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A general method for a microscopic description of nuclear dynamical problems is discussed. The method
is based on a functional integral representation for the many-body time evolution operator U(t&, t, ). In the
stationary phase limit, a time-dependent mean-field approximation for the matrix elements of U is obtained.
Using standard procedures this allows for extraction of quantum mechanical information about bound
states, tunneling, or scattering phenomena in a many-nucleon system. The approximation represents a
natural generalization of the time-dependent Hartree-Fock method.

NUCLEAB STBUCTUBE, NUCLEAB BEACTIONS derived mean-field approxi-
mation for matrix elements of exp(- i') from exact functional integral; discus-

sed relation to static HF, TDHF, and scattering calculations.

I. INTRODUCTION

During the last few years, there has been con.-
sider3ble interest in the microscopic description
of large-scale nuclear dynamics. Rapidly increas-
ing amounts of experimental data from heavy-ion
reactions and nuclear fission provide an almost
unique opportunity to study the dynamical behavior
of large but finite collections of fermions under-
going drastic changes.

Recently the time-dependent mean-fieM approx-
imation has been proposed as a possible candi-
date for a microscopic theory of these phenom-
ena. Motivated by the successes of the static
Hartree-Pock theory and the random-phase ap-
proximation, this theory is based on the fact that
the mean free path of a nucleon in nuclear matter
is quite long for excitations close to the Fermi
level, .' Up to an average excitation energy of
about 10 MeV per nucleon, the Pauli principle
is an important factor in inhibiting collisions,
and each nucleon feels only the average field of
the others.

In the discussion of dynamics, the average
field is time-dependent and should be self-con-
sistently determined by all the nucleons. One
must, in addition, assume that the rate of change
of the mean field is small enough so that it does
not produce large excitations in a short time.
This condition also leads to a limiting figure in
the neighborhood of 10 MeV/nucieon for heavy
nuclei. '

In practical terms these ideas have been. em-
ployed in the time-dependent Hartree-Pock (TDHF}
approximation. ' As in the stationary case, the
total wave function of the system in this approach

is constrained to be a Slater determinant, and
the time evolution of the single-particle wave
functions is determined by a time-dependent least-
action variational principle. '

The TDHF theory has been explored extensively
in a simplified slab geometry, ' light- and heavy-
ion systems, ' ' induced fission, ' and analytically
solvable models. ""Although the results are
very encouraging, the whole approach is subject
to serious conceptual and practical problems. " '
The common nature of these problems is re-
lated to the basic difficulty of finding the un-
ambiguous way to extract quantum mechanical
information from the results of time-dependent
mean-f ield calculations.

The present investigation is an attempt to over-
come this difficulty. We propose to shift the
emphasis from the wave function of the many-
nucleon systems to the matrix elements of the
corresponding time evolution operator and to
find a mean-field type of approximation for their
calculation. Having done this, we can use stan-
dard procedures to extract the quantum mechan-
ical information about bound states, tunneling,
or scattering phenomena in the many-nucl. eon.
system.

We start here by presenting general ideas and
techniques of the approach in a simple form. In
the following paper" this form will be generalized
and used for the explicit description of large am-
plitude collective states in nuclei. Later on,"
a mean-field calculational scheme for tunneling
processes will be discussed.

The basis of our approach is provided by the
recent devel. opment of semi-classical functional
integral methods in relativistic field theories
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(for a review cf. Ref. 17). The relevance of these
methods in nuclear physics is obvious, because
in the language of second quantization, the nuclear
many-body problem is essentially a nonrelativistic
field theory of self-interacting field with quartic
interaction and nonlocal coupling.

The fermion nature of this theory implies the
use of the so-call. ed anticommuting c number rep-
resentation" when the functional integration over
the variables of the field is defined. One way to
partially avoid this difficulty is described in Ref.
&8. We found it insufficient for our purpose and
instead use a conceptually related method based
on the Hubbard-Stratonovich transformation. "'
This is a simple operator identity (2.8) which
allows linearization of the exponential of the
square of a bounded operator. The application
of this identity to the evolution operator U(tz, f, )
= exp[-(i/k)H(tz —t~)j of a many-nucleon system
having two-body interaction leads to a functional
integral representation for U(tz, t~}. In this rep-
resentation, the operator U(tz, f, } is exactly given
by another evolution operator for a system in a
one-body potential integrated with a certain weight
factor over all possible configurations of this
potential. Physically, this representation may be
considered as the extraction of an effective boson
field which is responsible for a given fermion-
fermion interaction.

We are interested in calculating matrix elements
(f ~ U(&q, f;}~i) of the time evolution operator for
any given states ( f}and [i} In th.e derived func-
tional integral representation, every such matrix
element appears as a coherent sum of matrix
elements, each corresponding to motion in a
different one-body potential.

This representation is most suitable for the
derivation of a mean-field approximation. For
this purpose one should retain only that con-
figuration of the one-body potential which gives
the most significant contribution to the functional
integral. This is the mean-field potential. In
practical terms, it is found by using the station-
ary phase approximation (SPA). The SPA condi-
tion defines the equation for the mean field. Ob-
viously the latter dePends on the matrix element
which is calculated.

In the present work we discuss only the lowest
order SPA. This means that we approximate the
functional integral by the value of its integrand
at the mean-field configuration. In general it is
possible to derive the complete SPA expansion.
However, in practice one can hardly go beyond
the first correction to the lowest order result.
This includes the small oscil1ations around the
stationary point and will be discussed in (15).

In principle, the derived mean-field expres-

sions for matrix elements (f [ U(tz, t, )~i) can be
used to construct the S-matrix mean-field theory
of nucleus-nucleus collisions. Our discussion is
not limited to any particular form of the initial
and final wave functions ~i) and (f). However,
in a many-nucleon problem one is usually confined
to only an approximate knowledge of ~i) and (f)
in terms of single Slater determinants. As a
rule these are found by performing (or assuming
to have performed) mean-field calculations for
the initial and final states.

Given this limitation one immediately faces a
very difficult and well known problem. ' ' The
Slater determinant approximation to a wave func-
tion gives accurate results only for matrix ele-
ments of few-body operators. Can such functions
be used to calculate the matrix elements of
U(tq, t~) which is manifestly an A-body operator?
A correct way of handling this problem is by
simultaneous mean-field treatment of both the
"preparation" of initial and final scattering states
and the scattering dynamics. The formalism pre-
sented in this work provides a suitable frame-
work for such a treatment.

The organization of this paper is as fol1ows.
The functionaI. integral representation for the
evolution operator is derived in Sec. II and its
formal properties are briefly discussed. Section
III is devoted to the stationary phase limit of this
representation and the resulting mean-fieM ex-
pressions. The important particular case of the
Slater determinant representation and the rela-
tion to TDHF and static HF are discussed in
Sec. IV. A short summary concludes the paper.

II. FUNCTIONAL INTEGRAL REPRESENTATION
FOR THE MANY-BODY EVOLUTION OPERATOR

The A. -nucleon system we wish to treat is de-
scribed by the Hamiltonian

(2.1)

'+
~ p x V x-x' p x' dxdx', (2 2)

where

where E is the one-body kinetic energy operator
and V is the two-body interaction. We assume here
here that V depends only on the relative distances
between the nucleons and wil. l later show how to
deal with a more general interaction. We shall
rewrite (2.1}as
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p(x) = +5(x —x;)

is the density operator and

(2.3)
Consider now an auxiliary Hamiltonian

A

tt = Qtt+Q'., W(x) =It '+ f p(x)W(x)dx,

A= px x (2.4)

is an operator which counts the number of nu-
cleons. It is clear that the term (~)V(0)A sub-
tracts the self-interaction energy present in the
last term of (2.2). We do not consider here
problems related to the singular nature of V(0).

We redefine the kinetic energy

yc,', A,'=Z, --,'V 01, ,

x p(x', t)dx dx', (2.6)

where T is the time-ordering operator

p(x, t)=e' 'p(x}e ' '
and we have set 5 = 1.

(2.7)

where lq is the unit operator for particle i. In the
second quantized notation the form (2.2) would
correspond to a Hamiltonian with non-normal
ordered two-body interaction.

The evolution operator for the system is writ-
ten in the interaction representation as

ty

U(t„t, )=Texp --,' dt JI p(x, t)V(x-x')
tt

which is obtained from (2.2) repLacing the two-
body term by an interaction with some external
potential W(x). We wish to show how the evolution
operator for this auxiliary Hamiltonian can be
exactly related to the operator (2.6).

In order to derive this relation, we use the so-
called Hubbard-Stratonovich transfor mation""

(2.8)

which is valid for any bounded operator a. This
simple transformation permits the linearization
with respect to p of the operator in the exponent
(2.6).

We first rewrite (2.6}as

z
U(tq, t;) = lim T exp —-at p(x, t, )V(x-x')

At~0

&& p(x', tq)dxdx' , (2.9)

where we divided the time interval (t;, tz) into
M+1 equal subintervals of length &t and took the
limit of 4t - 0, M- ~. To each term in the
product-we apply the functional integral general-
ization of the transformation (2.8). As shown
in Appendix A,

I

exp —-tdt p(x, t~)V(x-x')p(x', t, )dxdx' = D[o(x, tz)] exp —tdt v(x, t, )V(x-xt)v(x', t~)dxdx',

&& exp -it) t p(x, t, )V (x —xt)&r(xt, t,)dxd»'

(2.10}

The precise definition of D[o(x, t,)] is given by
Eq. (A10}.

Using (2.10) in (2.9}and passing to the limit,
we arrive at the result

The symbol D[v(x, t}] is naturally defined by the
limit of products of D[o'(x, tj)].

The meaning of (2.11) is clear. The quantity
U, (tz, t;} is the evolution operator in the inter-
action representation for the A. -nucleon system
with Hamiltonian

A

tl. =pttl+f p(x)V(x —x')a(x', t)dx
&~1

x a(x', t)dxdx' U(ttt, )I, , ,

(2.11) A

Eg'+W, x], twith

Z tg
0 (tttt) ftt[a(x, , t)] (exp —=dt a(x, t)V(x - x')

t ~

U, (t&, tq) = T exp -i dt J p(x, t)V (x -x')
tg

L tg

&& o(x', t)dxdx'

(2.12)

(2.13)

W,(., t)=f V(. .).(. , t)d. .

The nucleons are moving in the time-dePendent
external potential W, (x, t}, which is a linear
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functional of the auxiliary field «(x, t). The total
evolution operator U(tz, tq} is a coherent sum
over the auxiliary fields with the weighting factor

tg
exp — dt «(x, t)V(x —x')«(x', t)dxdx'

2 t

(2.14}

To some extent;- the procedure of going from
(2.6) to (2.11) may be considered as the recovery
of the effective boson field acting between the
nucleons and producing the given two-body inter-
action in the Hamiltonian (2.2). From this point
of view, the free propagator for the o field is
just the inverse of V(x- x'), and the nucleons are
coupled to the & field by the nonlocal coupl. ing
V(x-x'). The absence of time dependence in the
boson propagator is obviously related to the static
nature of the two-body interaction which is used.

The derivation of (2.11) is easily generalized
to include the internal nuclear variables, spin
and isospin. The second quantized form of a
general two-body interaction is written

The representation (2.11}corresponds to a
particular case, where

V [)„,(x, x') =V(x —x')5 „5)s

and

For a more general interaction, one should
consider a nondiagonal density operator p „(x)
=g„(x)g„(x) and introduce a corresponding
auxiliary field « „(x). At this point we remark
that the way of introducing the o field is by no
means unique. " Different pairings of the field
operators g and g in (2.15) lead to different
possibilities of introducing the intermediate
o' field. All these possibilities are equivalent as
far as the exact evolution operator is considered,
but may differ significantly in the approximations
they suggest. This feature will be discussed in
detail in (15). Here we will proceed with the
simple form (2.11) in order to make clear the es-
sential ideas and to avoid cumbersome notation.

As a final remark of this section we notice that
the introduction of an auxiliary field to linearize
the two-body interaction is extensively used in
the cal.culation of statistical operators in solid
state physics" and generating functionals in
quantum field theory. ' ' Recently pairing modes
in a simple soluble nuclear model were treated
by a similar technique. "

(fiir[i)= JD[ii]exp[((/2)(~, )'r)))(f[U I().
D 0' exp iS,«o' (3.1)

where we have suppressed the dependence on the
time interval. We used in (3.1) the short hand
notation

ty

(«, V«) =
J

dt a(x, t)V(x -x')o(x', t)dx dx'
tg

(3.2)

and introduced an effective action of the o' field

(3.3)

This action can be interpreted as describing the
dynamics of the o field and is completely spec-
ified by the form of the interaction V(x-x'} and
given initial and final states.

The stationary phase approximation to the
integral (3.1) amounts to solving 5S,«[«] =0, which
defines what can be called a classical equation
for the a' field. The resulting mean-field expres-
sion for the quantum transition amplitude may
therefore be viewed as a semiclassical. approx-
imation to the many-body problem.

In order to justify this approximation, one
should check how fast S,«changes as o' is varied.
If ~f) and [i) are such that all the nucleons are
affected by the transition, it seems reasonable
to assume that small changes of the 0' field pro-
duce large variations in S,«when the number A.

of nucleons is sufficiently large. One expects
therefore that the approximation is valid for the

III. MEAN-FIELD APPROXIMATION

The exact relation (2.11) provides a very con-
venient basis for deriving mean-field approxima-
tions for various physical quantities which are
of interest in nuclear dynamical problems. Using
the time evolution operator, one can construct
exact expressions for these quantities. By virtue
of (2.11) they are represented in terms of the cor-
responding quantities of a system in the external
potential W, (x, t}, Eq. (2.13), integrated over all
possible o fields. The mean-field expression can
then be obtained by retaining only those o' config-
urations which give the most significant contribu-
tion to the integral.

The systematic way of implementing this pro-
cedure is provided by the stationary phase method.
We will now demonstrate it by calculating the
matrix element (transition amplitude)
(f ) U(ty, f;)[i) for some given initial and final
states.

Using (2.11) we write
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description of collective dynamical processes in
many-nucleon systems. Unfortunately it is very
difficult to formulate a more precise quantitative
criterion.

The stationary "points" of S,«are found from

ty

5S,« —— dt 5o(x, t)V(x —x')o(x', t)dx dx'
t]

. 6&f I U. I z& (3.4)

The numerator of the last term is
ty

6&flU. lz&=-z dt 6o(x, t)V(x-x)
tq

x(f I U,(tt, t)p(x', t)U, (t, t, )li) dxdx',

where the appearance of the two operators U, in
the right-hand side is due to the effect of the
time-ordering operator in Eq. (2.12).

The two equations (3.4) and (3.5) lead to the
following result for the o field which satisfies
5S,« =0,

&f IU.(t., t)p(x, t)U.(t, t, )lz&

(f I U, (ty, t, )I z&

&c "(t)Ip(x, t)I c "(t)&
(cy'(t)le% (t)&

(3.6)

where p(x, t) is given by (2.7) and we have intro-
duced the following time-dependent wave func-
tions

le", (t)& =U.(t, t, }li&,

I C'y'(t)& = [U.(t~» tz)l'If&.
(3.'7)

The field o appears on both sides of (3.6),
which, therefore, represents a functional equa-
tion with respect to 0. In general, this equation
should be solved self-consistently and we will
discuss later how this can be done in particular
cases.

Once the solution of Eq. (3.6) for o(x, t) is
found, the stationary phase approximation gives
the transition amplitude (in the lowest order) as
the integrand of (3.1) calculated at this value
of o(x, t):

&f I U I i& = exp[(i /2)(g, Vo')](f I U~l i)

=exp[(i /2)(o, Vo)](@pi'I C I ~&. (3.8)

This result corresponds to neglecting second
and higher variations of the last term in (3.3).
It is clear that o'(x, t) and, consequently, the
mean-field potential f V(x —x')o'(x', t)dx' depend
on both initial and final states li) and If). This
reflects the general spirit of the present approx-
imation, in which the time-dependent mean field

S,«[o]= ~(o, Vo)+arg(f I U, li)
=-,'(o, Vo) ——,'z ln&fl U. lz&

+ ,'i ln(fl U, li )*. — (3.9)

The integrand of (3.1) is then written as
l(fl U, li&l expiS, «[o], and the SPA is defined
by the real phase of this expression. Repeating
the steps which led to Eq. (3.6), one obtains in
this case

R
&4"(t)I p(x, t)lc"(t))

(et&'&(t) I c ~,.'&(t))
(3.10)

and. the self-consistent o' field is real.
It is easy to understand the origin of the dif-

ference between Eqs. (3.6) and (3.10}. It follows
from the fact that different parts of the integrand
in (3.1) were used to define the stationary phase
conditions. In obtaining (3.6), the whole integrand
was assumed to oscillate rapidly with the varia-
tion of o' whereas the deriv'ation of (3.10) is based
on the rapid oscillations of the real part of the
phase.

As a final remark, we notice that expression
(3.8) represents the lowest order term of an
SPA expansion for the transition amplitude

(f I Ul i) In princi. ple, one can derive all higher
order terms of this expansion, but in practice,
only the first correction is considered. This

plays an auxiliary role and differs for different
physical quantities which are calculated.

If the solution of (3.6) is not unique, one should
include the summation over different solutions
in Eq. (3.8}. As an example of such a situation
let us consider the case when the initial and the
final wave functions Iz) and lf) are eigenfunctions
of the total momentum. Then, as shown in
Appendix 8, any (x-dependent) solution of Eq.
(3.6) is not unique, and shifting this solution by
an arbitrary vector a produces another solution.
This is a usual property of a mean-field approx-
imation which breaks a certain symmetry of the
exact Hamiltonian (space translational symmetry
in this case}. In evaluating the integral (3.1}by
SPA, one must sum over all solutions with dif-
ferent values of the shifting vector a, i.e., to
integrate over a. We discuss in Appendix B how
this results in momentum conservation for the
approximate matrix element (3.8). There we also
show a similar treatment of time translation in-
variance and the consequent energy conservation.

The self-consistent o-field solution of Eq. (3.6)
is, in general, not real. This is a direct con-
sequence of our exponentiation of the complex
valued quantity (f I U, l i& to obtain the effective

-action (3.3}. In order to avoid this complication
one can use instead
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correction is related to the second variation
O'S,«of the effective action (3.3) and will be dis-
cussed in.(15).

IV. SLATER DETERMINANT REPRESENTATION

and (j))' obey the following equations (in the
Schrodinger representation):

i ' =(z+w, )(()", , (4.7a)

We now discuss an important particular case
in which the initial. and the final states are Slater
determinants: where

=(z+~,)y,", (4.7b)

Ii& =8l) '"Z(-1)'.„,@'(i),
P j=l

A

If&=8() Z(-1)', ...0'"(I),

(4.1a)

(4.1b)

where P stands for all passible permutations.
Using the relation (3.1) we write the transition
amplitude

(f I ((I ') =2 (-()' fp(et&exp((e/p)(e, ve)i)

& =P'/2'( —(k)I'(0) p

and

y((P) vp(x) f)y(()) (xv f)
(e()l~()&

(4.Vc)

(4.7d)

(4.8a)

A

x, (y("IU(,~'Iq(,",&
9=1

=- g(-I)'(fiUI &.. (4.2)

(4.8b)

The set of equations (4.7) and (4.8) can be solved
by the usual self-consistent procedure: Guessing
«(x, f), one calculates the mean-field potential

Here we used the fact that U, in Eq. (3.1) is a
product of one-body evolution operators

A

U( J)
/=1

(4.3)

The solution of 6S,«[«]=0 is

y,"*(x,t)(j(;)(x, f)
(4 5)

where

(f)& = U.' (f, «)l ((~("&,

I y( )(f)& [U(/)(f f )]t I
y(f)&

(4.6a)

(4.6b)

ill analogy wl'tll (3.V).
It is convenient to write the relations (4.5) and

(4.6) in a differential form. The functions Q(&')

commuting between themselves, and is there-
fore symmetric in nucleon coordinates.

In each term of the sum (4.2), the motion of a
single nucleon is correlated to the others through
the common c field. The exclusion principle is
taken into account by the usual antisymmetriza-
tion «fter the partial transition amplitudes

(f I UI i&)) are calculated.
In order to evaluate a particular term in Eq.

(4.2) we follow (3.9) and construct
A

S, [«] = («, V«) ——Q (ln(Q-(~)I U())
I $( )&

In(y(&)
I

U(J)
I
g(() &g)

(4.4)

)V(x() j, V,( =)x(;()e(. ,

solves the Eqs. (4.V) subject to (4.8), and con-
structs an improved «(x, f) by Eq. (4.5). How-

ever, at this moment it seems to be premature
to apply this scheme in practical calculations of,
say, nucleon-nucleon scattering amplitude. One
should first resolve the conceptual problems of
defining the proper initial and final states which
were mentioned in the Introduction.

It is useful to discuss the relation of the present
mean-field approach to the conventional TDHF
theory. For this purpose, we try to answer the
question of how a given initial state I i& develops
in time. It is clear that this is equivalent to
finding the final wave function which for any
tf +f( will satisfy I(f I U(tfp fj)I i&I' = 1. In terms
of the wave functions (3.7) this means

I+g'(&)& =U.(&, «)I & = IC "(&)&.

(We have omitted here an irrelevant time-de-
pendent phase factor. ) Under this condition, in-
stead of two wave functions, one has only one
which gives the development in time of the state
I i&.

The set of equations (4.V) and (4.8) reduces in
this case to

( 2

A

+ V x-x' ) x', t 2dx'
l 1

(4.9a)
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with initial condition

(('i(&, t) = t('i'(&) . (4.9b)

In the Slater determinant representation, we re-
quire in addition that the time dependence of the
single-particle wave functions is

q( )ga) -isy(i ii)y js
~(a)(g) e isi(s-sy)y-

(4.1la)

(4.11b)

where &j plays the role of the single-particle
energy, and g& is independent of time and is
normalized.

The two sets oI E(ls. (4.7a} and (4.7b} again
reduce to one:

[p'/2m —(2)V(0)+wa]$, = eif~,

with

w. (x) = f V(x-x')v(x')dx'

and

(4.12)

(4.13)

A

( )= Qlt( )I'
l j.

As expected, o' is independent of time and is just
the single-particle density.

Using the condition (4.10) for the left-hand side
of E(I. (4.2) and evaluating the right-hand side
by SPA we obtain

(4,14)

A
e-i&(s&- i;) (i &2)(a.«) ~~(a) l, i,(a))

j=l
so that

(4.15)

A

Z= g e,. ——,'(o, Vo'}/(t~ —t,). (4.16)

Here we used the explicit form (4.11) for the

The result exhibits a close similarity to the usual
TDHF equation but without the exchange term in
the potential. This is often referred to as a
Hartree approximation.

The absence of the exchange term in (4.9a) pr'e-
sents a serious difficulty if one tries to apply the
present formalism to the nuclear dynamical prob-
lems. The origin of this difficulty can be ulti-
mately related to the particular way of pairing
the field operators g in (2.15) which we have used.
It will be shown in (15) how to pair the P operators
in order to recover the exchange term in the
mean-field potential. At the same time it will
be possible to eliminate the trivial but unpleasant
term --,'V(0) from E(I. (4.9a).

Finally we consider what happens in the static
limit of our formalism. To obtain this limit, we
take the final state identical to the initial state
and require it to be an eigenstate of the Hamil-
tonian, i.e.,

(i) U(ty, t;)[i) =e ' (4.10)

functions P&' (t) and Q(&')(t). It is clear that only
the direct term (with P =1) is not zero in the
sum of E(I. (4.2).

Substituting in (4.16}the expression (4.14) for
o' and recalling the definition (3.2} of (cr, Vo'), we
obtain for the energy eigenvalue the static Hartree
result

A A

(4.17)

with the usual notation.

V. SUMMARY

In this work, a mean-field approximation for
the many-nucleon time evolution operator
U(tq, t,;) has been described. The stationary phase
method was used to obtain this approximation
from the exact functional integral representation.
This emphasizes the semiclassical. nature of
the mean field.

One of the main advantages of the approach is
the possibility to derive a mean-field approx-
imation for a specific physical quantity which one
wants to calculate. One should expect to obtain
different mean fields and even different mean-
field equations for different quantities. This will
be demonstrated in the forthcoming publications.

%hen the matrix elements of U are calculated
between the Slater determinant states, one finds
the relation to the conventional TDHF and static
HF theories, but without the exchange term. This
deficiency is not inherent in the present formal-
ism arid is in fact remedied by the judicious deri-
vation of the exact functional integral for U."

The presented formalism is particularly suited
for the discussion of the nucleus-nucleus S matrix.
However, this discussion cannot be completed
without proper understanding of how to consist-
ently define the scattering channels in the mean-
field theory. This definition should be done
simultaneously with the treatment of the scat-
tering dynamics and further research in this
direction is required.
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APPENDIX A

Changing the variables in (2.8),

}t= (d}.&t/2}}i)"g,
0 = (A&i/2m)" b, ,

(Al)

(A2)

where ~ is an arbitrary real constant, we trans-
form (2.8) into

This condition is superfluous in the subsequent
limit &f-0. Because of (A5}, the product of ex-
ponents in (A4) can be replaced by the exponent
of the corresponding sum. This sum represents
a diagonal quadratic form and our next step is to
make it nondiagonal by a transformation to new
variables O„and d~.

We have
40

-( i%)x&2~g ckg ggg2/2 g)gg
(2xi/~~'f)'"

(A3)

« = ZAia&a (A6)

[b;, b/] =0. (A6)

Consider a product of such expressions
Ã N

i/2}tii-t, dti ' dpi idti}ti(ti'd/2 i}it,-).'" ' (2}Ti/X ht)~&~j. i
(A4)

with different operators b; and constants ~q and
assume that

Qg = ~A)j, dt, ,

where fA;„] is some orthogonal matrix.
With the definition

N

V/i, = QAi)Ai}th. i p

it is a matter of simple algebra to transform
(A4) into

(A7)

(A8)

(A10)

N N A

exp -(i/e}dt g v~ d~d =(detp}' f . „,exp i —' g v~ (ete -e~d } tttI,
), l=j.

The proof of the relation (2.10) is now clear. We replace az by o'(x» t, )/t. xz, d& by p(x» ti)/dx» and

V» by V(x& -x„). Passing now to the limit of N- ~, Ax-0, we get (2.10}, where the precise meaning
of the right-hand side is given by

N N

lim J„dox&,t~ exp -&t V x&-x& o xj„tq o x&, tq -2px~, t& ex&, t& &x~&x&
N 2=1 0p X~1
M~0

with

Il", ,ax, [detV(x„x,)]"'-
N (2xi/~f)N /2 (A 11)

o,(x) =- a (x - a)

(flD, D, 'U~D, p(x)Dd 'U, DdD,. 'li)
&f l D.D.-'U.D.D.-'l i)

where we used

(B2)

APPENDIX B

P[i) =P, li), Pl f) =P/ lf}. (Bl)

Suppose now that under these conditions we have
found a solution o'(x) to Eq. (3.6). Then for an
arbitrary vector a, the function o', (x) =o(x- a)
is also a solution of (3.6). Indeed, replacing x
by x-a in (3.6) and omitting the dependence on
time variabl. es, which is irrelevant for the mo-
ment, we get

We first discuss translational invariance and
assume that the initial and the final wave functions
l i) and lf) are eigenfunctions of the total mo-
mentum P:

p(x-a) =D, p(x)D, ',
D, =exp(iPa) (5=1).

(B3)

(B4)

It is a simple matter to show that

(B6)

(f I U.p(x)U. li& (B6)

and is a solution of Eq. (3.6}.
Hence, translational invariance implies that

Da Ua Da Ufy ~

Now combining (B5) with (B2), and using (Bl),
we obtain that o,(x) satisfies



S. I KVIT 21

any stationary point (x of the integral (3.1) belongs
to a continuous set of stationary points o,. The
evaluation of (3.1) by SPA requires that the sum
is taken over all stationary points. For the set
o, this means that one should integrate over the
vector a, representing thus the transition ampli-
tude by a coherent sum of contributions (3.8)
with different &,(x).

Since (o, Vo), Eq. (3.2) is invariant under
translations and becuase of (85) we obtain that
the contribution of a solution 0, equals

e ' r ' ' x (contribution with a=0) .
Therefore, the above mentioned integral. 'over a
gives the momentum conserving 5 function.

Along the same lines, one discusses the time
translation invariance and the consequent energy
conservation. Let us denote by Az;(tz, t, ) the ap-

proximate expression for the transition matrix
element (f I U(ty, t;)I i). This is given by the
right-hand side of (3.8).

Let us consider a time shifted Af (ff+6f t$++t)
where 4t is any time interval. It is easy to
show that if &(t) is a solution of Eq. (3.6) in the
interval t~ - t ~ tz then c«(t) =o(t —At) is a solu-
tion for t;+4t&t&t&+4t. Once this is done, it
follows that

Af'(ff tj) Af—(tf ++i f( +6k)

i.e., A~q depend only on t& -t; and

dt;dt& e'le&'& ~'~)A (f -f ).~ ~

=5(EI-E;)JdTe' f'A(;(Tl. (88)
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