
PHYSICAL RKVIK% C VOLUME 21, NUMBER 4 APRI L 1980
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A self-consistent approach allowing the introduction of pairing into a comprehensive study of the bulk as
well as the structure properties of nuclei is presented. It is emphasized that the density-dependent effective
force used in the calculations reported here does permit the extraction of the mean field and the pairing
field in the framework of the Bogolyubov theory. First, a brief review of Hartree-Fock-Bogolyubov
formalism with density-dependent interactions is presented. Then the derivation of the effective interaction
is explained and some details concerning the nuclear matter properties are given. Finally, we report the
studies on spherical nuclei with special reference to the pairing properties. In order to demonstrate the
versatility of our approach a comprehensive study of various nuclear properties is given. In view of the
abundance of results obtained with our approach we plan to report the results on the deformed nuclei in a
future publication.

NUCLKAH STHUCTUHE Dens ity-dependent Hartree- rock-Bogolyubov
(DDHFB) approximation applied to the calculations of the structure of spher-
ical nuclei: binding energies, pairing correlations, density distributions,

magnetic form factors, and quasiparticle spectra.

I. INTRODUCTION

This paper is devoted to the description of a
self-consistent approach which takes into account
the pairing correlations between like particl'es.
Our approach is essentially based on the density-
dependent Hartree-Fock theory (DDHF) with a
phenornenological. interaction. In order to better
place the present work we refer the reader to
the other papers, ' ' where the status of the sev-
eral attempts to derive the average field in
nuclei has been reviewed in detail. See also the
review of the DDHF calculations given by Bethe. '
Let us recall the general idea governing the
DDHF theory since our approach is its direct
extension. One assumes some predetermined
parametrization of the effective force between
two nucleons and defines the total energy of the
system in the usual way, i.e., as the sum of the
total kinetic energy plus the potential energy cal-
culated with that force. In this way one obtains
an explicit functiona1. of the one- and the two-body
density matrices which reduce to an expression
in terms of the one-body density matrix when
the wave function of the system considered is de-
scribed by a Slater determinant. Then one applies
the variational principle in order to determine the
equilibrium density corresponding to the ground
state of the system which provides Hartree-Fock-
type equations and defines at the same time the
average field in the system. This procedure is
somewhat arbitrary since there is no rigorous
argument justifying the use of the variational

principle with an effective force. ' In fact, one
follows the procedure of the more fundamental
approach starting with a Brueckner Q matrix
where the average field is extracted from the
variation of the lowest-order approximation to
the energy. " There one finds a justification for
this procedure by the fact that it introduces in the
definition of the average fieM important classes
of diagrams which are seen a posteriori to play
an important role in the calculation of the satura-
tion properties. In the phenomenological DDHF
theory it is equivalent to saying that —via the
rearrangement terms occurring in the definition
of the Hartree-Fock (HF) field —this procedure
modifies the usual HF relation between the single
particle energies and the binding energy. This
modification makes it possible to adjust the global
properties (radii, binding energies) as well as to
obtain a sufficiently compressed single particle
spectrum.

Concerning the phenomenological effective
interaction, its parametrization differs according
to different authors. Some of them introduce an
explicit dependence on the density. " Others
introduce the three-body contact force of Skyrme
which is equivalent to a linear dependence on the
density in the HF calculations when spins are
saturated. All of them neglect possible energy
dependence for the sake of simplicity. Such di-
rect parametrizations have the advantage of
rendering the extensive calculation simpler. The
various applications presented by the Orsay
group with the Skyrme's force give a clear indica-
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tion of the possibiliti. es offered by this approach.
However, the disadvantage of this phenomenology
is that we have no link with any perturbation
theory allowing calculation of possible higher-
order corrections. Nevertheless, we believe that
there are still in this. context several reasonable
extensions beyond the mean field approximation,
one of them being the approach we shall discuss
below. In order to include pairing correlations
one can general. ize the DDHF theory by describ-
ing the system with an independent quasiparticle
wave function, the quasiparticles being defined
via the general Bogolyubov transformation. Thus
the total energy of the system becomes a func-
tional not onl.y of the density matrix but also of a
new object called the pairing tensor. Again
applying the variational principle one generalizes
the Bogolyubov equations with density-dependent
effective forces. From now on we shall denote
this approach as density-dependent Hartree-Fock-
Bogolyubov theory (DDHFB). In the past there
have been performed several interesting Hartree-
Fock-Bogolyubov (HFB) studies on light nuclei
of the (s, d) and (p,f ) shells, " "but one may
wonder if the effective density-independent forces
they employed have the properties required to
treat on the same footing the average and the
pairing field. In fact, if one refers to the simple
BCS picture using the HF basis one knows the
important role played by the single particle spec-
trum and in particular by the HF gap. It is only
since the advent of the density-dependent forces
that one gets reasonable single particle spectrum
(not too large a HF gap and reasonable level
density around the Fermi sea), and it seems to
us that the DDHFB approach is indispensable if
one desires a complete self-consistent theory of
the pairing. We do not wish to refute the other.
approaches" "which leave out the complete
self-consistence but which attempt to foll.ow close-
ly the HFB theory in order to study the pairing
effects in specific spectroscopic problems. How-
ever, we want to stress the different advantages
of a self-contained approach. As we explain
below, the effective force is determined once and
for all and we can carry out systematic calcula-
tions on spherical and deformed nuclei even in

the region where nothing is known experimentally.
On the other hand, it can be extended to the theory
of the collective motions of large or small amp). i-
tude associated to the fluctuations of the general-
ized density matrix. Thus in the same theoretical
framework with no other parameters than those
included in the effective interaction, one describes
the single quasiparticle excitations together with
the collective excitations of the average and the
pairing field.

In view of the abundance of results we have ob-
tained with the DDHFB theory and the success of
this approach in reproducing a great variety of
nuclear properties, we shall present its various
aspects in a series of papers. In this paper we
present the results concerning the spherical.
nuclei. In the first part we describe the DDHFB
formalism for the systems with an even number of
nucleons and specialize the Bogolyubov equations
to the spherical. symmetry. We present also the
way we treat the systems with an odd number of
nucleons so as to establish the connection of the
theory with experimental data. In the second part
we explain the derivation of the interaction and
give in detail its properties in the nuclear matter.
We discuss also the necessity of using an ef-
fective force of nonzero range. In the third part
we report on the studies of spherical nuclei con-
cerning the pairing properties. Finally, in order
to emphasize the versatility of our approach, a
comprehensive study of various nuclear proper-
ties is given in Sec. IV.

II. HARTREE-FOCK-BOGOLYUBOV FORMALISM WITH
DENSI'1 Y-DEPENDENT INTERACTION

A. The Hartree-Fock-Bogolyubov equations

Although the HFB theory was developed by dif-
ferent authors with various interactions, . we
present here briefly the formalism since the use
of a density-dependent interaction leads to some
modifications. This section is also necessary in
order to clarify the notations and the relevant
physical quantities to be discussed in the next
sections.

Once the concept of the quasiparticle (QP) is
introduced, the HFB theory is a direct general-
ization of the HF theory. In the second quantiza-
tion the QP creation and destruction operators
(q and q, respectively) are given by the most
general linear transformation between the opera-
tors a and a associated with an arbitrary com-
plete basis ~n):

'Ot = ~+t I+a +&sa~o ~

In the following we conveniently define tBe column
vectors:



1570 J. DECHARGE AND D. GOGN Y 21

system. Introducing the I agrange parameters
A~, &„and A (A is an Hermitian matrix) and using
the notation,

h =(0[EE —ApNp —A.„N„[0) .
The quantity to minimize is h -trA(R -R}and
the corresponding variational principl. e reads

68 —tr(RA+AR —A)&R =0,

which, after having eliminated A by means of
the condition R' =R, leads to

stands for the Bogolyubov Hamiltonian

11 ~12
8C=

21 ~22

Then the Bogolyubov transformation reads q =BA,
where in terms of the supermatrices U and V, the
matrix B takes the form

U V

The anticommutation relations between the QP
operators are preserved by assuming the unitarity
of B. At this stage we introduce the generalized
density matrix R =E- (0~AAt

~ 0). The product
~~ is interpreted as the product of a row matrix
by a column matrix. The matrix R is related to
the two types of contractions p ~=(0~a~a~~0) and
z ~=(0~ a a~ ~ t}) which represent the density matrix
and the pairing tensor. With obvious notations
(Appendix C) we have

whose matrix elements are related to the deriva-
tive of the energy according to the equatian

i@~g —2
~Rg~

The factor 2 is introduced for convenience as
will be seen in what follows.

At this point it is worth stressing that the
density-dependent (DD} interactions allow only
calculation of the interaction energy of the sys-
tem, but strictly speaking, they do not provide a
Hamiltonian. In particular, the method of el.im-
ination of the dangerous diagrams, commonly
used to derive the HFB equations, is not equival-
ent to the variational method in our case. In
order to express the derivatives in the definition
(2) we calculate the average value (0~ T+V(p)~ 0),
where V(p) is considered as a two-body force.
We get for 8,

-p R 2- g p+ R12- g R21 —g4

In the HFB theory, ~ 0) is assumed to be the QP
vacuum. As a consequence, the Bogolyubov trans-
for'mation B diagonalizes R (BRBt =E- (0[ qqt

~ 0))
and in that particular representation it is easy to
show that R corresponds to a projector (R' =R).
Conversely, the condition R' =R guarantees that
[ t}) is an independent QP wave function. These
few preliminaries facilitate the derivation of the
HFB equations. In fact, the total energy (0( B ( t})
is expressed in terms of the matrix elements of
R and minimized with respect to their variations. '
For the reason given above one adds the subsidiary
condition R' =R and also the constraint that the
average number of protons and neutrons corre-
sponds to the given number of particles in the

~q+~0'8 ~la;+ ~aiB ~qe~eg P o

1+ (& s PsP+V ssPsP")I,

+ ~Z V'Nyro~oy~yo ~

In this expression V~z,& is antisymmetrized with
respect to the exchange (a P), (y —5) and the
energy is symmetrized with respect to p, p* and
I(', w* since these quantities are considered as
independent variabl. es. Thus with these defini-
tions, the matrix elements '~z take the form

The quantity I' represents the HF field
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8 P'r.„=g V.„,p„+ -,
~~vp, p~)

5g pggg P&of

x ( poop' + o&o~ &oa) r

which is reduced to its usual form in the case of
vanishing pairing cor re lations. On the other
hand, the u se of a DD force does not change the
def inition of the pairing fie ld &:

Ao~ = a ~P'~~y~K~„.

To complete this expression we recat 1 that since
the interaction depends only on the spatial den-
sity p(7) we can simply calculate ()V/&p„as

ay ey ap ey
= P*(&)4~(~)e

For the solution of Eq. (1) an elegant mathemat-
ical method based on the antilinear operators
was formu l.ated. 20 It has the advantage of reduc-
ing the number of dimensions but also require s
much work from a computational point of view .
Thus we adopt the usual way, i.e ., we note that
JC' =X"= 0 in the repre sentation diagonaliz ing
R or equivalently that R does not connect the
ground state to the two QP states. Consequently
we can satisfy Eq. (l) by a choice of the Bogoly-
ubov transformation diagonaliz ing K:

xa~ =s' 8 .

(0)(2), E (~)+ 2 trl l R1+ 2 tr2 ( ) ( ) R2 Rl

where
(3)

+(p(o)x(o)) tr[T + ~F( p(o))] p(o) + —tr(~(o) &(o) g)

This nonlinear eigenvalue problem is then solved
by an iterative procedure explained below.

For the sake of completeness we express the
stability condition in the case of a den sity- de-
pendent interaction. Up to the second order we
expand the generalized density matrix around the
equ i1ibr ium d en sity

R = ("R+("R+ &2&R

with the condition R' =R . This conditions ex-
pressed in the QP representation diagonalizing

R leads to the relation s
( x)&~

'"ft"= (-)"'['"'ft'"Z]*' ~ = l 2

On account of the stationarity condition tr(X ' R)
0, the corresponding expansion for the energy is

E( p(o) &(o)

is the totaI binding energy. If the HFB solution
is to be stable, the above quadratic form must
be positive for any choic e of ' R. Final ly, the
usual quantization which consists of looking at the
matrix elements of ')R as boson operators pro-
vides the Hami ltonian associated with the ftuctua-
tions of the generalized density matrix around the
8FB equilibrium. The second derivative of E is
then interpreted as the residual interaction be-
tween QP. As compared to the conventional cal-
cu lation s this residual interaction contains the
so cal led rearrangement terms which were 'shown

elsewhere" to p 1ay an important role . In con-
e luding this section we see that effective DD inter-

actionss

provide a self -consistent scheme of single
QP excitations as well as the collective excita-
tion s, despite the fact that DD forces do not pro-
vide us with a Hamiltonian.

B. Reduction of the HFB equations with the assumption

of spherical symmetry

From now on we assume that the H FB Hamilton-
ian is invariant with respect to rotation s in the
coordinate and spin spaces. %e also assume the
reflexion symmetry. In the 8FB theory these
symmetries can be shown to be compatib le with
any number of particles On the other hand, we
treat separately the pairing correlations between
the neutrons and the protons. As a consequence
the QP states can be labeled by an index n which
stands for the following quantum numbers: the
charge quantum number q, the orbital angu lar
momentum /, the total angu lar momentum j, and
the magnetic quantum number m . Another index
i is needed to distinguish between QP states
having the, same a = (q, l,j, m) but differing in
radia l quantum number .

The Bogo lyubov tran sformation is reduced to
the form

= g u;„a„+v;„at-, n = (q, l,j, -m) . (4)

The summation is performed over the radial
quantum number n . The operators a„are
associated with the function s:

R ol a„'.I O&
= e„,(~)(r, x X '),

where X,
"denote the spin functions and F,

the usual spherical harmonics. In the present
calcu lation we choose the spher ical harmonic
oscillator eigenfunctions for the radial part y„,(x).
Finally, using the property that the QP operators
q must transform like irreducible ten sor s, it can
be shown that u ' s are independent of m while

' s depe nd on m via a trivial phase factor s
&

= (-)) ". The Bogolyubov transformation is then
rewritten as
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u;„a„+s&„v,„a„- (a) =(q, l,j).() (&)

According to this transformation the density ma-
trix becomes diagonal in quantum numbers
(l,j, m, q} and independent of m whereas the ma-
trix elements of the pairing tensor vanish except
between the time reversed states and depend on
m only via the phase s;:

(a)
pn+;n'0 op pn, n' y

(a)
Knn. n'0 = 5oFSg m K„ fi

In terms of the coefficients U and V the matrices
p

' and s ' have the form

g( fl) 8( ~) y( ) y( a)

where & ' and the pairing field & z are related
via the equation

+op=&atTsy m + ~
(a)

a

This is what was meant at the beginning of this
section by the phrase: "The symmetry is com-
patible with any number of particles. "

C. Derivation of the HF and the pairing fields

The main technical difficulty we have en-
countered in solving the HFB equations was to
calculate with a minimum of computational time
the HF and the pairing field. This difficulty is due
to our interaction which contains a finite range
part. We sketch briefly how we have proceeded
in order to simplify maximally the calculation of
these quantities. First we consider the case of
the HF field. In the coordinate representation it
decomposes itself into a local 1 (r„r,) and a
nonlocal part I. (r„r,). The local part takes a

Conversely such selection rules on p and K lead
to HFB equations split with respect to the quantum
number a = (l,j,q) and independent of m, i.e.,

S(n) ~(n) p(n) p(n)
&( a)

very simple form since all the geometry dis-
appears, and only the lowest multipole of the
interactions occur s:

&r, II' Ir, )=5(r, -7)E fvs''~gx„x'n "(r')r"dx'.

The definition of the multipoles V('~,)~ is given in
Appendix A and p ' is the spatial density:

p" (r) = —Q j'p„'„'.q „,(r)y„.,(r),+ nn'l j
with

j=(2j+1) '.
As for the nonlocal field, except for a 3j coef-
ficient which still remains, all the geometry
has been reduced along the line described in
Appendix B. In writing the expression I (r„r2)
we define the quantities 0"'(r„r,) and A"'(r,r,):

100 k2Y lull 2

o-"'(r,r.) = 4, Z
~

V.i (r, )q. i (r.)'""'
I,o o 0)

(a) 'g
x [(l'+ 1)p„„, + l 'p„„', ] (5)

and

k' ~ (1 k 1') '(l+l'-k)l»n

47FL INAp
O 0 0)

I
nn ~

(g) '+ (~) '-x(p, -p.. )q. i ~(r,)q. i (r.)
(6)

We use the notations

(a)'+ = (l', l'+-,', q),
l =l(l+1},
k =(2k+1)''.

In the case l=0, A must be taken equal to zero.
With these definitions the nonlocal HF field
becomes

I ~'~(r„, r }= g([V 0'(r r ) +3V»'(r r )]/2]e'"' (r r }+(lj ~
ls

~
lj)g[ V»; (r r ) —V» ' (rp'2)]A~„„~ .

In addition to'its relative simplicity this expression has also the advantage of showing clearly how the
central part of the two-body interaction contributes to the spin orbit splitting of the HF levels.

Concerning the pairing field it is clear from its definition that it must be purely nonlocal. Replacing
the density matrix p by the pairing tensor s in the two quantities 0'»'(r, r, ) and A"'(r,r,} defined by (5)
and (6}we can express the pairing field in the form

&I'~(r r, ) = g (-)"{[V»",(r r, ) —SV»'(rp', )]/2}9' '(r r, ) +(lj ~
7s [ lj)g (-) [V,"0(r r, ) + V/(rp, )]A"'(r,r, ) .

In this expression the first ahd the second term represent the contribution of the singlet even and the
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triplet odd components of the interaction, respectively. For reasonabl. e interactions the latter is much
weaker than the first one and consequently the singlet-even component will. play the dominant role in the
determination of the pairing properties of the interaction. Let us mention here that all these expressions
apply also to the Coul, omb interaction. Finally, what we need in constructing the Bogolyubov Hamiltonian
are the matrix elements 1"„„'.and &„„'.which are given by the following integrals:

I"„„'.= y„& r, I' ' el+2 9 n'l r, rj r2 dy'jdy',

and idem for &„„'.. According to the previous definitions they are combinations of the Slater integrals.
Their calculation is greatly facilitated by the method we proposed a few years ago."

Concerning the contributions of the DD part of our interaction as well as the two-body spin orbit part,
they are easily derived since we choose them to be of zero range. The HF field takes the form

I"(r,) =t,((1+-,'x,)p "-(x,+-,')p p'+ —,'o(l-xg[p "+p ' (ii~'+ x"')]+ix(x, +-,')p 'p p"].

1 d, 1 d
+ Wz, z ——( p+ p')Ts ——+—(J+J')

where J' is the spin density

and &' is what we call the pairing density

~( ) J b 9 pi li,9 n&i& n~ni,
'

For the pairing field the expression is

where 7', which we shall call the pairing spin
density is defined by the equation

Q2i &Ji I ~sl Ji)(-) 0'n, i~9' ~r~", ~

Concluding this section, let us add that we also
account for the notation of the center of mass
by subtracting the usual term P'/2mA which we
treat exactly (direct and exchange terms). Ex-
change Coulomb term is also treated exactly.

one defines a QP state vector on the HFB vacuum

ih„l 0) and minimizes the total energy with this
new trial function. The extension of the HFB theo-
ry is straightforward since the only modification
is in the definition of the generalized density
matrix. Thus in all the definitions of Sec. II A
we just have to redefine the density matrix
and the pairing tensor @s

p ii
= &Ol q, „a aiinir I 0&

™

=(0I aiba, I 0) + &OI[q;„,aita, ]pit„ I 0),
x s = &oI niy a aiin y I o&

=(0I a aiil 0) +&ol[i)i„,atag]gati„ I 0),
and the minimization leads to the same Bogolyubov
condition [R,R] =0. . This is the version of the
BCS theory of the blocking adapted to the HFB
case. Here since we want to maintain the spheri-
cal symmetry we take some average by blocking
all degenerate QP orbitals inside the same jy.
This approximation consists in defining the aver-
age density matrix in the form

D. Connection of the HFB theory with experimental data

A precise quantitative information of the pairing
correlations is not easy to extract in the nuclei.
There are no simple physical processes allowing
one to isolate completely the pairing effects from
the rest. In fact, for most of them we cannot
ignore in general the effects associated with the
rearrangement (static or dynamic) of the HF av-
erage field. In view of this difficulty we describe
in this section how we have checked the pairing
properties of the effective interaction.

The most direct way of getting information
about the pairing is to compare the properties
of the odd«even nuclei. Referring to Sugawara, "

I

Hence we get the following expressions for the
density matrix and the pairing tensor:

x&,~ &, i &i q (a)=(l,j,q ),

x„„,=(U V)„„.—~2(u;„.v;„+u,„v,„.)(o) t (~) 1 (a) (a) (a) (a)

x5 5 5
QyQ~ ly S

It is obvious that the Bogolyubov conditions de-
pend now on the "blocked" QP state iy. The
blocked state which leads to the lowest total
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energy will be associated with the ground state
of the odd nucleus in question. The other QP
states may serve to describe the low lying excited
states. In this way we have calculated the odd-
even mass difference discussed below and the
first excited levels of some odd nuclei. As
pointed out by other authors, '4 there is an impor-
tant difference between the problems with even
and odd particle number. In the odd case the
Bogolyubov conditions only imply that the ground
state and the SQP states q, q, ~q, „ I 0) are not
coupled in first order perturbation. All other
SQP states not containing the blocked QP, 7)t„

can be coupled to the ground state by the residual
interaction. Thus one should include them in the
description of the odd system. It could be done

by coupling the added QP with the core excitations
of the even nucleus (QP phonon coupling). How-

ever, we limited ourselves to the HFB theory and
we have just emphasized this question for the
discussion presented bel.ow. Finally, another
cheek of these calculations is provided by the
stripping and pickup reactions which ean be re-
lated to the occupation probabilities.

E. Numerical method of solving HFB equations

The HFB equations are solved by an iterative
procedure. To initiate the iteration we guess a
density matrix p ' and a pairing tensor w in
order to calculate the Bogolyubov Hamiltonian

The diagonalization of K P provides a set
of QP states which permits us to calculate a new'

set p
' and x ' according to the expressions given

in Sec. IIB. With this new set we calculate K '
and diagonalize it, etc. We stop the iterations
when the differences max(p~~z~ —p~'Pl }and

max(t& ~
—d~J' }are less than some prescribed

value e. For all calculations reported here we
chose & = 10 . Concerning the starting p ' and
~ ', we first perform a HF calculation without
necessarily achieving an accurate convergency,
and on the corresponding HF basis we guess some
occupation probabilities around the Fermi surface
needed to define the pairing tensor ~ . We also
mention that at the beginning of the iteration pro-
cedure we must slow down the convergence on
the density matrix by making some weighting
between two successive iterations. In this way
the average field varies slowly and we can insure
the convergence on the pairing tensor step by
step. Furthermore, we readjust the mean number
of protons and neutrons at each HFB iteration by
the following perturbation method.

For the discussion let us suppose that at some
iteration, say I, the HFB Hamiltonian 3Ci (A. )
provid'es a set of QP states such that (Q =N in-
stead of the prescribed value N, . The problem

TABLE I. Computing time for one HF or HFB itera-
tion as a function of the dimensions of the basis (Np).

OH basis Np

Time (see)
on IBM 36091
of Saclay

HF 2.5

10

Then with these two corrected I agrange param-
eters we diagonalize 3C(A. + D.) and check the mean
number of particles. If the perturbation method
was legitimate we get the correct answer N =N, .
If n.ot, we repeat the process starting from
3C(A. +5k) until it converges. In fact, at the first
few HFB iterations we need two or three nested
iterations, but rapidly after three or four HFB
iterations the procedure described above gives
the good correction right away. Evidently we
can apply this method to any type of constraint.
Finally, let us mention that we are able to include
15 shells of harmonic oscillator in our basis
[2(n- 1)+I ~ 14]. We give computational time for
different size of the basis in Table I. On account
of the amount of work necessary in such calcula-
tions, one can realize the great efficiency of our
methods and also of the codes.

III. THE DENSITY-DEPENDENT EFFECTIVE INTERACTION

The derivation of our effective interaction was
done essentially along the line described by
Brink and Boeker. ' Such derivation is purely
phenomenological in the sense that the interac-
tion has a predetermined form whose parameters
are adjusted to reproduce the global properties
of the nuclei and the empirical data in nuclear

is to readjust the I agrange parameter A. so as to
get the correct answer trp =N, . To this end we
determine the variation of the generalized density
matrix induced by a variation 5~ in the equation
[3C(A+5k), R(A+5%)]=0. We set R(A. +M) =R(&)
+ 5A. ' R with the condition [3C(X),R (X)]= 0. Neglect-
ing the rearrangement of X we get at first order
in the basis diagonalizing R(A.),,

Ni'
P q=12.

We refer to Appendix C for the notations. Thus
we can express 5~ in terms of & =Np
=

& trN ' R. In our case we have two separate
corrections for the neutrons and the protons.
Their expressions are

5A.' =~ /4 Q j '[UV ];,'((6,. + 6,) ~



HARTREE-FOCK-BOGOLYUBOV CALCULATIOWS WITH THE DI. . . 1575

matter. It is in that spirit that the Skyrme inter-
actions and some others were derived. In this
section we devote a part to the concise description-
of the criteria we used to achieve the fit. A sec-
ond part concerns the nuclear matter. There we
exhibit the properties and the global behavior of
an. interaction we selected with such a fit. Finally,
the important role of a finite range in the force'is
discussed in the last part. In order to avoid the
misunderstandings we call a zero range force all
forces obtained by the 5-force parametrization
and by finite range force are meant the forces
parametrized by analytical functions (such as
Gaussian, Yukawa, etc.).

A. Description of the effective interaction

We have postulated an interaction of the form

V(g) = Q (W+BP, -HP, —MP, P,)( e " "~

+t,(1+x,PJp'( '& ')il(r, -r, )

i.e., the sum of central and spin orbit terms. For
the latter we have retained the form given by
Skyrme. Its intensity was fitted independently
of the other parameters so as to reproduce the
splitting (p' '-P'') in "O.

The central force separates into two parts.
One is independent of the density and is inspired
by the works of Volkov2' and Brink and Boeker.
It is composed of two Gaussians, one of which
simulates a short range and the other one an
intermediate range. Furthermore, it contains
all possible admixtures of spin, isospin, and
space exchange operators denoted, respectively,
as P„P„P„.We took Gaussian shapes because
of their computational advantages when extending

the calculations to the case of deformed nuclei.
The other part is density dependent and is chosen
of zero range in order to reduce computation
time to a minimum. Although this form —acting
only in the even states —is probably too simplified,
we shall see in the section concerning the nuclear
matter that it still allows us to reproduce closely
enough the mechanism of saturation obtained with
the fundamental approach based on the Brueckner
theory. Concerning the adjustment of the param-
eters, we start with a given set (t„x„n,p, „p,,)
and we determine linear equations in the other
parameters so as to get the global properties
of some spherical nuclei. These equations
being extracted with the restricted HF procedure
we must allow for the variation. of the results
when passing from the restricted to the complete
HFB calculation.

We shall not enter into the details of the fitting
procedure. We only indicate that we adjust the
saturation properties of the. "0and Zr combined
with some of the empirical data in nuclear matter
(symmetry energy, for instance). Furthermore,
since we al.so want to determine the pairing prop-
erties of the force we include equations associated
to the matrix elements of the form
((nS)'OT = li Vi(nS)'OT = 1) (nS) =(1S), (2S), i.e.,
those which depend on the singlet-even component
of the force. As for these matrix elements, their
values are not precisely determined and we only
know that they must be negative in order to get
pairing correlations. Thus we consider them as
fr ee parameter s in the fit. Owing to the fact
they can be varied without destroying the proper-
ties depending on HF alone, we have been able to
,find an interaction giving not only a good descrip-
tion of the average field but also providing a fair
description of pairing effects where they sensibly
affect the calculations. From now on we shall

TABLE H. The coefficients needed in the definition of E T (see the text) which represent
the potential energy in nuclear matter for each subspace ST.

ST 00 01 10

4vm X~T'

g(ST)

C(sT) (1-&n) 3&0

8

3~A+I+ a+ H),

(1+&n) ~3&

2 8

The values of the parameters for Dl and Dl'

0.7 -402.4
1.2 -21.30

WLs=115 for Dl

-100.0 -4S6.2
-11.77 37.27
WLs=130 for Dl'

M
Mev

-23.56
-68.81

to
Mev fm4

1350

Xp
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TABLE III. The nuclear matter properties calculated
with the Dl force. -E/A binding energy per particle.
-kz Fermi momentum. -E Incompressibility. -a,
volume symmetry coefficient. -m*/m Effective mass.

E/A kz (fm t) E (MeV) a, (MeV) m'4/m

MeV

10
S=O T=O

rrr
rrr

T

S=l T =1

D1 16.32 1.35 228.0 30.8 0.67
-10

denote this effective interaction as Dl. (See
Table II for its definition. ) As stated below, we
also use an interaction D1' which differs from
D1 in the va, lue of spin orbit coefficient.

S=l T=O

B. Properties of D1 in nuclear matter

In order to present a complete survey of the
proper behavior of D1, we have considered it
useful. to report in some detail the calculations
in the nuclear matter.

The quantities discussed in the following are
extracted from the formula (3). This expression
is very useful since it determines not only the
saturation properties of the force but it provides
also very interesting information on the force when

departing slightly from the equilibrium via all
possible particle-hole excitations. Thus we
specialize this expression to the case of the
nuclear matter, i.e., we use plane wave functions
including spin and isospin [(I/vQ)e '")( "')(, ']
and furthermore we neglect the pairing.

We have decomposed the total binding energy
E(p ) into the different contributions E(s~') of
the potential energy in each subspace (ST}defined
by the projectors P ) =(I+P,)(1aP,)/4. Con-
sequently, the total energy per particle is writ-
ten as E/A =T/A+gs~E s /A, where T rep. re-
sents the kinetic energy and E the potential
energy whose expression is given by

Esv P A(s~)Xs &(sr) s-x;
X,.

—+, + —erf(X;)
3 I Rs

+C(sT)p&+1(k )

The coefficients A; . , B~,C and the definition
of X; are given in Table II and p(k~) = 2k''/Ss'.
The error function is defined according to
erf(X}=2/vw J, exp(-f')dt. The density of sat-
uration is given by the k& which minimizes the
energy. We report in Table III the k~ and the
corresponding E/A calculated with Dl.

.5 l. 1.5

FIG. 1. The contributions to the nuclear matter poten-
tial energy corresponding to the different components

V of the effective force. The dashed lines represent
the general trend of the ones obtained with more funda-
mental nuclear matter calculations using realistic two-
body interactions and the Brueckner HF theory.

The decomposition of E/A according to the
dnferent contributions E was performed in
order to exhibit the mechanism of the saturation.
In Fig. 1 we recognize that most of the contribu-
tion to the nuclear matter potential energy comes
from the even parts E oi

~ E io)~ at least for the
momenta, from zero up to 1.6$ fm '. We also
notice that the triplet-even potential energy plays
an important role in the mechanism of saturation;
a result which is quite similar to what happens in
the nuclear matter calculations using G matrix. '7

More generally, the fact that we reproduce the
trend of the saturation curves obtained with more
fundamental approach is an indication that D1,
although phenomenological, is a reasonable pa-
rametrization of a G matrix corrected to give
the correct, saturation properties (cf. Ref. I).
However, it is cl.ear that this parametrization does
not account for the energy dependence of a G
matrix and that a finite range in the dependence
on the density would be more realistic in de-
scribing the momenta below 1.7 fm '.

Now we come back to the second order variation
of the energy in the formula (3). Using the nota-
tion pA',„„,where q is the momentum transfer
between a particle and a hole and S and T repre-
sent the total spin and isospin of a particle-ho1. e
pair, we get the following expression for the
second order energy ' E:

ST ST + Wq, y;a'+q, a'

/BE -q, A, ;0 '-q, k '
ia '+q I, lu~qi &a~

zp ST ST +
B0+q,k;0 '- q.A;

'

ST STA»-. ,»;» ~ -..» j p» -..» ~ /



21 HARTREE-FOCK-BOGOLYUBOV CALCULATIOWS %1TH THE Dl. . . 1577

where As and BsT are related to the second
derivation of the total energy with respect to
the density matrix.

It is interesting to calculate the contribution
associated to the small momentum transfer
q &(1. In that case, at first order in q the sum-
mation over [ k( becomes +[0/(2m') ]q'k~' cos8
with 8= (kq), so that the particle-hole pairs are
on the Fermi surface. As a consequence, we
need only to consider the set of variable X = (8, p)
characterizing the direction of k with respect
to q. Thus, setting

C (X)=cos8p~~~z(X) cos8& 0

C (X)=-cos8p,'~~(X), cos8(0

the second order energy ' E becomes

(2) 4F 0
Xfl (2~)s

P I

x dXdX' 5(X X')+—V"(X,X')
4m

X 4, ST(X)C,ST (XI)

where N =mIo~/PP2m' is the density of states at
the Fermi surface and m is the effective mass.
Furthermore, we get this simple form because
in the limit q- 0 the particle-hole matrix elements
entering in the definition of A. a,nd B
identical.

Introducing the multipole decomposition V (X,X')
=g, V, P, (X,X') and c (x) =pe, „P,„(x), we express
easily the stability condition (~'~E& 0) with re
spect to all possible particle-hole excitations
associated with the various deformations of the
Fermi surface in the different channels S, T.
We find 1+E, /(2l+1)&0 where Ep =NV ~sT. These
are the conditions on the multipole of the particle-
hole interaction which warrants that the HF solu-
tion is a local minimum. At this stage it is worth-
while to point out that the quantization of ' E,
would lead to a transport equation [it is the limit
of the random phase approximation (RP&) equation
as q-0] which permits us to interpret the E,
as the Landau parameters associated to our
effective interaction. Thus all the formulas
of the Fermi liquid theory which express the
effective mass, the incompressibility, and the
symmetry energy in terms of the I", may be
transposed to our case. Their expression reads

(1+ E o)

E = (1+Eoo)

and their values calculated with D1 are listed in
Table III. Vfe do not list here the Landau param-
eters associated to the interaction D1 since they
are given elsewhere (see Ref. 21). We just
mention that all the stability conditions are sat-
isfied by the particle-hole interaction extracted
from D1. Furthermore, let us add that a study'
of the monopole resonances in the finite nuclei
supports the value of the nuclear matter incom-
pressibility obtained with D1.

Finally, in order to complete the review of the
properties of D1 in the nuclear matter we refer
the reader to the following articles; one2' con-
cerns the propagation of the collective modes.
It is shown that the Landau parameters of D1
reproduce well some previous microscopic cal-
culations with Heid soft core potential. G matrix.
The other" is complete HF calculation on semi-
infinite nuclear matter with D1. There the value
a,& =20.1 MeV is extracted for the surface coef-
ficient of the mass formula very close to the
values proposed by Myers (20.69) and Groote
Hill and Takahashi (20.85).

C. Why the finite range?

In order to explain the motivations which led
us to introduce a finite range in the course of
construction of D1, we discuss some aspects
which are related to the choice of the zero range
effective interactions. Of course it is not our
intention to discredit the excellent results ob-
tained with the zero range effective interactions
but rather to indicate the limitations in their
applications.

If we believe that the effective force is some-
thing like a 6 matrix, the presence of finite
range leaves no doubt and the first question is to
understand its influence on the HF results. The
density matrix expansion (DME) derived by
Negele and Vautherin" is the convenient tool to
study the. role of the finite range. These authors
have shown on the proton distribution the effect
of truncating their expansion to the few terms
corresponding to a Skyrme's force. They conclude
that the exact DDHF and such DME calculations
lead to shell model fluctuations which are sig-
nificantly different.

It is a consequence of the fact that the long
range of the force smoothes the fluctuations of
the HF field as compared to a short range inter-
action which takes into account the local variation
in the HF density; an effect which is emphasized
by the self-consistency. For the same reason
one may wonder if the short range forces can
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always simulate the long range or the intermediate
range when studying the response of the nuclei
to an external field as one does for instance to
get the potential energy surfaces as function of
deformation. Clearly this question is important
if we try to understand the limitations of the HF
theory itself.

The role of the finite range is still more
crucial when one desires to extend the theory
beyond the HF approximation. In reality the fact
that pathologies may exist when putting the range
of the interaction to zero is clearly seen when
analyzing the Fourier transform of the zero
range forces. In particular, one recognizes that
their behavior with high relative momenta is
completely unrealistic. For example, these
forces contain terms constant or increasing
quadratically in the relative momenta instead
of vanishing rapidly as it is the case in the
calculations with finite range forces. Such
unrealistic feature is not too dramatic in the HF
calculation because one only needs the low Fourier
components in the relative momenta which never
exceed 2k&, but as soon as one wants to go beyond
HF the situation is quite different. Thus, in the
case which interests us directly, i.e., in the
HFB procedure, the particle-particle matrix
elements enter in the calculations and in principle
there is no restriction on the Fourier components
interfering in this procedure. The difficulty we
discuss here is well illustrated in the BCS ap-
proach to the pairing with a constant pairing
force. As is well known, the corresponding gap
equations must be solved in a restricted space,
otherwise these equations would be divergent in
the whole space. That is to say, the smearing of
the Fermi surface due to the pairing is restricted
arbitrarily over particle states close to -the Fermi
surface. In such an approach to the pairing it has
been recognized that there is a crucial inter-
dependence between the pairing force intensity
and the one particle level density. We agree that
it may be a reasonable way to take into account
the essential. features of pairing effects in some
specific studies but we be1,ieve that the proper
pairing theory constructed for the systematic
use does not tolerate such ad hoc procedures.
Clearly the finite range force allows us to avoid
such ad hoc truncations since they will automat-
ically result from the properties of the interaction
itself. In our view this is the only way to define
an approach to the pairing which is completely
self-consistent and general enough. Finally,
although ue are not directly concerned here with
the RPA cal.culations, let us mention another
pathology when employing zero range force,
namely that we get too much collectivity for the

states at high energy. This is easily understood
by analyzing the RPA particle-hole Green's func-
tion which never tends to the free particle-hol. e
Green's function as it should as the transfer
q- ~. It is a consequence of the unrealistic be-
havior of particle-hole interaction at the high
momentum transf er.

IV. HFB CALCULATIONS OF THE FINITE
SPHERICAL NUCLEI

In this chapter we collect together a large set
of various results on the static properties of the
spherical nuclei extracted with the HFB pro-
cedure using the effective interaction D1. We
clarify that we do not on1.y present the results
for the superfluid nuc1, ei but also for the norma, l
ones, which would be satisfactorily described
by the HF approximation alone. We never men-
tion the HF procedure because it is automatically
included in the HFB approximation. Nevertheless,
our primary aim being to demonstrate that we
have a reasonable approach to the pairing, we
devote the first section to the presentation of the
results which concern direct1y the pairing effects.

A. Results associated with the pairing effects

This section is mostly devoted to the study of
the isotopes of the tin nuclei. We have chosen
those isotopes for several reasons. First of al1.,
they @re spherical nuclei which ca,n be treated
in good approximation in the framework of the
independent QP model. Second, there is a wide
range of isotopes which permit us to follow the
features of this approach and in particular to
check how it reproduces the variation of the pair-
ing as function of the neutron number. Finally,
there are numerous experimental data as well
as many theoretical works on this series of
isotopes providing us with useful informations.

We first discuss briefly the accuracy of the
HFB calculations. In the definition (4) we re-
strict the summation on the radial quantum num-
ber n according to the relation 0 &2(n - I)+I &No,
where N, denotes the number of oscillator quanta.
The calculations on the tin isotopes are performed
with N, = 10 and those on lead with N, =12. The
oscillator length b =(k/m&u)" we use in HFB is
determined by minimizing the HF energy. Fur-
thermore, it was checked on """'"'"'"'Sn
and ' 'Pb that all the quantities studied here did
not change significantly when passing from N, = 10
to 12 for tin isotopes and from No = 12 to 14 for

0 Pb. For example, the increase of binding ener-
gy for tin isotopes is about 2 MeV (see Table IV)
and 1.6 MeV for Pb.

We investigate all the even-even and odd-even
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EHFB

116 990.455
117 997.412
118 1007.138

+HFB

1.385
18.81
14.87
18.87

HFB HFBi2

1.516
1.552
1.585

124 1052.640

132. 1104.926

17.24 2.062

2.226

tin isotopes whose mass number cover the
range 112&A.&125. We comment first on Table V
where we have listed the total binding energies
of these nuclei. In order to show the pairing
effects we give separately the two contributions
occuring in the definition of the HFB energy.
One has the form of the usual HF energy,

We use the notation EHF to avoid eventual con-
fusion. In fact, this contribution is evaluated
with the density matrix extracted from a com-
plete HFB calculation and generally differs from
the one obtained with the, density extracted from
a HF calculation. In particular, denoting by E„„
the contribution in the latter case, we know that
E„F satisfies the relation E„„)E» since by def-
inition E„„is minimum (they are equal for
vanishing pairing correlations). The other con-
tribution is just given by E = ytr4a which pro-

TABLE XV. Comparison between some calculations in-
cluding NO=12 harmonic oscillator shells in the basis,
and N p=10 calculations. See Table V.

vides us with a measure of the importance of the
pairing correlations. Thus the HFB binding en-
ergy is written as EHF EHF+Ep From Table V
we conclude that the tin isotopes in the range
112~A - 124 are superfluid since„ for all of
them, we find a non-negligible pairing energy
of the order of 16 MeV. As expected, only the
neutrons contribute to E~ since the proton pair-
ing correlations vanish due to the shell closure
at the proton number Z = 50. In connection with
the previous discussion on the definition of EHF
we mention that these 16 MeV do not represent
the gain of binding energy as compared to the HF
binding energy of the HF procedure alone. In
reality EHF decreases rapidly with an increasing
diffuseness at the Fermi surface and it is the
competition between the l.oss energy on E'„„and
the gain energy on E~ which determines the trend
toward a superfluid solution. As a matter of
fact, the contribution E~H~ decreases quickly with
the diffuseness of the Fermi sea so that E„F
and E„„differ in general by only a few MeV (see
Table V, last column). We emphasize that it
does not mean that the pairing is a small effect,
since obviously the quantity E~ indicates a sig-
nificant difference between the HF and HFB wave
functions.

In order to stress the difference between the
wave functions, we have drawn in Fig. 2 the
neutron density calculated with both procedures
in the case of '"Sn. We note the great difference
between the two predictions from the center up to
a radius of about 3 fm. In contrast the two neu-
tron distributions are the same at the surface.

TABLE V. The results of the HFB calculations with D1 in the tin isotopes. This calculation included No= 10 shells of
harmonic oscillator. The two-body part of the center of mass motion (C.M. correction) has been omitted. EHFB, E~,
and EHF represent, respectively the total HFB energy, the total pairing correlation energy, and EHF =EHFB —EI'.
is the parity and the spin of the ground state, and 4 denotes the odd-even mass differences. W'e recall that in the Fig.
9, extrapolation to infinite HO basis and C.M. correction have been taken into account.

-EHFB ~HFB ~g.s. HFB -EHFB ( nFB @HF )

112 953.538
113 961.284
114 971.583
115 979.130
116 988.692
117 995.636
118 1004.963
119 1011.447
120 1020.554
121 1026.725
122 1035.541
123 1041.487
124 1049.978
125 1055.711
132 1102.700

1.271

1.007

1.192

1.311

1.322

1.272

2

ii-
2

ii-
2

953.065
960.641
971.434
978.585
988.939
995.860

1006,653
1011.891
1021.310
1027.136
1036.295
1041.988
1050.605
1056.121
1102.772

1.609

1.402

1.386

1.641

1.667

1.462

1+
2

2

1+
2

11
2

ii-
2

1102.77

934.79 18.27
14.85

953.80 17.63
13.52

972.01 16.93
12.82

989.00 16.55
12.96

1004.94 16.37
12.46

1020 16 16.14
12.06

1035.20 16.40
11.05

0

948.301

968.403

986.701

1002.164

1018.898

1032.187

1046.901

1102.772

4.764

3.031

3.238

3.389

2.412

4.108

4.704
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FIG. 2. This figure exhibits the influence of pairing
correlations on the neutron density distribution of 6Sn.

All this is easily understood in terms of the
spectroscopic factor given below. Let us also
mention that the proton density is distorted in-
directly, via the pairing between the neutrons
but this effect is much smaller (see Fig. 2).

The odd-even mass differences make part of
the basic quantities considered in all the studies
concerning the pairing. The reason is that they
represent somehow the energy needed to break
a pair when picturing the pair as two particles
interacting in two time reversed orbitals. Thus
these data are considered as providing a direct
information on the pairing correlations in the
nuclei. On the other hand, under certain assump-
tions these data have a simple connection with the
theory. In fact, describing the odd nucleus as the
one QP state q';„~ 0) (~ 0) is the ground state of the
neighboring even nucleus) and neglecting all re-
arrangement effects when passing from one
nucleus to another, we recall the wel. l known re-
lation between the odd-even mass difference and
the lowest QP energy:

e =-[B(A)—2B(A —1) +B(A —2)]/2, & even.

Although such an approximation has the merit
of giving a simple check on the theory by requir-
ing only the calculation of the even nuclei, it pre-
sents also the disadvantage of providing too rough
a comparison with the experiment. Besides, in
our case, this relation needs to be corrected by
an extra term which accounts for the expl. icit
dependence on the density of the effective inter-
action we use. Thus we have chosen to calculate

the right-hand side of the equation above as fol-
lows. We perform separate HFB calculations of
the binding energies of the three adjacent nuclei.
Concerning the odd nuclei we use the blocking
version of the HFB theory described in Sec. II.
We point out that we do perform complete HFB
by blocLing the few lowest QP since we do not
know g prio which one corresponds to the ground
state. In that way we determine not only the
ground state but also the first low lying excited
states of the odd nuclei.

In Fig. 3 we have reported the HFB odd-even
mass differences along with the experimental
values and we also give in Table V for each
isotope the spin of its ground state as predicted
by the HFB calculations. First we notice that
the HFB ca,lculations reproduce the oscillating
trends which are observed experimentally as a
function of the neutron number. Concerning the
magnitude of our predictions, they are all shifted
above the experimental value by amount of the
order of 300 keV. Somehow such deviation is
desirable since one expects that the residual
interaction between the three QP states (or the
QP vibration coupling) would lower the ground
state energy of the odd nuclei which goes in the
right sense. Referring to the work of Kuo et al."
on the odd tin isotopes, we learn that such cor-
rection may be of some hundred keV representing
the order of magnitude we need precisely to
improve the comparison with the experimental
data. Of course this argument is purely quali-
tative and one sh'ould evaluate this correction with
the QP vibration coupling expressed with our
effective interaction in order to draw a definite
conclusion. This discussion reveals the inherent
difficulty met while adopting the concept of a
phenomenological effective interaction. That is,

MeV

~ ~ + ~ ~ ~
~ e+s ~

x

x eXp
~ Dl
+

I I I 1 I I

113 115 117 119 121 123 Sfi

FIG. 3. The odd-even mass differences for the tin
isotopes calculated with the two effective interactions
D1 and Dl'.
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having no precise idea concernjng relative im-
portance of the higher-order corrections, we
never know the accuracy one should require at a
given level of approximation.

Turning back to Table V we notice another en-
couraging feature of these calculations which ex-
cept for "'Sn predict the right spin for the ground
state of all the tin isotopes investigated here.
With respect to the "'Sn, our calculation predicts
a '2' instead a ~ level, but experimentally these
levels are separated by only 8 keV and in our
calculations by 150 keV. The reasons we have to
be satisfied with such predictions are better un-
derstood by looking at Fig. 4 where we have re-
ported the experimental situation concerning the
first low lying states of the odd tin nuclei. The
first two or three states are in general all con-
tained in an energy range of a few hundred keV;
consequently, it is remarkable that the use of a
microscopic approach permits. to extract among
them the right spin for the ground states. At this
stage it is worthwhile to recall that we use ex-
clusively the effective interaction D1 derived
as explained in Sec. III. In particular, nothing
has been done to adjust the HF average field in
that region and also the pairing properties of the
interaction associated with the singlet-even com-
ponent of D1 was only adjusted to reproduce at
best the odd-even mass differences discussed
above.

Although the one QP picture has been found

insufficient even for the low lying states, we
have thought of some interest to report the low-
est excited states calculated with the blocking
version of the HFB theory. We give two sets of
results, one set corresponds to the interaction
D1 and the other, named D1' in the following, is
calculated by increasing by about 10% the inten-
sity of the two-body spin orbit of D1. The
(P,&, -P»,}neutrons splitting in "0is 5. I MeV
with Dl (W~~ = 115) and 6.3 MeV with the new
intensity (Wz, ~ =130) to be compared with an ex-
perimental value of the order of 6.1 MeV. I et us
also mention that initially we did not take into
account the two-body contribution of the center
of mass to the HF field. Without this contribution
one gets (p, &, -p», ) = 6 MeV with Was=115. We
recognized later that this contribution might re-
duce significantly the spin orbit splitting in the
light nuclei and consequently a S'» of the order
of 130 MeV has appeared to be a more appropri-
ate value. However, as we did not want to repeat
the lengthy computations performed before, we
decided to present all the results with D1
(Wz, ~ =115) and to give also the more recent re-
sults with D1' (W» = 130), including the two-
body contribution of the center of mass. Except
for the spin orbit splitting there is not a sig-
nificant difference between D1 and D1'.

Turning back to Fig. 4, the HFB spectrum
reproduces the essential features of the experi-
ment in particular with W» ——130. This result
is rather encouraging especially when one re-
members that the first attempts" to reproduce
the spectrum of these isotopes did not do much
better despite the seven free parameters used in
these works. The same type of discussion applies
.to Fig. 5 where we give the spectroscopic factors

.8
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FIG. 4. The first low lying excited states of the odd
tin isotopes [Nuclear Data Sheets (Academic, New York,
1973)]'compared to the one QP spectrum resulting from
the blocking version of the HFB theory (see the text).
(s,g, d, d, h) stands, respectively, for
(s /2 g?/2 d3/2 ds/2 h i/2)

FlG. 5. The HFB spectroscopic factors calculated with
the D1 and Dl' interactions and compared with the ex-
perimental values extracted from the (d, t) and (d,p) re-
actions IE. J. Schneid et al. , Phys. Bev. 156, 1316
(1967)l
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FIG. 7. The influence of pairing correlations on the
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V. THE DESCRIPTION OF THE BULK PROPERTIES
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FIG. 6. The first low lying excited states of various
odd nuclei compared to the one QP HFB spectrum calcu-
lated with Dl' (exp. , see Fig. 4).

The previous section was mainly devoted to the
description of the physical quantities related to
the fine details as compared to the global proper-
ties whose description depends essential. ly on

the characteristics of the average HF field. 1n

order to show the large domain of validity of our
self-consistent approach we now present the re-
sults concerning the gross properties of nuclei
in their ground states. The sample of nuclei in-
vestigated cover different regions of the periodic
table where the assumption of spherical sym-
metry looks reasonable.

calculated with our QP amplitudes.
Furthermore, ip order to show that the nice

feature we obtain on the tin. isotopes is not for-
tuitous, we refer to Fig. 6 which contains the
results of similar studies on "Nb, ihe odd iso-
topes (N = 82) "'l.a and '~Pr, and the lead iso-
topes. We see that according to our discussion
below, the level sequence of QP spectrum is
well reproduced when the first collective state
stands at high excitation. This is the case for
"'La and '"Pr. For lead isotopes the first col-
lective state (8 ) lies at 2.61 MeV in '"Pb. It is
lowered at 0.8 MeV (2') in '"Pb. The same is
true for 4',Nb near the 430Zr where the first ex-
cited state (2') lies at 0.92 MeV while the first
one (0') in', OoZr lies at I.'/5 MeV.

Finally, in Fig. 7, we report the calculations
of the charge densities for two nuclei ' Zr and
' OCe. The '~ Ce is of particular interest to us,
since it shows the crucial effect of the pairing
correlations on the charge density distribution.
Besides, this effect is still discernible even
in the case of a closed shell nucleus such as
"Zr.

MeV 208'

3630

3640

0'

30 12

FIG. 8. The convergence rate of the HFB calculations
as a function of the dimension of the HO basis.
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FIG. 9. Top: The total binding energy differences between the HFB results and the experimental values fA. H.
Wapstra and K. Bos, Nuclear Data Tables 19, 3 (1977)]. (For a more detailed explanation see the Sec. VA. ) Bottom:
The differences between the HFB charge radii and the experimental values fF. Boehm, Nuclear Data Tables 14, 5-6
(1974); J.B. Ficenec et c/. , Phys. Lett. 42B, 213 (1972)]. There is no significant difference between results obtained
by D1 and Dl'.

A. Total binding energies

All. calculations reported here are carried out
in a large basis including thirteen major shell. s
(NO= 12), and the total energy was minimized
with respect to the oscillator l.ength parameter
5 =(h/m&u)' '. In order to check the influence of
the basis truncation on the results, we studied
their variation as function of the dimension (No)
in different regions of the nuclear chart. The rate
of convergence on the total. binding energy is
shown in Fig. 8 in the case of ~ 'Pb. In view of
the regularity of the convergence, the extrapola-
tion of the curve beyond N, =14 seems a reason-
abl.e way to get an estimation of the difference.

E(N, =~) —E(NO=12). This difference, which is
negligible for the nuclei below "0, varies almost
linearly as function of the mass number to reach
2.5 MeV in the case of lead (Fig. 8). The cal-
culated binding energies used in the discussion
which follows are corrected for this truncation
effect. It is worthwhile reminding that the two-
body part of the center of mass motion is ac-
counted for and the exchange part of the Coulomb
field is treated exactly. The difference &B be-
tween the experimental. total binding energies and
the results of the DDHFB calculations are shown
in Fig. 9 for the spherical. nuclei close to the
stability line. The slight differences in the vari-
ations of &B versus mass number for the two

TABLE VI. The 1s neutron and proton HF energy levels in some spherical nuclei. The
two forces D1 and D1' give essentially the same results. The results with the SIII interaction
are from Ref. 33.

16p 40Ca 48Ca 56Ni Zr 208pb

SIII

Dg

exp a, b

p
n

p
p

-35.0
-31.3
-38.3
-35.0
-40+ 8

-44.6
-37.0
-52.1
-44.8
-50 + 11

-44.8
-43.0
-53.4
-51.5
-55+9

-49.6
-39.6
-58.3
-48.5

-49.5
-40.9
-60.4
-51.4
-54+ 8

-50.2
-41.2
-62.4
-52.8

A. N. James, P. T. Andrews, P. Kirkby, and B.Q. Lowe, Nucl. Phys. A138, 145 (1969).
J.Mougey et a/. , Nucl. Phys. A262, 461 (1976).
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interactions come essentially from the difference
in the spin. orbit term. From the comparison
with the experimental. re'suits, we conclude that
the predictions of these DDHFB calculations are
reasonable, the disagreement near closed shell
nuclei being of the order of 5 MeV. The presence
of oscillations in the curve reflects the fact that
we have investigated also nucl. ei in the middle
of the shells. For such nuclei the DDHPB treat-
ment is certainly insufficient despite the fact that
the pairing correlations are taken into account.
For instance, if one considers the Ni or Ge iso-
topes these nuclei are very soft against quadrupole
deformation, meaning that extra correlations
should be taken into account in their description.

It is also interesting to analyze another sel.f-
consistent study which aims to reproduce the
experimental binding energies with different
Skyrme forces. There the pairing correlations
are treated phenomenologically with the BCS
procedure using the pairing matrix elements
of interactions which are not of the Skyrme
type, the latter being inadequate for that purpose.
The general trend of this calculation and ours is
rather similar since both of them predict &B
oscillating in a range of 10 MeV. The compari-
son is made between D1' and the force SIII which
is con.sidered as the best Skyrme force in that
domain. It must be pointed out that the HF field
provided by our forces is much more nonlocal
than by SIII, as can be seen from Table VI where
the theoretical energies of the s,/, neutron and
proton levels are listed along with the empirical
estimates for the proton levels. In fact, by ad-
justing the parameters of the density dependence
of the force, we have attempted to keep the deep-
est levels depressed as estimated experimentally
and at the same time to get a sufficiently com-
pressed spectrum at the Fermi surface. For
fixed power of the density (n= —5') this require-
ment led to the upper limit of to =1350 fm'. In
this context it is interesting to discuss the com-
pressibility in nuclear matter since it it closely
related to the nonlocality of the HF field. As a
matter of fact, the compressibility increases
with decreasing nonlocality as one observes in
Ref. 33. On the other hand, the situation con-
cerning the incompressibility has been greatly
clarified with the identification of the breathing
mode in some spherical. nuclei. 4'" A cal.ibration
of the giant monopole resonances in the frame-
work of the RPA indicates that the incompres-
sibility required in nuclear matter in order to
reproduce the position of these resonances should
be about E =220 MeV. This value is very close
to the compressibility .of the 228 MeV obtained
with our forces.

MeV MeV

3d 3/2
2g72
451/2II

0 j 15/2.
3d5/2;

ill/2
2g 9/2

exp. HFB

3p3/2
2f 5/2.

i13/2

2f 7/2.

h 9/2

exp.

0

3pl/2

2f 5/2,
10 3p3/2

i 13/2
2f 7/2
h9/2

neutron

3s1/2,
h11/2

2d 3/2
2d 5/2

g 7/2

208

proton

10

FIG. 10. The HF single particle spectrum with D1'
compared to the corresponding experimental values.
[A. Bohr and B. Mottelson, Nuclear Structure (Benjamin,¹Y., 1969), Vol. I.j

In Fig. 10 we show the cal.culated HP level
density in the case of ' 'Pb compared to the
empirical one. Except for an inversion of the
h»/, and 2d, /, protons l.evels the ordering of the
levels is correct. On the other hand, this com-
parison reveals that the HF spectrum is much
too dilated. However, one should bear in mind
that such comparison can be only qualitative since
some stray assumptions are required in order
to find a simple relation between the HF spectrum
and the empirical single particle energies. In
particular, in our case the orbital rearrangement
is nonnegligible due to explicit density dependence
of the force. For instance, we calculated the
difference &= . B —2 B+ B which shouM be
equal to &»/, —&„/, in '"Pb if this rearrange-
ment were negligible. In reality we find they
differ by 1.3 MeV. Furthermore, Hamamoto '
has estimated the dynamical effects associated
to the coupl. ing of the valence particle with the
core vibration. According to her results it seems
important to include these effects before making
a qualitative comparison even for the levels close
to the Fermi surface.

B. Matter distribution and radii

The consistency of the results obtained with
the HFB theory and the saturation properties of
the effective forces proposed here will be em-
phasized in the following discussion of the relevant
quantities such as neutron and proton radii and
charge densities.

Figure 9 exhibits the difference between the
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FIG. 11. The isotope shifts for the even-even tin iso-
topes as a function of atomic number [0-J.B. Ficenec
p p p$. , Phys. Lett. 42B, 213 (1972) J-J.D. Silver and
D. N. Stacey, Proc. R. Soc. London A332, 139 (1973)].

empirical and the theoretical charge radii for a
series of spherical nuclei. The proton distribu-
tion was folded with the simple form factor:

f(&) [(&2 ~2)&]-s/2&-r /(a -s )

B =if//m&u/1, a =0.65 fm,

in order to correct for the center of mass motion
as wel. l as to take into account the finite size of
the proton. This form factor is valid for all the
nuclei investigated here since the condition B&a
is always satisfied for A. ~ 16. The theory pre-
dicts the charge radii with an excellent accuracy,
the discrepancy with the empirical data never
exceeding 1%. On the other hand, one must ad-
mit that this theory is not able to reproduce ac-
curately some fine effects such as those observed
in the isotope shifts. Like the other DDHF cal-
culations, ours show a significant discrepancy
for the isotope shift between the Ca and "Ca
(y~ y~'=0. 035 as compared to -0.01 experi-
mental. ly}. However, by considering the neutron
form factor and the electromagnetic spin orbit
effects, Bertozzi et al.37 have shown that the
proton rms of the ~'Ca actually increases by
0.012 which resolves partly the discrepancy
with our prediction. The rest could be probably
explained by the presence of ground state corre-
lations as explained in Ref. 33. For completeness
we give in the Fig. 11 the isotope shifts for the
tin. The corrections just discussed are not in-
cluded except that we show the influence of the
quadrupole oscillations which we have estimated
with a crude model. " Clearly a quantitative de-
scription of the isotope shifts would require more
refinement.

The recent elastic scattering experiments with
high energy protons combined with the electron
scattering experiments are generally considered
as the most reliable source of information on the

TABLE VII. The theoretical root mean square radii of the proton and neutron distribution
and their difference Q &. Most of the empirical values are taken from the article on proton
scattering at 1 GeV by Chaumeaux, Layly, and Schaeffer (Ref. 39): (a) the authors, (b) Al-
khazov, (c) Bay, (d) Negele, and (e) the most recent results by Chaumeaux and Schaeffer.

(~ 2)1/2 (& 2)1/2 Exp

iso
4oCa

"Ca
44Ca

"Ca
"Ca

902 r-

ii6S
124S

208pb

2.65
3.38
3.38
3.39
3.40
3.42
3.68

4.18

4.52
4.58

5.40

2.63
3.34
3.39
3.45
3.50
3.56
3.67

4.24

4.60
4.72

5.53

-0.02
-0.04

0.01
0.06
0.10
0.14

-0.01

0.06

0.08
0.14

0.13

-0.07
-0.04

0.03'
0 02

0.09
-0.02

0;05e

0 13
0.22

{O.D1

0.02'

-0.02
0.03
0.06

0.15
-0.04

(0.10

0.18'

0.01'
0.08
0.10

0.19'
-0.04

0.09'

a, , c.prom Q,ef, 39
J. W. Negele, Proceedings of the Conference on Modern trends in elastic electron scat-

tering (IKO, Amsterdam, 1978), p. 73.
'A. Chaumeaux, H. Schaeffer (private communication).
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FIG. 12. The percental deviations between the calculated and the observed cross sections as a function of the mo-
mentum transfer.

neutron radii. " However, it must be emphasized
that the analysis of the data is delicate since it
involves the strong interaction and is model. de-
pendent. This remark is well illustrated by the
compilation of the empirical data given in the
Table VII. Looking at this compilation it becomes
evident that the bulk of our HFB neutron radii
falls within the experimentally established values.

The DDHFB charges densities are now compared
with the ones extracted from the experiment. %e
chose here to restrict the discussion to the cases
of '"Pb and "Ni, because there exists at present
a great deal of accurate data for those. In par-
ticular, the high momentum transfer experiments
performed at Saclay". "provided data which com-
bined with those of Stanford and Mainz allow the
determination of the proton spatial distribution
very far in the interior of the nuclei. Except for
a small uncertainty in the region of the central
density due to the high momenta not included in
the analysis, the charge density extracted from
experiment can be considered as model. inde-
pendent. A very detailed discussion on this point
can be found in Ref. 42.

First we comment on the results concerning
the ' Pb. Figure 12 displays the percental de-
viations between the calculated and the observed
cross sections as function of the momentum
transfer. The good agreement up to q =2.1 fm '
is an indication that the surface of the DDHFB
density should be correct but the origin of the
discrepancy at higher momenta is difficult to
interpret in such a direct comparison. Thus from
now on, we shall. compare with the experimental

densities since the very high q experiment offers
this possibility. The experimental and the theo-
retical curves are drawn in Fig. 13 and the cor-
responding moments (r")' are given in Table
VHI. The latter give an idea of the satisfactory
behavior of the theoretical density at the surface.

P(r)
(e.frn 3)

.09
208'Pb

.08

.07

.06

.05

.04

.03

, 02

.01

I I

0 1 2 3 5 6 7 8 9

FIG. 13. The proton distribution p& as well as the
charge density distribution p~ are plotted together with
the density extracted from electron scattering experi-
ment. In the lower part of the figure the contribution to
the central density originating from the three 8 HF
states is also displayed.
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(~k)1/k k=2

TABLE VHI. The values of different moments (r )t/k

of the charge density for Pb. The second row includes
the neutron form factor. The last row corresponds to
the moments of the "experimental density. "

we conclude that the experimental density of the
"Ni provides precious information for the
spherical DDHFB calculation itself. For instance,
the spherical HF calculation with the Skyrme
force SIII predicts a central density which is
certainly much too low (cf. Fig. 14).

p charge
p neut. corr.

exp

5.45
5.43
5.50

5.79
5.77
5.85

6.06
6.03
6.13 C. Analysis of the magnetic electron scattering

On the other hand, contrary to the experimental
findings, the theory predicts l.arge oscill. ations
in the interior and a bump in the center of the
nucleus. As seen on the same figure, the bump
is due to the 3S~ proton level whose contribution
is at least 50'%%ua of the central density. A 15%%uo re-
duction of the occupation of this level would be
necessary to wash out the bump-. Despite the fact
that the long range correlations represent a
second order effect, one might hope to achieve
such a reduction at I.east partly by including them
in the description of ground state. The effect
of those correlations was estimated to be weak
in the case of the lead~ but according to the
authors themselves their calculation was rather
qualitative. The calculation of such corrections
with our RPA results44 are in progress.

Concerning the "¹i,the interior charge den-
sity corresponding to the DDHFB solution (see
Fig. 14) shows somewhat more structure than
observed, but one should emphasize that the
percental deviation is small, never more than
about 2 or 3'%%uo even in the interior. Furthermore,
the moments (rk) k listed in Ref. 45 demonstrate
a good agreement at the surface. However, the"¹imerits special attention since it has been
shown4'~ very soft against quadrupole deforma-
tion and consequently it is not adequately de-
scribed with the static DDHFB approach. Else-
where ' we have included in the description the
dynamical effects associated to the oscillation
of I.arge amplitude. There a superposition of
states of varying deformation is considered which
has the desired effect of reducing the shell struc-
ture without changing the height of the central
density. The fact that thi's correction is found
rather weak can be understood by comparing
the spherical density to those calculated at two
very prolate and oblate deformations. For com-
parison we refer the reader to Ref. 46. Thus

We present preliminary results on the mag-
netic form factors calculated within the frame-
work of the DDHFB theory. This is motivated by
the extensive data on high magnetic multipole
elastic electron scattering ' ' for the series
of nucl. ei 4'Ti, "V, "Co, 'Sr, "gb currently at
our disposal.

First we explain briefly the way to derive the
expression of the magnetic form factor with the
one QP HFB state. We start with the expression

lF(q)l'

=4m g g (n L j ll T llnkLkja)S„„(iAmk)jk,
A mk, n~np

where the reduced matrix elements are those
defined by Donelly and Walecka' and the quan-
tity S„"„(i&m„)is the contracted tensor defined
as

i Oim+mg nol+j@m ng ll jzm~0fm& / ~

The state qt„l 0) is the blocked HFB state which
represents the ground state of the nucleus as ex-
plained in Sec. IID. Owing to the properties of the
reduced matrix elements only the odd multipoles X

are to be considered so that the core does not con-
tribute to &(q). Then we can rewrite S in the form

S„„,(i~m„) =
~m~ mg mg m

x[u„' (L/)u„' (L/)'+g„' (L/)g„' (L,)].

Inserting this expression in the definition of &(q)
and summing over m~ we get the result

2
+ (q)= g Z (n, LjllT llnkLj)[u. (Lj)u„' (Lj)+~„' (Lj)v„' (Lj)]

none
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rectly on the Fourier transform of the distribu-
tion of the valence particle. In fact, for non-
vanishing pairing one checks the Fourier trans-
form of the quantity

g(r) = Q [u'„(tj)u'„, (tj)+v „' (tj)v „',(tj)]
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FIG. 14. The HFB charge densities of Ni calculated
with the forces D1 and Skyrme III. The curve with
hatched part is the density extracted from the experi-
ment (Ref. 40).

In this model. the magnetic properties are de-
termined by the blocked QP state. For vanishing
pairing correlation (u =0) we fall back into the
usual result, namely that only the valence particl. e
contributes to the magnetic form factor. Thus
the elastic magnetic el.ectron scattering should
provide a sensitive test of the single particle or
QP orbit assuming that the independent QP —de-
scription is valid. In particular, in the momen-
tum transfer range (1.7-3 fm ') at which these
experiments are performed the highest multipole
~ =2j dominates and the form factor depends di-

rather than that of the distribution of the last QP
which is giveri by an expression of the same form
with the combination (uu -vv).

The calculated form factors accounting for the
nucleon magnetic and the center of mass form
factors are drawn in Fig. 15 and Fig. 16. Further-
more, the contributions of highest moments to
each of the magnetic form factors are given-
separately.

Except for the case of "V, the maximum of the
form factors predicted by the theory is larger
by 10 to 20%. This feature is not too surprising
since corrections to the strict single quasiparticle
picture due to configuration admixtures are ex-
pected to be non-negligible. In connection with
the possible configuration mixings in the ground
state, the spectroscopic factors obtained when
trying to fit the experimental form factors with
Woods-Saxon wave functions are reported in Table.
IX. In principle, a spectroscopic factor close to
one would tend to confirm the validity of our
approximation, and we observe in reality that
these empirical values represent approximately
the reduction factors we need to normalize the
DDHFB predictions on the experimental data.

10

~ ~

2.0 2.5 3.0 2.0 2.5

q eff ( fm-~ )

3.0 2.0 2.5 3.0

FIQ. 15. The experimental results and the theoretical predictions for the magnetic form factors. The contributions
of the highest magnetic moments M5 and M7 to the magnetic form factors are given separately.
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FIG. 16. The same as in Fig. 15.

A more interesting feature in this comparison
concerns the behavior of the calculated form
factors at the high q region. They systematically
decrease more rapidly than indicated by the ex-
periments and as consequence the rms radii of
the valence nucleon radial distribution predicted
by the theory are generally 2-3@greater than
those extracted from the experiments (Tabie IX).
The 8% discrepancy for the "Co will be com-
mented later on.

In attempting to explain such descrepancy one
can invoke different sources of corrections
which are the following. One concerns the effect
of configuration mixings on the form factors at
high q. If one refers to the calculations of
Suzuki et al."and Arima" one should expect that
the core polarization ean provide a reduction of

the form factors independently of the momentum
transfer, i.e., without modifying their curvature.
On the other side, the wave function renormaliza-
tion via the particle vibration coupling might
affect the high q behavior. It must be also pointed
out that a perturbative estimation of the config-
uration mixings may be questionable for some
of the nuclei in question. For instance, the "Co
is a very soft nucleus as shown in Fig. 17, which
suggests the presence of very deformed compo-
nents in the actual ground state. Although the
situation is not so crucial. in the cases of "V
and 'Ti,"only the Nb and Sr can be considered
as rigid nuclei with respect to the deformation.

Finally, another source of correction comes
from the mesonic degrees of freedom. Different
calculations"'"' indicate a non-negligible con-

TABLE 1X. The spectroscopic factors esF introduced in the fit of the magnetic cross 'sec-
tion [see Hef. 48] and the empirical and theoretical rms radii of the valence particle density
distributions.

87sr 93~ 5iy o 49Ti

+SF
rmse~
rmsHFB

0.85
4.74 + 0.04
4.90

0.93
4.89 + 0.04
4.86

1.04
4.01 + 0.06
4.11

0.59
4.00 + 0.10
4.20

0.86
4.01 + 0.03
4.07
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FIG. 17. Potential energy curve as a function of the
deformation parameter P.

tribution from the exchange currents contributing
favorably to remove the discrepancies between
the DDHFB predictions and the experiments.

VI. CONCLUSION

We have thus proposed a phenomenological ef-
fective force of finite range whose parametriza-
tion is simple enough to render feasible many
applications in the framework of the self-con-
sistent approaches. It presents the following
advantages.

The fulI. nonlocality of the equations which re-
sult from the well established finite range of
the effective force can be treated systematically
without having recourse to any approximations,
in contrast to some other approaches which over-
come the difficulty by using either a very simpli-
fied force or by expanding the density matrix
over the range of its nonIocality. This question
is important since we are interested not only in
describing the gross properties of nuclei but also
the details depending on the shell model fluctua-
tions.

This interaction seems to possess the essential
characteristics necessary for the extensive appli-
cations of the self-consistent approaches. For
instance, we have seen that the presence of the
finite range is indispensable for deriving the
most direct extension to the mean field approx-
imation, namely the DDHFB approach. The same
remarks hold true when extending the theory to
the treatment of the collective excitations in the
framework of the RPA, or more generally of
the RPA theory developed on the quasiparticle

basis. There the quasiparticle quasihole vertex
function derived by expliciting the variation of
the HF and the Bogolyubov fields with respect
to the generalized density matrix is realistic
only if it contains an effective force of nonzero
range. Finally, it is likely that such effective
force should be suitable for the applications
using the time dependent Hartree-Fock theory.

Now, concerning the whole set of the results
presented here we draw the following conclu-
sions. First the DDHFB calculations of the finite
nuclei demonstrate the possibility of describing
(at the same time) the gross properties depending
on the average field as well as the fine effects
of the pairing correlations via the Bogolyubov.
field with the same force. This was achieved
by fitting the force to some key experimental.
data with extreme care. We paid particular at-
tention to the singlet-even component of our
force. In fact, the pairing properties depend es-
sentially on this component. This result is im-
portant since there were no g priori reasons
that a force reproducing the bul. k properties
should be compatible with the pairing matrix
elements.

On the other hand, the trend of the DDHFB
calculations concerning the bulk properties and
the pairing effect is in general very satisfactory.
When significant discrepancy occurs one cannot
blame systematically the DDHFB theory itself.
There are two essential remarks to back this
statement. In the calcu1ations presented here
we have considered very soft nuclei such as Ni
and Ge and consequently we feel the necessity
of going beyond the DDHFB in order to improve
the description of these nuclei. Besides, even
when the DDHFB can be considered as a good zero
order approximation, there are nuclear proper-
ties (such as isotope shifts, central charge den-
sities, etc. ) whose accurate description depends
on the details of the wave function which cannot
be taken into account with an independent particle
or an independent QP wave function. For instance,
we shall show elsewhere that the second order
corrections associated to the long range correla-
tions (RPA) modify appreciably the interior of the
charge densities.
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APPENDIX A

The finite range component of our effective
force has the form

V(r) = Q (W+BP, BP-, MP-, P,))W)(r),

where

W, (r)=e"
Following Talmi and de Shalit, we use the multi-
polar decomposition of the functions W~(r)

W, (r) = p W,'(r, y, )F,(1)F,(2)

to express the potential in the form

(y) Q VT (y y )( )lh +s +0 IfIAs) PIcllh8)P
(A 1 )

ksj

The tensor EI,f~~ is the tensoriai product of a
spherical harmonic with a tensor of the spin
coordinates

Icfks)P [y k(1) x gs(1)]P QO 1 gl g

and the functions V~,(r,r, ) are given by

V„' (r,r, ) = g [W+B/2- (H+M/2)P, ]'W~(r, rm),
&=1)2

V„,(r,y, )= Z [(B-MP,)/2]'W', (r,r,).
&=X,2

When using the decomposition (A1) of the poten-
tial one finds that the radial dependence of the
HF and the pairing fields are determined by the
two functions

V4~"(r,r, ) = g [(W+B/2)6„. —(B+M/2)]'WI', (y,r, ),
l~j, )2

V»; (r,r, ) = g [B5„.-M)/2]'W~(r, r,).
&=los

APPENDIX 8

We examine the reduction of the geometry in
the HF and the pairing fields. With the inter-
actions of the form employed here, the geometry
of the HF and pairing fields is rather simple
since it is represented essentially by a squared
6j coefficient

(i. j. ,-'I
l~ kj

We have eliminated this 6j coefficient by using the
relation

I

(l~ l~ kl
( )J Jgk Q ( )Sly2 tll s) (2 ~ s

t t a a

n j 2j
'*'

klg lq kj (l l, y~~ kl~ l~ j

which allows us to get an explicit form since all
6j coefficients occuring in this formula are
easily expressed. In fact, the 6j coefficients

&(i.4)kI &l;~(l.i,)k&.

One gets

j.1 1
2

l l j
&j.ll-lj. &

&hill ll l &&ill sll l&

and

lg j~ k)
are directly related to the matrix elements

&(l k)j~l &s1 (4k) ja&

and

r la 4 k I xl +l +0

1
jQ jQ 2

(k T, -7~)-
l(l+ 1)2eg e p

Hence the result

(l. l, k'I»&j. ir-lj.& &j.l~slj & ~ „-„
2[ l 4]'. l &g

Jl JN 2
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With this expression one exhibits clearly the one-
body spin orbit contribution coming from the
ceritral component of the effective force.

APPENDIX C

We have used the fol.lowing notation to define
the generalized density matrix:

(Rll R12
R=!

R21 R23

where the objects R 'P, q =1, 2 are submatrices.
This notation is convenient to write concisely
the definition of the Bogolyubov Hamiltonian X
or to express the relations that must satisfy
a small variation of R in order to preserve the
Bogolyubov conditions.

Concerning the adjustment of the Lagrange pa-
rameter ~, we recall that

x(~+a, ) =x(~)+ux.

A is an operator whose representation in the
original basis (a, a ) is given by the matrix

(Z 0

0 -Zf

The linearization of the equation

[SC(A.) + 5kÃ, R(A. + 5A.)] = 0

expressed in the QP representation diagonalizing
X(X) and R(A, ) leads immediately to the expression
(variation of R with A. is neglected)

(e + e )(1)RPQ ~P~~a P gq

where the e are the positive eigenvalues of iC[A, ).
The matrix elementsN&& of the operator N in the
QP basis are given by

N; (
——(8'NOBg; = 2(UV);, .

Thus we obtain the expression for 6~' in the
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