
of fermions and mesons, our stationary field 0
corresponds to the meson field generated by the
self-consistent distribution of fermions and the
RPA quadratic corrections correspond to the one-
meson loop corrections in field theory. Since
scalar and vector meson couplings single out
direct and exchange matrix elements, respectively,
one can construct a model system in which Hartree
and Fock terms arise from scalar and vector com-
ponents of the model, respectively. In the same
1/N limit discussed previously, such a model
yields an exact Hartree-Fock theory.

The feature of the field theory model that differ-
ent components lead naturally to direct and ex-
change terms suggests that one consider decom-
posing the static two-body potential V in the non-
relativistic problem into two distinct components:
one which will generate the Hartree potential and
another which will generate the exchange poten-
tials. At the level of a pure one-boson-exchange
potential this decomposition follows from the pre-
vious arguments; for example, the one-pion-ex-
change potential contributes to the HF energy of

Vsse' =0 ~
(g) (2. 46)

This condition is straightforward to implement
using the spin exchange operator I', by noting that

g(ss'[1 —,'P, [s's) =g(ss'i1 ——2P, ass') =0.
(2. 4V)

For a central, spin-dependent potential

V+ V~, =V' ' + V' ', (2. 48)

nuclear matter only through the exchange term.
For a general phenomenological potential, we must
relinquish the formal connection with vector or
scalar exchanges, and simply explore the possible
advantage of decomposing the potential into two
parts which are subsequently treated differently.

To render the decomposition well defined, physi-
cally motivated, and in some sense optimal, it is
desirable to require that the leading quadratic
correction to the energy vanish. Thus, the free-
dom in specification of the mean field is utilized
to improve the accuracy of the stationary-phase
approximation. The basic strategy is to decom-
pose the interaction as follows:

Vw~o= ~ epr6+ Voodoo

=V (2.46)

such that the Fock term of V ' and the Hartree
term of V'@' vanish. It is particularly convenient
to accomplish this decomposition via spin algebra,
since the self-energy terms are easily eliminated
at the same time. For closed-shell nuclei, nuclei
with at most one particle or hole relative to a
closed shell, or any nuclei treated in the filling
approximation, both terms in Eq. (2. 40) necessa-
rily involve the spin sum P„V,g,;, where either
s or s' is summed over a closed shell. Hence,
for these cases, we may require that the following
spin sums vanish:
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where

V ' =3(2 —P,)(2V+ V,),
V~s' = ~(l 2P, )(V+2V, ) .

(2.49)

For a nuclear potential defined in the singlet-
even, triplet-even, singlet-odd, and triplet-odd
channels,

V = ~(2-P,)f(V" +SV"+ V" +SV")

+(V —SV —V +SY )P, ]
(2. 50)

V =- (1 —2P )[(- V + SV —V +3V )

+(- V —SV +V +3V )P„].
It may be verified by straightforward algebra

that (2.49) or (2. 50) yields precisely the usual
Hartree-Fock equations when V ~„,—V ~,„ is sub-
stituted into E(ls. (2. 35) and (2. 36). Thus, the
decomposition (2. 45) of the interaction which was
devised to make the leading quadratic correction
vanish leads to the Hartree-Fock equations for the
single-particle basis. This ba, sis may, therefore,
be considered as optimal with regard to the im-
provement of the accuracy of the stationary-phase
approximation.

The full flexibility of the Hubbard-Stratonovich
transformation to define alternative mean fields
has still not been fully utilized. As noted by H'.~b-

bard, one could introduce a complex field o(x, x')
and obtain the result"

& exp[- ,'i —dxdx'dtrp(x, x't)V(x —x')rt(x, x't)] = I D[o] exp ~ dxdx'dto*(x, x't)V(x-x')o(x, x't)
4

~7'exp —2i Vx —x' 0* x, x', t g x, x', t

+e(x, x', t)t)t(x, x', t))I,

where

q(x, x') = g(x)g(x') . (2. 52)

The mean field in this case is the pairing field

the local Hartree equations can always be straight-
forwardly generalized to a corresponding Hartree-
Fock theory, for pedagogical clarity and economy
of notation, we will henceforth only write out the
special Hartree limit.

(2. 53)

Although (2. 53) is nonvanishing for determinantal
wave functions because U violates number con-
servation, it appears more natural in this case to
use BCS wave functions in which case cr is just the
usual BCS order parameter &. Presumably, a
suitable decomposition of the interaction exists
such that the stationary-phase approximation yields
the time-. dependent Hartree-Fock-Bogoliubov
equation, but we have not explicitly constructed it.
Quadratic corrections to the stationary-phase ap-
proximation will differ from the previous case only
in that D will contain particle-particle and hole-
hole bubbles rather than particle-hole bubbles.
The analog of the RPA sum is thus Brueckner
ladder diagrams and analogous down going ladders.

The main conclusion of this section is that it is
indeed possible to obtain time-dependent Hartree-
Fock equations in the stationary-phase approxima-
tion. Of all the arbitrary ways of decomposing the
interaction, this particular choice has the specific
advantage of having no first-order quadratic cor-
rections to the energy. Having demonstrated that

III. QUANTIZED BOUND STATES

In this chapter we evaluate the bound state spec-
trum using a method suggested by Gutzwiller and
exploited extensively in the semiclassical analysis
of field theory. To relate our approximation of
the evolution operator, U(T, 0) = e to the eigen-
values, &„ of H, it is convenient to use the identity

G(E)=-i f dTe'e" tx))(T, O)=g, (8. 1)
0 V P

where 8 is defined to have a small positive ima-
ginary part to ensure convergence, periodic boun-
dary conditions are assumed to render the spec-
trum discrete, and the trace is evaluated in the
space of antisymmetric &-particle wave functions.
In this section, we will obtain approximate eigen-
values by examining the poles of (("(&) in lowest
order SPA, and discussiori of higher corrections is
deferred to Sec. V. In many respects our treat-
ment follows that of the Gross-Neveu model by
Dashen, Hasslacher, and Neveu. However, we
avoid problems related to integration over anti-
commuting c-number variables and use a language
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appropriate to nuclear physics.
By (2.6), the quantity trU(T, 0) appearing in

{S.1) may be rewritten

trU(T, 0) = jt D[o] expl ,'i —ohio'Itr'U (T, 0},(, .

(s.2}

where in Schrodinger representation

l~, (T}&=e 'l~, (0}&. (s. sb)

(S.7)

which satisfy

Equations {S.6) may be rewritten as a differential
eigenvalue problem by defining the wave functions

ln, (t)&=e ~"'le, {t)&,

UD(T 0)

=7'exp -i dt E+ Chdx'p x
0

t), [et) -=i——tt.) le,) =-(et/p) ie, )
8

and the periodic boundary condition

Iu(T)& = Iu(0)&.

(s. sa)

(s. sb}

x V(»-»')o{»', t)

(s. 3)

The trace of U, is conveniently evaluated in the
basis of its eigenfunctions. Since U, describes
the time evolution in a one-body potential, it may
be written as a product of A. formally identical
single particle evolution operators

T

U,"."=&exp -i
1

h, (t)dt
tpt' P

(S.3a)

where h,,(t) is

tt (t) = ——'p(0)+ f V( — ')e( ', t)d '.
2m

(s. sb)

trU, (T, 0) =g expl —i n, a,[o] I,

where fn) denotes all possible sets of fermion
occupation numbers in the basis l (t)z&

(S. 5a)

n~ ——0 or 1, ng
——&.

gd.
(3. 5b)

To calculate the eigenvalues +&, it is convenient
to cast Eq. (8.4) into differential form, by de-
fining

I 4,(t)& =- U.'""(t,0}I e&&.

These single-particle functions satisfy the Schro-
dinger equation with the time-dependent Hamil-
tonian (3.3b)

Ii—„-I.(t} Ily,&=o,r. a {s.sa)

subject to the boundary condition

The eigenfunctions of V,"~' satisfy

U.""(T,0) le, &=e "~le,&, (s.4)

where the a~ = a~[a] are real by unitarity. The
antisymmetrized eigenfunctions of U are gen-
erated by the set of solutions of (3.4} and thus the
trace may be written

The operator A, is Hermitian in the Hilbert space
of functions satisfying (S.Sb) where integration
over all space and the time interval 0 & t & & is
implied in all inner products. Since the a's of
subsequent interest will be periodic in time T,
g(t) = o{t+ T), the solutions of (3.6a) are Bloch
waves in the time variable t and Eq. (S.6b) is the
counterpart of Bloch's theorem. In analogy with
quasimomentum in a spatially periodic potential,
the quantity c[&/T can be regarded as a quasienergy
in the case of periodicity in time. In the special
limit of a time-independent 0;

/

(s. o)atg —
Cg T,

where E& denotes an eigenvalue of the single-par-
ticle Hamiltonian h, .

Substitution of (8. 5a} into Eq. (3.2) yields

trit(T, D)=Z tt[e)exp w f et e —i/et et[e],l.
(~)

(8. 10)

A. The periodic mean field

Equation (3.10) is now cast in a form in which
one can single out of the infinite set of o's re-
quired to evaluate trU' exactly a small number of
stationary-phase solutions. However, it is still
necessary to choose whether to apply the SPA to
each term in the sum over [n} separately, to sub-
groups of terms, or to the entire sum. In this
present work, we choose to treat each set of occu-
pation numbers separately, both because we be-
lieve this is the most physical choice foi.' discrete
bound state energies and because of the technical
simplitication arising from a formulation based on
a single determinant. For other applications, such
as evaluating a suitably averaged density of states
in the continuum, application of SPA tb the whole
sum may be preferable. In the next section, in the
context of a simple model we will discuss the re-
sults of other possible choices.

In applying SPA to a particular term of (3.10) we
solve for those 0 which satisfy
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GS[o]= 0, (S.11)

where

s[g]=-,' f ave-Qn, n[rr]. (S. i2)

To evaluate 58 it is necessary to find the varia-
tion of a, when o is varied. From (S.8) we obtain
using first- order perturbation theory

with

f, dt fdxu*, (x, t)G.A.u, (x, t)

f; df fdx
i u, (x, t) i

'
(S. iSa)

$$, = J $ ')'( — ')$ ( ', ))$$ . '($. $$$)

Hermiticity of h, in its spatial variables implies
that the integral over x in the denominator of
(3. 13a) is time independent and we may normalize
u&(x, t) to unity:

Qy xy t t&= yx~t cfÃ=1, (S. 13c)

The stationary-phase condition (3.11) is now

68= 6oVg- n& 5oV
&

—0
)=1

with the solution

v'(x, )) = $(x&) = Q n, -l $, (*,, )) I'. (3.14)

In the lowest order SPA Eq. (3. 10) becomes

trU(T 0) =pe'st' ' ) (S. iS)

where the sum is taken over all different solutions
o of Eq. (3.14) for all possible sets of fnj. The
result (3.15) is valid only when all the stationary
points of S are well separated. Otherwise, a
more careful treatment including the second varia-
tion 6 S/Go&o is required. One possible problem
is the occurrence of zero eigenvalues of 5 S/&oGo
due to continuous symmetries of the exact problem
which are broke by o . This possibility may be
treated by the general methods of Ref. 9, and
usually leads to obvious corrections, such as the
center of mass motion in the case of translational
symmetry. Although we did not, perform a detailed
evaluation, we do not expect that it will affect
the subsequent presentation. Another possibility
is related to the so-called dynamical zero eigen-
values of & &/Go&a when some of the stationary
points of ~ occasionally coalesce. In this event
a more complicated uniform expression should
replace (3. 15)'. We will not discuss such cases
here.

The mean field o and the eigenvalues &~[a ] are

E z(T)=g($ ]$o]$)- ][IChdx'rr ) v
k=1

dx[v@, ['
h

+ sg Jt JI IV. I'I'I4&l'dxdx'--, '&V(0)
a.S 1'

(S. ie)
is conserved by the TDHF equations, where, for
convenience, we have assumed that the occupation
numbers are labeled such that n&

—1 for j && and
zero otherwise. In contrast to the usual TDHF
initial value problem in which &» is specified by
the initial wave function, in the present theory
&„~ is specified by the self-consistent solution of
Eq. (3.6) and in general is determined by the
period T.

Only in the static case when

y, (x, t}= g(x) e-*'&' (3.I'I)

is the value of &» independent of &. The implicit
T dependence of Eq. (S. 16) will be important in
the next section in calculating quantized states.

B. Quantization condition

The final step in calculating G{E) is evaluation
of the time integral. Substitution of the SPA result
(3. 15) in Eq. (3.1) yields

found by solving Eq. (S.6) with o satisfying the
condition (S.14). When this self-consistency con-
dition is introduced into Eq. (S.Ga) the latter ac-
quires a familiar time-dependent Hartree form.
In the previous section we demonstrated how to
generalize this equation by including the exchange
potential and removing the self-energy term
--,'I)"(0). For the sake of notational simplicity, we
will continue to write only the Hartree term, but
we will subsequently refer to Eq. (3.Ga) with the
self-consistent cr as the TDHF equation.

The boundary condition (3.Gb) represents a cru-
cial new element in the present formulation of the
time-dependent mean-field theory. Because of
this condition, the mean-field potential fV(x —x')
&& o (x'; t)dx' is periodic in time and as discussed
earlier, the eigenvalues o'q/T are quasienergies
in this self-consistent potential. One therefore has
a time-dependent generalization of the conventional
static HF problem, which is most explicit in the
eigenvalue form (3.8). The time-dependent opera-
tor A, with 0= a replaces the static HF Hamilton-
ian h, o and the periodicity condition (3.8b} on the
time variable is added to the appropriate spatial
boundary conditions. The static HF equations ap-
pear as a particular case of (3.Ga) with time-inde-
pendent o .

The HF energy
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G(s) =Xf sTe'*
typ 0

(s. 18)

the poles of which approximate the energy eigen-
values of the system.

For the special case of time-independent a, we
expect to recover the static HF energy. This ex-
pectation is verified by evaluating S[a', T] using
Eqs. (3.12) and (3.9):

s[e', r)=(-, f s|rtr s'(x)v(x-x')v'(s')- m, a(114j

(S.19)

where Es)~"' represents the HF energy (3.16) for
the static wave functions (3.17) with occupation
numbers fn}. The linear T dependence in (3. 19)
immediately implies a pole in G(E), Eq. (3. 18),
at EEF, so that static HF energies for all distinct
sets of occupation numbers are recovered.

More interesting states arise from consideration
of a time-dependent o . Owing to the nontrivial
dependence of S on T in this case, we apply the
SPA to the time integral (S.18). The stationary-
phase condition is

BT
(ET+S[a', T])=E+ =O.

aT
(s. ao)

8T
——-E r(T), (s. 21)

where Ear(T) is the HF energy (S. 16) of the time-
dependent solution of (3.6) with a = a .

The SPA condition (3.20) thus implicitly defines
values of T for which

Using the explicit expression (3. 12) for S we derive
in Appendix B the intuitively expected result

where

W(E) =E„,T'+S[ao, T']

and T (E) denotes the basic (smallest) period of
the a which satisfies (3.22).

The periodic time-dependent 0 produces a pole
in G(E) at values of E=EHr when

(s. 24)

W(E) =arne, m integer. (s. as)

ly»(~', t)i'd~ iy, (3.26a)

and finds the solution which for a given time inter-
val T satisfies the condition

y, (x, t) =e ~~y, (x, o), q=.l, . . . , &. (3.26b)

The HF energy of this solution EHF(T) depends on
the time interval T, and one must finally find the
value of T for which the condition (3.25) is satis-
fied. The resulting value of Esr then gives the
approximate energy level of the system.

The function VV(E) may be expressed in terms of
the solution of (3.26) by substituting

gp

EHFT =-p dt dxck g Vo'
0

+ dt k h~P (s. 27)

s

The value of this energy gives an approximation to
. a bound state of the nuclear system corresponding
to a dynamic periodic motion of the self-consis-
tent mean field cr .

Before discussing this result further it will be
useful to summarize the steps and equations for
the calculation of these periodic solutions.

One starts from the TDHF equations
2

i(t)g — ——,'V(0) + J~ V(x —x')

E=E„,(T) . (s. 22)

In the lowest order of SPA a given solution T (E)
of this equation contributes a term

exp[a[En, (T')T'+ S[a', T']}

to G(E). Owing to the periodicity of the time-de-
pendent o, any integral multiple of Tp is also a
solution of (3.22) since EsF(kT ) = E)()(r(T ). The
quasienergies e& for such multiple cycle are

a,[kT'] =k [T~']

and the corresponding action satisfies

S[a, kT ]=kS[a, T ].

(s. 2s)

Each multicycle stationary solution contribut'es to
G(E) in the SPA generating the geometric series

ca%'(s)
hkw N,')8 Cg (~

k~ 1 —e

and Eq. (3. 12) into (3.24).
Using Eq. (3.6a) to replace ((())»ik,Dip») by

(y„[ga/at [y,) yields

dt dxiP» (x, t) (xs t) —a(» =arne.k1- 0
k u pt e k

(s. as)

The first term in (S.28) has a simple physical
meaning if one adopts the interpretation of the
TDHF equations as equations for coupled classi-
cal fields. In this interpretation (t)» and i(t)» at
each space point are canonically conjugate coordi-
nates and momenta. The first term in (3.28) is
therefore of the form fpqdt appearing in the
semiclassical Bohr-Sommerfeld quantization rule.
Although this form of quantization condition is
consistent wifh the notion that TDHF is in some
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sense semiclassical, we find it satisfying that
(3.28) has been derived unambiguously without
recourse to any philosophy or interpretation.

The presence of the second term in (3.28} con-
taining e~ is important in making the quantization
condition invariant under the space independent
gauge transformation $~-e'"'" Q~. This gauge
transformation is equivalent to adding an unob-
servable c-number term )|(t) to the Hamiltonian
and simply adds an overall arbitrary phase. In
the following discussion of RPA and the I ipkin
model other aspects of the role of the second term
in (3.28) will become clear. We note also that
using the functions u& of Eg. (3.7), it is possible
to eliminate o,&'s from the quantization condition
at the expense of introducing them in Eq. (3.8a)
for u&.

Although it is tempting to interpret m in Eq.
(S.28} as the number of variational quanta associa-
ted with the periodic motion of a; one must note
that n~ is only defined by (3.26b) to within an arbi-
trary integral multiple of 2w so m has no absolute
meaning. In the contexts of the RPA limit and the
Lipkin model discussed subsequently, a natural
phase convention arises and the physical role of
m will be clear. Discussion of the general case is
deferred to Sec. V.

Finally, we note that it is useful to consider the
eigenvalue form (3.8) of the self-consistent equa-
tions (3.26). Because of the mathematical simi-
larity of this self-consistent eigenvalue problem
involving the four dimensions x, y, z, t to the well
studied static HF problem in three spatial dimen-
sions, one can use the same iterative and numeri-
cal methods to obtain the time-dependent self-
consistent solutions.

+. NE N+ (s. 29)

. and we will assume that the expansion coefficients

C. The RPA limit

Although the greatest advantage of the preceding
quantized nonlinear theory is its applicability to
large amplitude collective vibrations, it is instruc-
tive to briefly demonstrate that the limit of infin-
itesimal deviations from the static HF solution re-
produces the familiar RPA theory.

Let ge(x) and g~(x) denote the states of a static
HF basis where capital and lower case letters
denote the A occupied hole states and the set of
unoccupied particle states, respectively. A gen-
eral expansion of the TDHF single-particle wave
function in this basis is

~+

pr(r, t) =e "r' 4(r)+pC~g (r),

C~ are small. Since all our previous formulas
were written for an orthonormal basis, we must
require

(s. So)

which implies

C~,Cm+ZQrr Q~r+Qrr e r +Jr.r e 'r'
m

=o. (s. Sl)

This condition is satisfied to second order by

ger =-2e 'e QC~Cm+O(C ) . (s. 32)

Since ger is O(C ), it may be neglected in the
linearized TDHF equations but will be necessary
for the energy and quantization conditions.

The usual parametrization

C~ =X e-'"'+ Yme'"' (3.ss)

with time-independent X and Y brings the linear-
ized TDHF equations into a familiar RPA matrix
form

TA 8' X'

A+ ,—Y.-
(s. s4)

where

(s. s6)

Denoting the RPA eigenvalues and eigenvectors
by &o„and (X'"', &'"'), we now consider application
of the periodicity condition (3.26b) to the most
general superposition of RPA modes. Except for
the special case in which the frequencies of sev-
eral modes happen to be commensurate, projec-
tion of the resulting equation onto the space of
unoccupied wave functions requires that only one
mode & be present and that the period satisfy

+„+„=2''s (s. s6)

for some integer n. The fundamental period is
thus T„= 2lr&o„aesxpected.

Projection onto each occupied state g specifies

atE —E p ~ (s. 37)

As expected for linear vibrations the amplitude
which is unspecified by the homogeneous linear
RPA equation is determined by the quantization
condition (S.28).

By substituting (3.29) into (3.28) and using
(3.36), (S.37), and the periodicity of Ci"', Eq.
(S.33), we obtain
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~

~

Tv
C'"~ +j—CbB' —2m@' .

0 bB
(s. 36)

This relationis p(p') and it is therefore necessary
to include Q«given by (3. 32).

In terms of (X ",Y" ), Eq. (3.38) becomes

which is commonly referred to as the I ipkin mo-
del. Energy levels of this system are easily ob-
tained by introducing the quasispin operators

1 t~x=2 (a~gap g+ ap gap. g),
pe1py ~ ~ »N

Q (Ix(; I' IF,", I') =~,
bB

(s. s9)
( t . t

~I)i= 2& ~ , (ap+1ap, -l ap lap+1) i
@=1,~ ~ .,N

(4. 2)

which is the familiar RPA normalization condi-
tion' for the m phonon case. The corresponding
energy is calculated by substituting (3.29) with
(3.32) in (3.16) with the result

sa~a»,
p=i p ~ ~ ~,N

sells -1

by which & can be rewritten as .

W»» =4v +m&.(v) tat& (3.40) H = cZ, + V(Z', —4'„) . (4. s)

Thus, the general method of the previous sec-
tion correctly reproduces the RPA limit. Depen-
ding on the system under consideration, the ampli-
tudes X and Y may or may not be sufficiently
small to justify the linear approximation for low
integers in (3.39). Even when the linearity con-
dition is violated, however, the RPA amplitudes
may provide a useful starting point for the itera-
tive solution of the full nonlinear problem (3.26).

Several final comments are pertinent to the
RPA limit. The arbitrary integer multiple of 2m

in the sum Q» a» and the integer in the quantiza-
tion equation combine to the integer m in Eq.
(3.39) which has the physical significance of the
number of phonons in the mode co„. The case of
zero phonons m = 0 simply reproduces the static
HF solution. The structure of the strict infinite-
simal limit is characteristically different from
that of the nonlinear theory. One no longer has a
continuous family of solutions parametrized by the
period T; rather, for T&T„ there are no periodic
solutions and T= 2"„admits an infinite family of
solutions of arbitrary amplitude. The quantiza-
tion condition is thus decoupled from determina-
tion of the period and eigenfunctions and only spe-
cifies the allowed amplitudes of the vibrational
modes. Considerable insight is obtained by self-
consistent numerical solution of a one-dimensional
model and will be discussed in a subsequent pub-
lication.

IV. APPLICATION TO THE LIPKIN MODEL

A. The model and the associated equations

As a first application, we study the energy levels
of an N-fermion system described by the Hamil-
tonian

&= p& sppsaps+ g~1 1

@~1p2y~pe pN
sl»l'1 s~

The Hamiltonian commutes with

g2 J 2+g2+J 2 (4. 4a)

and the exact eigenstates may be classified in
multiplets. In addition, H commutes with the
operators

e = DoexpiV o —0 dt U T 0
0 (4. 6)

T T'

p, (T, o)=&expl-i dt ip, +2v(g,p, —g,p,)
0

where,

t
np

——~~a~aqs, p=1, . . . , N, P=1, . . . , N.

(4. 4b)

Every n~ has eigenvalues 0, 1, or 2, as is seen
from the relation n& —Sn& + 2n& ——0. Since only
single-particle states with unit eigenvalue of n~
are active, in the sense that they are affected by
&, we will restrict our attention to states of the
system for which all n~ =1.

The eigenvalues of H always come in pairs of the
opposite sign since & changes its sign under the
rotation through 180' about the x =y axis in the
quasispin space.

The last useful symmetry of H is its commutati-
vity with

(4. 4c)

Following Ref. 14 we refer to Pr as the parity op-
erator.

The quadratic dependence of & on J„,~„ in the
present model is the analog of the quadratic de-
pendence on p in a general case. Application of
the Hubbard-Stratonovich transformation linear-.
izes the evolution operator of the model with re-
spect to J„and 1„,

ap, ap. ,ap, ,ap (s & 0),t t
ps@' &1s2~ e ~ N

s~41s 1 (4. 1) and

cr„=c,(t), a„=o„(t),
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Dc =&c,(t)Dc„(t) .

Although the linearized Hamiltonian

h n = e&n+ 2 V(cg„- cg„) (4. 6)

has the other symmetries of &, it does not con-
serve parity, since, unlike H (4. 3), it is not in-
variant under rotation by 180' around the s axis
for arbitrary o„(t), o„(t). Following the procedure
of Sec. III, we evaluate the expression

r
dTe e tre " = dT e Do exp —V (c„-o„)dt) tr&, (T, 0)

0 0 0
(4. V)

in the Hilbert space of N-fermion wave functions
with n~=1 for P =1, .. . , N. We construct eigen-
values of U, using determinantal wave functions
which, in general, are not eigenstates of ~ .
Later we will show how an alternative basis built
out of eigenstates of ~ can be used as well.

We are thus looking for eigenstates of U, (T, 0)
of the form

0,) .
P&1 fy ~ ~ eN

(4. 8)

Owing to the condition that n~ = 1, the single-par-
ticle wave functions may be written in the form

b~ 8
itgp

'.c~e
(4. 6)

with real b~, c~, g~, and X~, and normalization
b~~ + c~ = 1. In (4. 9) only the nonzero part of the
2N components is shown. The stationary-phase
approximation performed on each term of the
trace leads to the self-consistent field:

c„'(t)=Q o„"' (t),

o&" (t) =&y, (J„~y, ) =b, c, cosy„
a'„~'(t) =(g~ ~

J„jg~) = b~c~ sing~ .
(4. 10)

where b, is given by (4.6). The solutions should
be periodic up to a phase P~(T)=e &g~(0). From
the parametrization (4. 9) it follows that the latter
condition is satisfied if

~, =g(T) —x,(0), b, (T) =b, (o), c,(T) = c,(o),

These equations have to be solved self-consistently
along with the Schrodinger equations for the Q~'s
of (4. 9):

yn~ IN -n (4. 14)

where 0 &n &N and we have suppressed the depen-
dence of the P's on p, the antisymmetrization, and
the overall time-dependent phase.

Since P and P' are orthogonal, it follows that

changes in conditions for g~ and g. However, as
will be seen later, b~(t) and c~(t) cannot change
their sign and therefore (4. 12) is the only possible
choice.

Energy levels are obtained from those solutions
which satisfy the quantization condition

~ ~ ~

~

T
i dtpp —

Qp —&p ——2Mv.
P=&y ~ ~ ~ tN-

With the parametrization (4. 9) this condition reads
N

f e,'j,dt=RMw. l4 18)
pD 0

In obtaining the last equation we used the normal-
ization b~ + c~ = 1 together with (4. 12). It is
seen that the quantization condition (4. 13) does not
require the calculation of )t, (t) and &~. This is
a consequence of the fact that in this special case,
the only role of c'~ is to specify the overall time-
dependent phase factor X~ in the single-particle
wave functions.

In order to proceed with evaluation of (4. 18) we
first consider how this condition depends on N.
For this purpose let us assume that one has found
a self-consistent field c . Each Q~ is an eigen-
state of 0,0. For a given p only two orthogonal
eigenstates exist, which we denote by

r bg, y

) ~.ce". cle~4

Every Q~ can thus be either p or g' and the many-
body wave function (4. 8) can symbolically be writ-
ten as

and (4. 12) bc =-b'c',
b =c',

for integer p. One could in general allow for
b~(T) =+b~(0), c~(T) =ac~(0) with appropriate

c
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T

(2n —N) c ddt =2m'
0

(4. 16)

for integer m. In deriving Eq. (4. 16) the normal-
ization and the last relation of (4. 12) were used.

It is seen that the dependence of 0„, o„and the
quantization condition on N and n is only via the
multiplicative factor 2n —N. Therefore, without
loss of generality we can study the case n =N for
which

(4. 17)

Note that this function corresponds to a wave
function in the ground-state (&=N/2) multiplet.
Indeed, all the spinors P~ of (4. 9) are identical,
i.e. , "pointing to the same direction" in the
quasispin space. The cases in which some of the
spinors are "pointing in the opposite direction" (n
& N} correspond to the other multiplets.

It is not difficult to find the dependence of c on

g in (4. 16). For this purpose, still considering
the case n =N, we define

c', =(elm. le&=-,'N(b'- c')

and use the conservation of the Hartree energy

E=e '+ V(c„"—g„"). (4. 18)

For the case n &N, a, dependence on N and n is
similar to that of o„, a„. By substituting the ex-
pressions for v„, o„, and a, in (4. 18), one obtains
after some algebra

c' = c,' =—1- —+ —(i'+x' —4Ex)'", (4. 19)
2 x x

where

E
NV' NV (4. 20)

and

x =cos2$. (4. aS)

We have thus succeeded in expressing c in terms
of g and the energy. The quantization condition

The expressions for the self-consistent field o,
(4. 10), and the quantization condition (4. IS) are
consequently simplified:

a„=[n- (N-n)]bc cosg=(2n-N)bccosg,

a„=[n- (N n)]-bc sing=(2n —N)bc sing, .
T T ~ T

c& P~dt=n c ddt+(N n) -b ddt
p=1 0 0 0

T ~

=(2n-N) c'gdt+2pv=2M'
0

(4. 15)

Thus,

B. Approximate energy levels

The detailed analysis of the function (4. 19) is
performed in Appendix C and depends crucially on
the position of the branch points of c (x), i. e. , the
values of x for which

e +x —4Ex=0. (4. aS)

In this connection, two types of periodic c orbits
are found in Appendix C, for which 0& c & 1. The
first corresponds to a change of g in the whole 2&

interval with c taking the values of the positive
branch c' = c, . This is the case in which the two
branch points are not real, or from (4.23)

lEI &e/2. (4. 24)

Figure 1 shows a periodic solution c (g) of this
type (denoted by the plus sign).

The second type of periodic, physical orbit is
obtained when the branch points are both real
and lie in the interval x&[0, 1] or xe[-1,0]. This
happens if

—,'e& lEl &-,'(1+i'), (4. 25}

and such a case is illustrated in Fig. 2. For E
& 0 (E & 0) it consists of two closed orbits around

g = 0, v(g = —,'v, —,'Sv) within the 2v interval [- 2v, 23m]

([0, 2-]).
We shall refer to the two types of orbits shown

in Figs. 1 and 2 as "spherical" and "deformed"
orbits, respectively. The spherical and deformed
ground states of Ref. 14 are special cases of
these orbits as shown in Appendix C. There is no
periodic orbit. (with 0 & c &1) where the branch
points are real and at least one of them lies out
of the interval x e [ —1, 1]. This implies that no
solutions with

—.'(I+i') & lEl

can now be rewritten in the simple form

N Jl c d(=2m'. (4. 22)

The integration boundaries will be discussed sub-
sequently.

The problem of obtaining approximate energy
levels of the system is thus reduced to finding
solutions fo (4.22) with c of (4. 19) in the physical
domain such that 0&c &1 for -1&x&1.

One can already verify that the symmetry be-
tween states of energy E and -E of the exact eigen-
values exists also for approximate energy levels.
Indeed, if for a given value of E, c satisfies
(4. 22), then

c2(- E, —x) = 1- c (E, x)

will also satisfy (4. 22) and for every approximate
level ~, there is the corresponding level -E.
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C2

0.5—

1(Z}= pc' d P

for the deformed orbit

-,'i& E& —,'(1+ c') .
The quantization condition then .reads

(4. 25b)

- &/2 K/4 0.„ 71/4

I(E) = ~, (4. 26)

FIG. 1. The functions c+ {|I))andy of Eq. {4.19) de-
noted by the plus and minus sign respectively, for
parameters P= 0.5 and E = 2.0 in the spherical region.
Only the c+ branch is physical.

exist, as can be seen from (4.23). Furthermore,
for the so-called weak-coupling case ( & 1, de-
formed orbits do not exist as is clear from (4. 25).
In the strong-coupling case E &1, both spherical
and deformed orbits exist for ~ satisfying (4. 24)
and (4.25), respectively.

With all the possible periodic orbits at hand we
can now impose the quantization condition (4. 22).
I"or this purpose we define

«/2

I(E) = c,. dg (4. 25a)
-«/2

for the spherical case ~E
~

& —,'e and

where m is any integer for ~E ~
& -', c and an even

integer for

—,'e & E & —,'(1 + c') .
Slightly different definitions of I(E) for

g(1+4 )&S&se

and the related conditions on m are discussed in
Appendix C. Also discussed there is the depen-
dence of I on @ in the weak- and strong-coupling
regimes.

ln Fig. 3, I(E) is plotted as a function of E for
four values of ™&. The first two f =2.0, 1.0 belong
to the weak-coupling category where only spherical
orbits exist. The other two, 4=0. 5, 0.2, are in
the strong-coupling regime in which spherical and
deformed orbits coexist. Points at which the I(E)
plots cross the horizontal lines correspond to the
+ values for which (4. 26) is satisfied for an N = 14
particle system. Only positive energies are con-
sidered here, corresponding to m & —,'N. Odd- and
even-m values are indicated by dashed and solid
lines. Notice that m = 1 does not yield quantum
states for e = 0. 5 and e =0. 2 since (4. 26) is not
satisfied. Similarly, m = 3 yields no eigenstate
for &=0.2,

5
Q2 3.0

I

rr/2 (+ ) 7r/4

2.0

iw

-0.5—
I.O

- t.5— - l.0 -0,5 0,0 0.5 I.O

-2

FIG. 2. Same as Fig. 1 for the parameters & = 0.255
and 0 = 0.5 in deformed region. Only the closed orbit is
physical.

FIG. 3. The function I{E)of Eq. {4.25) for weak
(Z=2.0, 1.0}and strong (1=0.5, 0.2} couplings. Solid
and dashed horizontal lines denote values of mr+ for
even and odd m, respectively, with N = 14. In deformed
regions, denoted by dot-dashed lines, only even m yield
energy levels.
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FIG. 4. Comparison of approximate and exact eigen-
values E/e of a 14 particle Lipkin model for the ground-
state multiplet as h, function of 0' ~ =NV/e. Crosses de-
note exact eigenvalues, solid and dashed lines denote
approximate levels for even and odd m, respectively,
-in the spherical region, and dot-dashed lines denote
doubly degenerate deformed solutions. Because of sym-
metry, only non-negative levels are shown and C' is
1ogarithmically ruled for compactness.

From this figure and the analysis in Appendix C
it is clear that in the weak-coupling case there are
N+ 1 levels corresponding to m =0, . . . , N. This
is in correspondence with the exact number of
levels of the ground-state multiplet. In the strong-
coupling case, only either odd or even (cf. Ap-
pendix C) values of m should be used to define
energy levels in the deformed region. However,
these levels are double degenerate due to the
existence of two closed orbits around /=0 and g
=r.

In Fig. 4 we compare the approximate and the
exact energy levels of a 14 particle system for a
wide interval of R. Aside from the region &
= c/2 discussed subsequently, overall agreement
is seen to be very good. Odd-m and even-m levels
[cf. (4. 26)] are plotted with dashed and solid
lines, respectively. The odd-m curves exist only
for the spherical domain (E/a & 7). The even-m
levels in the deformed domain (E/v. ) 7) are two-

foldd

degenerate.

C; Diicussion of approximate solutions

Finally, we would like to discuss some qualita-
tive aspects of the solutions just found, relating
them to the exact solutions of the Lipkin model
and to the SPA method for obtaining energy levels
which was implemented here.

(i) Existence. In the general formulation of
Secs. II and III above, no proof was given that
periodic mean-field solutions of the self--consis-:
tent equations can be found. The present treat-
ment of the Lipkin model system provides a speci-
fic case in which such solutions do exist. Thus,
our nonlinear theory is in a position similar to the
ordinary static HF, for which solutions can g„en-
erally be found for cases of practical interest
despite the lack of general existence theorems.

(ii) &umber of levels It w.as shown that the
number of levels of the ground-state multiplet
found by our calculation scheme is N+ 1 except
for two possible extra levels in the strong-coup-
ling regime in addition to the spurious unperturbed
ground-state and highest excited state. Aside
from these special cases discussed below, all
the energy levels are obtained by this scheme.

(iii) Types of solutions. Due to the angular
nature of the coordinate P, two types of periodic
motion were found. Spherical solutions are those.
in which c = c (g) varies along a single branch,
c, and P(T) = $(0) +2@'. The quasispin components
(a,~, g„~ ), (4. 10), are orbiting around (0, 0). The
deformed solutions are those in which c has
branch points, and the periodic motion consists
of progressing along one branch first, switching
branches at the branch point, and going back along
the other branch. The quasispin components
(o'„~, o„~ ) are now orbiting around the deformed
configurations [0, + c(1-c') ' ]~,.q at negative
energies, and [ac(1-c')' ', 0] ~ „q at positive en-
ergies. The 0, component in all cases is oscil-
lating as well. Static solutions of the spherical
and deformed domains are those for which the
orbit shrinks to the single point at the center.

(ie) Degeneracy. The deformed solutions were
found to be two-fold degenerate. This degeneracy
is reflected in the two sign possibilities of the
deformed configurations mentioned above. This
degeneracy was noticed already by Agassi et al.
in the special case of the static, deformed Har-
tree-Fock ground state. Here excited states are
also shown to have this property. The correspon-
ding exact energy levels, shown in Fig. 4, are
approximately degenerate. Their splitting de-
creases as the coupling increases.

(e) Tunneling. The removal of the degeneracy
of the deformed static ground state was treated
in Ref. 14 by the usual projection method. In our
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approach it seems more appropriate to remove
the degeneracy of both static and time-dependent
states by taking into account the possibility of
tunneling between closed orbits around (= 0 and

(or'for 4& —2e: g~v/2).
(vi) Symmetries T.he reason for the appear-

ance of exact twofold degeneracy of the approxi-
mate solutions is that this solution breaks the
exact parity symmetry of the Hamiltonian as
discussed previously in connection with Eq. (4. 9).

(vii} J' quantum number. Since h, commutes
with Z for any o(t}, the eigenstates of U, could
have been chosen to have good ~-quantum num-
bers. The ground- state multiplet wave function,
Eq. (4. 20), is an eigenstate of 8 with eigenvalue
J=—,'N, as may be verified by evaluating J in a
frame where J'z

l P) = —,
'

l P). However, for n &N

in (4. 14) @ is not an eigenstate of 4 . This is the
result of using determinantal wave functions, and
uondeterminantal wave functions which take the .

4 symmetry into account are discussed below.
(viii) n~ symmetry and P indePendence All t.he

functions 4 of the form (4. 8) are eigenfunctions of
all of the occupation operators n~ (4. 4). The p
independence leads to a trivial degeneracy (by per-
mutation of the p labels) of the energy levels,
except for the case of the ground-state multiplet.

(ix) Symmetry between states with energy E and
This symmetry exists for both exact and

approximate levels. It leads to the immediate
conclusion that for even N systems there is a level
with &=0 in each of its multiplets and the approxi-
mation is exact. For n= —,'N &=0 is a static level,
since a„=o„=0.

(x) &omparison with RPA. Ordinary an. d renor-
malized RPA calculations of &&, the excitation
energy of the. first excited state, were performed
by Meshkov et a/. with the introduction of the
model. Using their results for N = 14, E = 1.25
for calculating (&E)~„,„/(&E)„„,one finds 53%,
82%, and 89% for the ordinary linearization
scheme and renormalized calculations to second
and fourth order, respectively. The present cal-
culation yields 94. 8% for this ratio. As seen in
Fig. 4, the spacing between the ground state and
first excited state is actually less accurate than
the level spacing near the center of the spectrum
where the corresponding ratio is 98.6%. This is
not surprising since the exact level at &=0 is ob-
ta.ined also by the approximation scheme. Aside
from quantitative differences there are obvious
qualitative differences between the current ap-
proximation and the RPA. For instance, the
spacing between the excited states is expected to
be equal in RPA, and there is no clear limit to
the number of levels. The levels in the present
study are not equally spaced, and their number

is finite and except for pathological cases equal
to the correct number of states in each multiplet.

(xi) Breakdown of SPA. It was shown in Appen-
dix C that the unperturbed ground state is always
a solution satisfying the quantization condition.
In the weak-coupling regime, this is just the
mean-field ground state. However, in the strong-
coupling case this state is unstable and cannot be
considered as a state in spite of the fact that the
quantization condition is satisfied. The situation
in this case is analogous to that of a particle in a
symmetric double-well potential. The unpertur-
bed ground state corresponds to the solution in
which the particle stays on top of the barrier.
Indeed, we saw that at +=m& many orbits are
possible with smooth transition between them.
In the analogous double well this motion corre-
sponds to the oscillations of a particle at an en-
ergy equal to the height of the central barrier.
Clearly, in this case the SPA is not applicable
since the o(t} of the various possible solutions
interfere. It is thus not surprising that in the
region in which a level from the spherical domain
crosses the top of the barrier into the deformed
regime, the approximation is relatively poor and
for even- (odd) m values an extra level appears
for even- (odd) & systems.

(xii) The multiplets. By setting n of (4. 14) to
0&n&&, one obtains the rest of the multiplets by
the same procedure, provided + is replaced by
2n —N in Eq. (4. 17) and subsequent equations.
These states are not eigenstates of J . Instead
they are linear combinations of components be-
longing to all values of 8 satisfying —',

l 2n —ti
~

& 8
& —,'¹

(xiii) Eigenstates of 8 . It is easy to verify that
any two spinors coupled to j=0 contribute nothing
to the energy, o, or 8,«. Therefore, if two par-
ticles are paired in this way and the rest have
identical functions, the total J is that of the N- 2
particles, namely, 4= —,'N- 1. The pairing of two
such particles is done simply by taking the anti-
symmetric combination

Clearly, the lower 4 multiplets are obtained when
more j= 0 pairs are formed. This possibility em-
phasizes the fact that Slater determinants are not
the only possible choice, and there are cases in
which other wave functions are advantageous.

V. CONCLUSIONS

The quantum mean-field theory of bound states
of finite nuclei presented in this work has several
appealing features. Starting from an exact func-
tional integral expression for the evolution opera-
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tor, a periodic time-dependent Hartree-Fock
mean field is seen to emerge naturally. There is
no question as to whether or how to quantize as
in many alternative formulations. No assumption
of adiabaticity is involved and no explicit selection
of a finite number of collective variables is re-
quired. The theory has been shown to have the
proper static HF and small amplitude RPA limits,
and yields an excellent approximation to the entire
spectrum of the I ipkin model.

Several open questions arising during the course
of this work merit comment. One difficulty con-
cerns counting quantum states, and may be simply
posed in the context of the RPA limit. It is known
that some of the RPA states describe particle-hole
excited states which can as well be associated with
a static HF solution for a different set of occupa-
tion numbers fsj. Thus, different self-consistent
solutions yield an approximation to the same
state. Since substantial mathematical difficulties
arise in attempting to add the contributions of
distinct stationary solutions, cases of practical
interest are presumably best resolved by selecting
between alternative stationary solutions on physi-
cal grounds. In the case of the I ipkin model, ex-
cept for pathological cases close to the boundary
between spherical and deformed solutions, essen-
tially all the states were accounted for correctly.

A second question arises concerning the rela-
tion between states having differing values of m
in the' quantization condition (3.28). In special
cases the relation is unambiguous, such as RPA
bands corresponding to diffetent numbers of pho-
nons in a particular mode, or the set of collective
states of a multiplet with definite J in the I ipkin
model. In the general case, although it is difficult
to quantify the condition tha't two stationary quan-
tized solutions are continuously related by smooth-
ly increasing the period T' and to resolve the 2w

ambiguity in the quasienergies a, /T, one never-
theless expects bands of nonlinear vibrational
states to arise.

One of the most fundamental limitations of our
entire formulation concerns our inability, in gen-
eral, to assess the accuracy of the SPA. Although
our procedure of selecting an observable, expres-
sing it in terms of a functional integral, and ap-
plying the stationary-phase approximation appears
quite general, there is no assurance that the SPA
necessarily yields a meaningful approximation.
For expectation values of few-body operators and
modes in which many particles are participating
in the same collective motion, one may plausibly
expect the approximation to be viable. At the
opposite extreme, the application of the method
is questionable for expectation values of many-
body operators or the overlap of arbitrary differ-

ent N-body wave functions.
The formulation presented in this work has been

deliberately restricted to evaluation of bound state
energies. One might, however, consider evalua-
ting the expectation value of any few-body operator
Q by examining the residues of the quantity

J2
t [q(a E)-']=+ ~' ~") (5. 1)

which may be.approximated by the method of Sec.
III. For states corresponding to a static mean
field, one can easily obtain the HF approximation
to (Q). However, in the case of a time-dependent
mean field, (Q) may acquire time dependence as a
consequence of having broken the invariance with
respect to time translation. To every broken
symmetry, there corresponds a zero eigenvalue
of the second variation matrix 5 S/5o5a necessi-
tating a more careful treatment using the general
methods of Ref. S.

This brings us to the final open question which
concerns the general problem of evaluating cor-
rections to the SPA. The effective action, Eq.
(3. 12), in general depends on o both through the
evolution operator and through the states used to
evaluate the trace. Instead of computing the full
functional derivative with respect to o of both the
evolution operator and the basis, there are signi-
ficant advantages of fixing the basis to,be that
which simply renders 6S=0. First, since the use
of the fixed basis breaks the symmetries of every
term in Tr(H- E) ' at the exact level, no zero
eigenvalues will appear in the second variation of
S in this fixed basis. Second, this fixed basis
allows one to apply the method of Sec. II to eval-
uate the leading and higher quadratic corrections
to SPA. The part of the discussion concerning the
exchange and the self-energy terms in the mean
field and the leading correction can be trivially
repeated in the time-dependent basis of Sec. III.
The similarity of this basis to the static HF basis
will presumably enable evaluation of higher quad-
ratic corrections as well, although we have not
performed this calculation explicitly. Finally,
the use of a fixed basis appears convenient also
in a systematic treatment of the corrections higher
than quadratic. Expanding tr U, in the formula

trU= Do exp —,'i oVo trU,
4

in powers of g=o- oo, with oo self-consistently
defined by the basis in which the trace is evalu-
ated, is a promising way to establish the connec-
tion of the present approach to perturbation theory.
This seems to be especially useful in treating the
problem of a hard core, which so far has been
entir ely ignored.
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In addition to the preceding problems which
merit further investigation, there exist a number
of challenging prospects for future research. A

number of formal connections with existing theory
should be worked out. As mentioned in Sec. 0,
it should be straightforward to establish contact
with the Hartree-Pock-Bogoliubov approximation.
Projecting angular momentum by evaluating the
integral

2'
dit e iti tre 4~(H E)-2'

one may obtain the rotating frame approximation
for deformed Hartree-Fock states and by further
neglecting time derivatives obtain the adiabatic
rotational limit.

Just as in the field theory case for which tunnel-
ing solutions may be obtained by continuing to
imaginary time, so also the formalism in this
present work may be extended to imaginary time
to treat tunneling. One obvious application is an
unambiguous quantum treatment of spontaneous

fission. In addition, allowing tunneling solutions
in the Lipkin model will split the twofold degen-
eracy in the deformed strong-coupling regime and
allow a quantitative test of the approximation.
Both applications will be addressed in subsequent
publications.

Finally, the formalism presented in this work
must ultimately be applied to real nuclei. As a
first step, large amplitude vibrations and tunneling
solutions are under investigation in a simple one-
dimensional saturating model system. General-
izing from this system to three-dimensional cal-
culations with realistic forces is only a matter of
computer time, since existing TDHF technology
may be applied directly. Thus, we believe this
work provides a practical foundation for a quanti-
tative theory of finite nuclei.
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APPENDIX A: DERIVATION OF THE QUADRATIC CORRECTION FACTOR

Application of the Gaussian integral

I 8 'dsa f' 22 (A1)

yields the identity
1/2 &tds, ii2 gab, 2

(
ci hei ~ Q 2+/

(A2)

Transformation to a general nondiagonal quadratic form using an arbitrary orthogonal matrix 9

(A2)

yields the result

1=(detit)'" J" " " - t'~u~
. d'g~

~
exp 2t +At~(rhyEtq))(Lk~dtq~)'~''&&2ni ] (A4)

Allowing j and k to denote space-time coordinates and taking the limit of infinitesima:1 4r and ~t yields
the appropriate measure for a general &(x, t; x't') which is nonlocal in both space and time. We recover
the measure appropriate to our functional integrals containing instantaneous potentials by writing

dxdx'dt'g xt V x —x' g x't = dxdx'dtdt'g xt Vx-x' 6 t-t' gx't',

so that the measure in Eg. (2. 6) is

(A5)

&[c(x, t)]=lim(det[V(x-x')5(t —t')]},„, 2
. gimd(r(xgtg)

~
.

Combining this equation with (A4), we obtain the desired result

&[g] exp [-,'i &(xt, x't') q(xt) g(x't')] = det[V(x -x') 5(t t )] '"
detA xt; x't'

(A6)

(AV)
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The derivative dat/dT appearing in the second
term is evaluated as follows. We scale the time
variable in Eq. (3.8) by defining

n=tlT

and obtain

8—i —+ Th, o(To)) X('0) = oX(o)),

(sl)

(S2a)

x(1)=x(0),
where

X(t/T) =u(t) .
First-order perturbation theory then yields

J',dqJdxX~dT [Th. (Tq)]X
d

dT jody fdx X*X

Since

[Th. (Tq)]=h. (t)+ t(d/dt)h. (t),

one obtains, using the normalization (3.13),

(B2b)

(B3)

(s4)

dtu +[h,(t) +t(d/dt)h, (t)]u .de 1

0

Partial integration of the second term gives

JT
dtu*(t)t(d/dt)h (t)u(t) = Tu (T)h, (T)u(T)

0

(B8)

cPQ 8k~ tQt
0

(sv)

where the terms containing time derivative of u~

and u cancel. Thus,

APPENDIX B: EVALUATION OF 3S/5T

&o derive (3.21) we use the explicit expression
(3.12) for S. The derivative of the first term is

—,
' )t dxdx'o(T) Vc(T) .

APPENDIX C: PERIODIC ORBITS AND APPROXIMATE

EIGZNVALUES FOR THE LIPKIN MODEL

In the following analysis of the solution of Eq.
(4. 19) for periodic orbits and Eq. (4. 22) for quan-
turn levels, the weak-coupling case ~ & 1 and the
strong-coupling case C + 1 are treated separately.
The physical branches such that 0+ c' & 1 for
x e [- 1, 1] can be obtained straightforwardly by
setting algebraic inequalities of c, . The following
general observations simplify the analysis:

(i) Using the symmetry between states with en-
ergy ~ and -&, only & & 0 values have to be con-
sidered, unless further insight is obtained by look-
ing at «0 too.

(ii) Both branches c, and c are continuous
functions of x and hence P except for c which
approaches +~ and - for negative and positive
values of x, respectively, as x approaches zero.

(iii) It is easy to verify that
2c =0 lf ~=g&

q (Cl)
c = 1 if E=-g~

independent of x. As a result, none of the bran
ches can cross the c =0 and c = 1 unless ~ = —,&,
@ =--,'c, respectively, provided the branches are
not becoming complex in the region -1& x & 1.

(iv) c, are complex in the interval (x„x,), where
the branch points x„x, are the solutions of C' +x'
-4Ex=0, or specifically,

x, =28- (4 '- e )"'
(C2)

x, =2E+ (4E' —c')'".
Their real part 2+is positive (~ & 0).

1. Weak-coupling regime

In the weak-coupling regime & & 1 the physical
values of c are obtained by noting that:

(a) None of the branches of c' are in the physical
domain for ~& —,c.

(b) Only c, is physical for 0&+&-,'e. Note (a)
can be verified by observing that the branch points
satisfy the inequalities x, & 0, x, & 1. In between
these values c, is not real. For x+x„

dxu* &h T u 7.'

dx j 1'A, T ~T (B8)

c (x) ) 1, x & 0,

c &0, 0&x&x)

and

dx dx'c(T) Vc(T)
as

(B9)g~ ~T h T ~T

When o = o the right-hand side .of this relation is
-@r(T) and is independent of t.

as was pointed .out by (ii) and (iii) above. Also, at
the branch point x, c, (x,) =c (x,). Hence c, is
negative in the entire [- 1,x, ] interval, again by
(ii) and (iii).

Note (b) follows from similar arguments except
for the fact that x, and x& are no% complex, and
hence there are no branch points on the real x
axis. c is once again outside the interval [0, 1]
by (ii) and (iii). c, is always between zero and
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if/ 2

1(E)= c, dg. (c3)

The quantization condition (4. 22) then becomes

I(E) = (m/~) v. (c4)

I(E) is a monotonically decreasing function of E
in the interval E[-—,

'
&, —,'s], as can be verified by

checking its derivative. Its values at E=+—,'&, are
easily calculated. For E= —,'i, c, (P) =0 and c, (g)
=1 for E=-—,'C. Hence,

I(-,'4) =0, I(--,'R}=v.

One can easily verify that the symmetry between
E and -E implies in general

I( E) = v —I(E).— (c5)
Accordingly,

I(E=O) =v/2. (c6)
The & = 2. 0 and s = 1 curves of F ig. 2 show I(E)
for these values of &, vs E. They cross each
other at E = 0 owing to (C6), and they tend to be
almost linear around this point, whereas they be-
come slightly more curved around ~=+—,'E. This
curvature decreases as & increases. All these
features can be verified by checking the deriva-
tive of I(E).

For the quantization condition (C4), it is seen
that there are N+ 1 values of m, m =0, 1, . . . , N,
and &+ 1 corresponding values of E:

a&=ED&Ei'' &Ex=-~~

These values are indicated in Fig. 3, for the N
=14 fermion system, as the points at which I(E)
for E = 1.0, 2. 0 intersects the horizontal m lines.
These solutions correspond to the spherical states
discussed in Sec. IV.

one since
1 E 1

0 &c (x=0) = —-= & —.
2 g 2

Note that for E=-,i, c, is identically zero by (iii),
and hence g, the relative phase of the upper and
lower. components of x, is irrelevant. This cor-
responds to a static Hartree solution.

The two branches c, and e for 4=2. 0, ~=0.5
are plotted as a function of P in Fig. 1, in the
interval [—,'v, —2v]. They are symmetric since c,
depends on x= cos2( only. c,' (denoted by the plus
sign) is confinei to the interval 0& c, & —,

' and c
(denoted by the fninus sign) is either larger than
one or negative. c diverges at (=~x. We con-
clude that all the possible solutions of the self-
consistent problem in the weak-coupling regime
are c =c+ for -~c &E&~c.

It remains now to check for which values of g
the quantization is met. It is convenient to define

—.'(1+s') & iEi &-,'s. (cv)

No "physical" solution exists for E & (1+c )/4,
as can be proved by following the arguments used
for E&—2E' in the weak-coupling regime. Further-
more, since the branch points (C2) satisfy 0 & x,
&x, & 1, the same arguments will show that neither
c, nor c is in the physical interval (0& c & 1) for
-1&x&x). At x, they both coincide at a negative
value. ln the interval (x„x,) c, are complex, but
at xg)

O&c. (x,)=c (x,)=-il- —&-, .1( s
Xg

Thus, both c, and c are physical in the interval
[xi, 1], and the possible periodic motion consists
of moving first along one branch and back along
the other. Notice, however, that since x=cos2$,
this motion can be localized around g = 0 or around
g=v, leading to a two-fold degeneracy. The de-
pendence of c, on P in the interval -w/2 & g & g/2
in the present case is illustrated in Fig. 2 for
c=o. 5, E=0.255. The solutions for ~(1+@ )
& E& 2& are obtained once again by the symmetry
between E and -E. We shall refer to all these
solutions as deformed solutions. Notice that the
static deformed ground state (highest excited
state) is obtained for

E=--,'(1+s') [E=-,'(1+s')]
when the closed periodic motion shrinks into a
point at x=-1 (x=1}.

2. Strong coupling regime

The study of the strong-coupling regime is sim-
plified by distinguishing the three cases

~
E

~
& —,'s,

[E j =-2c and [ E [ & 2&. For [ E[ & —,'& only c,' is
physical by the same arguments as in the weak-
coupling regime. The only notable different is that
in this spherical region the monotonically de-
creasing function I(E) never attains the values v

and 0:
'E &I(- qt) &I(2s) & 0.

At E=—2s(E=-—,'e) there are two physical solu-
tions. The first is the static solution of the weak-
coupling regime c =0 (c = 1}and the second is
the one obtained from the spherical solutions in
the limit E-,'t( ,'—t) -—T'h.e two solutions coincide
for x & s(- e & x), allowing for an even more com-
plicated periodic motion. As known already from
the study of the weak-coupling case, the static
solution satisfies the quantization condition. How-
ever, since there are two coalescing stationary-
phase solutions, the applicability of SPA in its
simplest form is questionable.

The interval & & —,'4 brings in a new type of solu-
tion, which exists only for
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l(El=a- fe ChP

(c,'- c ')dq[-,'(1+ e') (E( —,'g]

where

g»
——cos '(x, /2) .

(C8b)

For the deformed solutions, I(E) is defined as

t(z) I=c'dg

~r
(c, —c )dg (—'1+e )E)—,'e), (Cea)

those of the deformed region, are two-fold degen-
erate. Two of these will always exist, the ground
state and the highest excited state. A more care-
ful application of (4. 22) shows that the weak-coup-
ling condition (C4) is applicable only in the spheri-
cal domain. In the deformed domain condition
(4. 22) is equivalent to

odd N when m &N/2
2m+ 1

r(E)=
2

otherwise.

We can thus rewrite (4.22) for the strong-coupling
regime as

To within the additive constant w, I(E) is just the
area enclosed by the closed orbit of Fig. 2. It is
easy to verify that I(E) is once again a monotoni-
cally decreasing function and that.",P, I(E)=. 1P I(E).

m integer for ——,'&&E& —,'4

I(E)
m m even for —,'e & E
Ã m even for evenN, && —,'E

m odd for odd +, && —,'a.
(ce)

The constant& and the minus sign before the inte-
gral in the definition of I(E &-e/2) are almost ir-
relevant for the quantization condition but do help
to ensure cont'inuity. Furthermore, I(E) goes
once again from ~ to zero. The interval in the
strong-coupling case is, however, -[—,'(1+q'), —,'(1
+c )] rather than [- 2s, 2e] of the weak-coupling
case.

It remains now to check which self-consistent
solutions satisfy the quantization condition (4.22).
We recall that the condition applied to the weak-
coupling case (C4) will result in N+ 1 distinct
energy levels. However, now some of the levels,

ln Fig. 3 the plots of I(E) vs E in the strong-cou-
pling regime are shown, corresponding to & =0.5
and e =0.2. The energy levels E~=E~/N V are
obtained from the points where these lines cross
mv/N lines indicated by horizontal lines. The
lines of m=1 for the &=0.5 caseandm=l, 3, for
& =0.2 were excluded since they cross the I(E)
plot in the deformed (~ E~ )—,'e) region where odd-m
values do not correspond to an energy level. On
the other hand, energy levels obtained from the
points in which m =0 and m = 0, 2, 4, lines cross
the&(&) curve of &=0.5 and & =0.2, respectively,
yield twice degenerate levels.
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