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Low-energy kaon-nucleus interaction has been considered in the framework of multiple scattering theory .

as formulated by Watson and by Kerman, McManus, and Thaler. A kaon-nucleus optical potential of the
shape of nuclear density is shown to follow from theory under the assumption that the nuclear excited
states may be neglected and that the range of the underlying microscopic KN interaction is small in

comparison with the nuclear radius. The depth of the effective potential is a nonlinear function of the KN
scattering lengths and depends upon a single parameter related to the unknown range of the KN
interaction. This parameter has been adjusted to the available kaonic atom data. The resulting potential has
been used to e,valuate the kaonic atom level shifts and widths and the calculated quantities are compared
with experiment.

NUCLEAR REACTIONS Optical potential derived and applied to evaluate kaonie
atoms level shifts.

I. INTRODUCTION

In recent years a variety of effective kaon-nu-
cleus potentials have been proposed with the ob-
jective to be able to evaluate kaonic atom level
shifts and widths via the appropriate two-body
wave equation (a current review of the subject may
be found in Ref. 1). The philosophy that underlies
these schemes attempts at expressing the poten-
tials in terms of the experimentally available low-
energy ZN scattering parameters. Thus, having
derived such a potential one might correlate the
observed level shifts and widths in kaonic atoms
with the KN scattering data. Furthermore, since
the potential necessarily has a nuclear structure
factor built in, there was a hope at one time2 that
the kaonic atom data could bear directly on the
neutron and proton distributions in nuclei. Un-

fortunately, the realization of the above program
has proven to be quite difficult, which after all
should not be too surprising in view of the fact
that the kaonic atom presents a very complicated
many-, body problem of nuclear physics. As a
matter of fact, it has been shown that the task of
calculating the level shifts and widths is equivalent
to solving the K -nucleus scattering problem, or,
more precisely, the complex level shift may be
tied up by a linear relation with the corresponding
K -nucleus scattering length (also complex).

The success of the optical potential approach in
explaining the strong interaction effects in pionie
atoms4 has prompted investigations of the kaonic
atoms using the same scheme in which the optical
potential V is assumed to be a sum of all elemen-
tary two-body scattering amplitudes

V=(0~ g t. ~o),

where ~0) denotes nuclear ground state and t
are the free EN scattering operators. With zero-
range, s-wave KN interaction, the potential (1)
simplifies further and can be written in the form5

2p, 'V(r) =-4nA(1+mr/m„)ap(r),

where p is the K -nucleus reduced mass, m~ and
m„are the kaon and nucleon masses, A. is the mass
number, p(r) is the nuclear density normalized
to one and a is the KN scattering amplitude aver-
aged over the nuclear constituents. Taking for
a the average value of K P and K n scattering
lengths, the potential (2) underestimates the widths
of kaonic atom levels by a factor of 2 to 3 and
yields a poor approximation. On the other hand,
if a is regarded as an adjustable parameter, the
potential (2) quite satisfactorily accounts for the
kaonic atom data. It turns out that the real part of
the fitted value of & is positive, whereas the simple
model based on Eq. (1) predicts negative sign.

The attempts to explain this discrepancy ean be
divided into two categories. The first one groups
papers where the starting point (1) is different
and instead of summing the amplitudes t, the
optical potential is assumed to be the expectation
value of g v, where v is the KN interaction
(cf. Ref. 7, 8 and references therein). Clearly,
for weak forces, for which Born approximation is
valid, one may set v ~t and it does not really
matters whether we sum v or t in (1). Since the
EN forces are not weak, a potential of the form
(0

~
P v ~0) may be expected to be quite different
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from (1). Model calculations~ 8 have shown that
such a potential does have the right sign and the
failure of (1) has been attributed to the breakdown
of the Born approximation. In papers which belong
to the second category" a completely different at-
titude has been adopted. The auth'ors" claim that
formula (1) is correct, provided the f are proper-
ly continued below threshold, taking into account
the many-body kinematics, binding effects, etc.
Since the I= 0 ZN scattering amplitude has a res-
onance 27 MeV below threshold, the t are rapidly
varying functions of energy and the values of a
might therefore vary a good deal, depending at
which energy value the t are evaluated. In princi-
ple this then provides a chance to restore the
proper sign of Re(a), but with finite range forces
the resultigg potential is nonlocal and it is diffi-
cult to compare it with the simple expression (2).
It should perhaps also be mentioned that some auth-
ors start withformula (1) stating that t are tobe un-
derstood as "effective interaction" operators, rath-
er than free scattering operators, and immediately
introduce various approximations. However, in ab-
sence of a precise definition of t it. is'not always clear
what are the basic assumptions of such models.

Taking as the starting point the multiple scatter-
ing theory developed by Watson, the optical poten-
tial V is given as an expansion in powers of the
scattering operators describing scattering from
the different nucleons imbedded in the nuclear
medium. The lowest order term of this multiple
scattering series represents scattering from un-
correlated single nucleons. Higher order terms
describe scattering processes from at least two
bound nucleons and depend on nucleon-nucleon
correlations in the target. This formulation is
exact and tmo approximations are required to re-
duce V to the form (1): (i) single scattering ap-
proximation which truncates the Watson series
retaining only the first term, and (ii) impulse ap-
proximation (abbreviated hereafter as IA) where
the scattering operator in medium is approximated
by free scattering operator. On the other hand,
the only approximation that is needed to reduce the
exact V to the form (0 ~P v

~
0) is the coherent nu-

cleus approximation (CNA hereafter) which neg-
lects the excited states. With this approximation
only the first term survives in the Watson series
and the scattering operator in medium is exactly
equal toe .

In the present paper we develop a model based
on CNA and we mill show that the optical potential
of the same form as (2) can be derived from a
scheme which neglects nuclear excitations.
Furthermore, me explain also the origin of the
complex depth N and show that N' is a nonlinear
function of ZN scattering lengths. We demonstrate

that the expansion of N in powers of free scatter-
ing length yields the wrong sign of Re(d) and is a
poor approximation.

The organization of the paper is as follows. In
Sec. II we briefly review Watson's theory of the
optical potential specifying carefully the coherent
nucleus approximation. In Sec. III me consider a
class of local, spherically symmetric, short
ranged potentials which are assumed to repre-
sent the EN interaction and employ them to con-
struct the kaon-nucleus optical potential. To a
good approximation, the shape of this potential
follows the shape of the nuclear density and the
complex depth a is a nonlinear function of the KN
scattering lengths. Finally, in Sec. IV the result-
ing potential is used to calculate the kaonic atom
level shifts and widths.

II. THEORY

In the standard treatment the optical potential is
derived from multiple scattering theory developed
by Watson" and collaborators, or from the com-
pletely equivalent formulation presented by Ker-
man, McManus, and Thaler. '2 These two approach-
es are identical in content and the resulting opti-
cal potentials may be readily transformed one
into another. 3

The optical potential V in the Watson scheme
can be written in a form of an infinite series

V=(O~Q ~.+gZ ~.GQ~, +" ~O&,

where n, P=1, 2, . . . , A; Q is the excited state pro-
jection operator and G is the many-body Green's
function

C(Z) =(Z K e„+f&) '-, -
where E is parametric energy, E is the kinetic
energy operator of the projectile, and B„ is the
Hamiltonian of the isolated nuclear target. Usua1-
ly, the 7' in (3) are interpreted as the effec-
tive scattering operators in medium and they are
related to the free space two-body scattering oper-
ators t, in the following way

7.(E)=f.(~)(I+[G(&)Q-g.(~)j7.(&)) (5)

In (5) g (&o) is a two-body Green's function

g (u) = (&o —K- K + ie ) ',
where m is parametric energy and E is kinetic
energy operator of the nucleon. So far no ap-
proximation has been made and (3) together with
(5) completes the Watson scheme. "

It goes without saying that the above optical
model may render a useful scheme only if the
rate of convergence of the series in (3) is suf-
ficiently rapid. Regrettably, in most cases of
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interest the convergence of (3) has been con-
jectured but not proved. It shouM perhaps also
be mentioned that (3) is not the only form of the
optical potential and some alternative, formally
completely equivalent expressions for. V have been
derived in the literature. ~3 By and large, however,
the convergence problem remains an open question,
no matter what the organization of the series ex-
pression for V is.

Unfortunately, the truncation of the series (3)
alone is not enough to bring V to a tractable form
since the 7 are very complicated many-body oper-
ators. The ultimate goal is therefore to eliminate
the 7 in favor of t for the latter operators on-
shell are related directly to the two-body scatter-
ing amplitude which may be inferred from experi-
ment. Thi.s program is most readily effected at
high energies" where the unitarity condition sup-
presses the scattering amplitude so that the f,

may be indeed regarded as convenient expansion
parameters. At low energies, however, one has
to be careful using prejudices borrowed from
high-energy physics because the two-body scatter-
ing amplitudes may not be small any more and at
threshold in a general case they may even be in-
finite as there is no unitarity bound to suppress
their values. In principle, there is of course no

reason why the optical model should not work at
low energies provided one can come up with a
reliable method of calculating the v operators
from the free two-body scattering amplitudes.

In order to overcome this difficulty the tendency
has been to use IA, which simply identifies the
scattering in medium with free scattering (i.e. ,
is set equal to f ). Formally, IA assumes that Eq.
(5) can be solved by iteration and expanding 7 in
powers of t, only the first term is retained. This
unavoidably creates another convergence problem
and since the kernel of the integral Eq. (5) is a
complicated many-body-operator, it is very dif-
ficult to establish conditions under which an itera-
tive solution leads to meaningful results. Thus, the
proper evaluation of the scatter ing operator in medi-
um remains one of the outstanding problems in all.
theories which represent Vas a sum of scattering
opera. tor s. The relation of the scattering in medium
to free scattering operator involves the many- body
aspect of the problem and is therefore extremely dif-
ficult to accomplish.

On the other hand, IA is not really necessary
and the optical model may be reduced to a tractable
form by making only One approximation which we
called coherent nucleus approximation. This ap-
proximation is 'based on the assumption that in the
processes considered the dominant contribution
comes from the nuclear ground state, i.e. , in the
first approximation the excited nuclear states may

v =f (1-g ~ ). (7)

Now, there is no need to try to solve (7) by itera-
tion (using IA) because the formal solution of (7)
is

=(1+( g ) 'f

and the right hand side is nothing else but the cor-
responding two-body interaction v . The CNA
alone then gives the following expression for the
optical potential

This equation will be of central importance for the
rest of this paper. We would like to emphasize
that for the coherent nucleus the effective scatter-
ing operator in medium is exactly equal to the
underlying microscopic interaction. We wish to
stress here that this has nothing to do with Born
approximation because relation (9) holds true ir-
respective of the strength of the KN interaction,

be disregarded as if the nucleus were in the ground
state at all times. Such procedure has been well
known in atomic and nuclear physics and is some-
times called rigid or static approximation because
one ignores nuclear polarization caused by the
kaon- nucleus interaction.

Several arguments may be advanced in favor of
this approximation. Firstly, due to the large ab-
sorptive part, the KN interaction takes place in a
relatively diluted region of the nuclear medium
where singIe scattering processes dominate. In
these circumstances a single nucleon excitation
is unlikely to be strongly coupled with excited nu-

clear states. Secondly, for kaon energies close to
threshold most of the inelastic channels may be
regarded as sufficiently distant and therefore ef-
fectively decoupled from the ground state. Thirdly,
the presence of inelastic channels would lead to a
correction to the effective interaction which is of
the second order in the off-diagonal potential.
This can be seen directly from (3). The resulting
correction may therefore be expected to be of a
shorter range and should eventually be suppressed
by the centrifugal barrier. Finally, the ground
sta, te dominance ought to be viewed as a natural
f&rst approximation which, when need arises, may
be improved by including excited states.

The coherent nucleus approximation brings ma-
jor simplifications into the multiple scattering
theory. Formally, the suppression of inelastic
channels is achieved by setting Q-0 in which
case only the first term survives in (3). Thus,
CNA is equivalent to the single scattering ap-
proximation. Bui with Q -0 also (5) is simplified
and reduces to the form
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being solely a consequence of the suppression of
the excited states. This point is often confused
in the literature.

III. KAON-NUCLEUS POTENTIAL

We have shown in the preceding section that the
coherent nucleus approximation alone results in
the kaon-nucleus optical potential (8). In the posi-
tion representation V may be written as

I
where r is the kaon coordinate in the nuclear c. m.
system and the x (n =1,2, . . . , A) are the coor-
dinates of the nucleons. In order to bring the po-
tential (10) to a tractable form we now have to
make a number of assumptions with regard to the
microscopic interaction v . Our ultimate goal is
to relate e with the EN scattering parameters.
The experiment has revealed that below 300 MeV/
& the three-body final states are strongly sup-
pressed and the EN data are consistent with the
interaction being purely s wave. Therefore, we
suppose that without too much loss of generality
we ean assume that the v are local, central po-
tentials. Then, the optical potential (10) will also
be local, viz. ,

(r'
~ VI r) = V(r) &(r' —r),

where

V(r) =A f v(r —x)p(x)d'x =A f v(»)p(r —x)d'»

represents the effective kaon-nucleus potential to
be used in a two-body wave equation to yield the
kaonic atom level shifts and widths. Here, p(x)
denotes the nuclear density normalized to one and
v(x) is the EN local potential. For the time being
we have A identical nucleons and a more realistic
case with neutrons and protons will be considered
later on. To keep the number of parameters as
low as possible, we preferred to deal with a one
channel situation and the absorption in the RN
channel due to the presence of inelastic processes
is simulated by making complex the depth of the
potential v(x); For simplicity, we assume that
apart from that, the function v(x) is real. It should
be noted, that if need arises, all these restric-
tions may be lifted at the expense of introducing
some additional parameters to be adjusted to the
data.

The range of the potential v(x) is presumably
quite short as may be suggested by field theoreti-
cal arguments. Indeed, a one-meson. -exchange
mechanism would generate a Yukawa potential

with a range parameter of about 0.25 fm, a value
that corresponds to the average mass of the vector
meson nonet which is the lightest known carrier
of the EN interaction. Consequently, it seems
reasonable to assume that the range of the EN
potential is small in comparison with the nuclear
radius. Thus, in the folding integral (11) the
dominant contribution comes from small x values
where v(x) does not vanish. Owing to a large cen-
trifugal barrier, in a kaonic atom situation the
most important will be the tail of the potential
V(r) and we could afford some inaccuracies in the
small r region. Accordingly, we shall evaluate
the integral (11) by expanding p(~r —x~) in a Taylor
series about a fixed position r, large in compari-
son with the range of the potential v(x). Only even
powers of x give nonvanishing contributions to the
integral and one ends up with the expression

~O

V(r)=A f v(x)dx )+I 4" p(r), (11)2n+1 i

where (x ") is the 2n moment of v(x) and & is I a-
placian operator" acting on p(r). Formula (12)
can be expected to be valid for r values larger
than the range of the potential v(x) which should
be sufficient for our purposes. For short ranged
potentials v(x), the sum containing moments in
(12) may be dropped, and in the first approximation
one obtaines a potential V(r) which follows the
shape of nuclear density. This shape has been
adopted on a somewhat intuitive basis in all
phenomenological modelse a.nd now we have pre-
sented a theoretical justification for it. As seen
from (12), the strength of the potential V(r) is
determined by the volume integral of the micro-
scopic potential v(x), while in a phenomenological
approach the volume integral has been replaced
by a complex constant 0 to be adjusted to the kaon-
ic atom data. Thus, formula (12) also provides
theoretical explanation of the origin of the com-
plex strength by relating it to the KN interaction.
Since the latter is not known, it would be desir-
able to express the volume integral of v(x) by the
RN scattering parameters. For weak forces the
volume integral of a potential is simply propor-
tional to the appropriate scattering length (in Born
approximation) but in a general case the two quan-
tities are related by a more complicated expres-
sion.

In order to get further insight into the problem
we are now going to eliminate the potential v(x)
in favor of the KN scattering parameters. To be
able to do that we have to assume that v(x) is a
"well behaved potential, which means that the
function v(x) does not change sign, is less singu-
lar for x =0 than x 2 and has a sufficiently rapid
falloff so that all the moments (x'") exist. It is
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convenient to take the volume integral multiplied
by the RÃ reduced mass p, x~

v= —2pg~ v x xd&
0

following approximation scheme

a, =V(1 —v/bq) ';

ag —2p, g~ I
px x dx' E=]., 2

20

(15a)

as a measure of the strength of v(x) and use the
intrinsic range b as a measure of the range of
e(x). The reason for this is quite obvious, using
v and b rather than the somewhat more customary
depth and range parameters is more general for
we do not need to specify the shape of v(x) [in par-
ticular v(x) may be a sum of several terms each
of which being characterized by a different set of
depth and range parameters]. It can be shown'7

that the scattering length a, [defined as a,
=lim~ Ok

2™tan5, (k)] is related to the underlying
potential v(x) by the expression

The above is the minimal model but if better ac-
curacy is required, one can always use formula
(14) to bring back further correction factors at the
expense of introducing new constants into the re-
sulting potential V(r).

Inserting (15) into (12), yields a formula

2wV(r)=-4' (1+ -)(1+~ )
x ~ p(r) + a,— L'p(r)ao (2l + 1)i I

q1+ao bq

2p.z„v x x""dx

&&[(2~+1)i!] 'j..( 1 „-/5 (t)
1- /br(r

where q„" and x„"are real constants 8 which de-
pend upon the shape of v(x). The numbers q&"'

(1 = 0, 1, ...) determine the strength 6 of the po-
tential (in units of 5) necessary to support the
lowest bound state in each partial wave E. Simil-
arly, the q„"' with n = 2, 3, . . . determine the
strength 8 necessary to yield all the higher (ex-
cited) levels, and at each q„"' value the appropriate
scattering length a„regarded as a function of v,
has a pole. Between every two poles at q„"' and
q„",

&
the function (14) necessarily has a zero at

v b~(l )

For weak potentials, such that V«bq, where
from now on q stands for q& ', the product expres-
sion in (14) will be very close to 1 so that a, is
given to a good approximation by Born approxima-
tion [first order in v(x)]. For moderately strong
potentials, i.e. , those which are able to support
no more than one bound state (Is st. ate), we have
to account for the corresponding pole term in
(14). It turns out" that a simple one pole formula,
is in most cases sufficiently accurate. Since the
q&" numbers increase quite rapidly with l, the
product expression in (14) for higher partial waves
gives usually only a minor correction. Thus, the
Born approximation is still reasonably good for
higher partial waves (l )0), even if the forces
are so strong that they can lead to binding in
l = 0 state.

In absence of any experimental evidence for
other bound states in the EN system except for
the A(1405), it seems plausible that the KÃ forces
are moderately strong, in the sense just ex-
plained. Accordingly, only the l =0 wave has to be
corrected for a bound state and we are led to the

TABLE I. The values of the intrinsic range b and the
parameter q (defined in the text). Vo and d denote the
depth and range of each of the listed potentials, the var-
iable x is defined as x=—r/d.

Potential V(r) b/d

Square well
Cutoff Coulomb
Exponential
Hulthen
Yukawa
Gauss

-V08 (x- 1)
-V08 (x- 1)/x
—Voexp(-x)
-Vo[exp(x) -1] ~

-Voexp(-x)/x
V,exp(-8)

1.0
0.872 26
3.540 79
3.0
2.120 16
1.435 23

0.822
0.829
0.817
0.801
0.792
0.829

where the KN potential does not occur anymore.
In principle, the scattering lengths a, may be in-
ferred from EN scattering experiments, so that
the only unknown parameter left in (16) is the pro-
duct bq. In Table I, for illustration we give nu-
merical values of q and we relate b with the ap-
propriate range parameters for six frequently
used potential shapes. As seen from Table I the
parameter q seems to be rather weakly dependent
upon the shape of the potential and has-a numerical
value close to O. S. Unfortunately, it does not seem
possible to make a precise estimate of the value
of b. In a model where the EN potential is gen-
erated by the exchange of vector mesons, the
outer part of v(x) will be a Yukawa potential with
the range parameter of about 0.25 fm. From Table
I the value of b then turns out to be about 0.5 fm
but if we allow for a superposition of several Yuka-
wa terms (lifting the degeneracy within the vector
meson nonet), the value of 5 may be changed sig-
nificantly. It seems that the upper limit for b

should not be bigger than 0.5 to 1.0 fm. Since we
really do not know q either, we preferred to leave
the product bq as a free parameter to be adjusted
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to the kaonie atom data.
Unfortunately, the data on the higher partial

wave scattering lengths are rather poor, and it
is difficult to make a precise estimate of the con-
tribution of the derivative terms in (16). The
success of the phenomenological model~ suggests
that they are small. To obtain a rough estimate
of the size of the correction due to the P-wave
term in (16), we multiply (16) by r and integrate
over d r. The asap(r) term in (16) gives rise to
the correction 9(1+a,/bq)a, /(x2)a, where (2)'~' is
rms radius of p(r). Using the scattering lengths
from Ref. 19 this correction can be estimated to
contribute no more than about 10%%uo to the leading
p(r) term. Thus, at least in the first approxima-
tion, the derivative terms can probably be neglec-
ted. Gn the other hand, it should be remembered
that the terms containing derivatives of p(x) are
rapidly varying in the surface region wMch may
enhance their importance. Ultimately, with a bet-
ter quality of the data, the neglected terms may be
reintroduced in due course at the expense of some
extra parameters to be adjusted to the data.

Before writing our final expression for the
kaon-nucleus potential we have to introduce neu-
trons and protons. In order to reduce the number
of parameters, we assume that the distributions
of neutrons and protons are the same being iden-
tical with the nuclear density p(r). Furthermore,
we assume that the appropriate potentials v(x) have
the same shape for both ~-P and E -n interactions
and only their strengths are different. With these
assumptions the potential (16) reduces to the
form 0

2pp(t') = —4@A(1+mE/m„)[(g/A)a (I +a /bq) ~

+(~/'A) ~.(I+s./5q) ']p(~),

where a and &„ denote the ~-P and K -n scatter-
ing lengths, respectively.

Comparing (17) and (2), we can see that the
strength a is a nonlinear function of the zero-ener-
gy free space EN' scattering amplitude. The non-
linearity appears in the form of a characteristic
denominator which is a consequence of the ap-
proximation which accounts for only the first fac-
tor in the product formula (14). For small a~, „
one immediately recovers the IA result a= (Z/A)&
+ (N/A)a but the expansion parameter is really
(a~ „/bq) Since th.e latter quantity can hardly be
expected to be small, the expansion of (17) in
powers of a,„is likely to be divergent, or at best
slowly convergent precluding the correctness of
IA where only the leading term is retained. This
is also borne out by a numerical test which re-
vealed that with IA the widths of the kaonic atom

levels were systematically underestimated by a
factor of 2 to 3.

As mentioned in the Introduction the failure of
IA in predicting the observed kaonic atom level
shifts and widths led some people to speculate'
that this discrepancy might be removed by using
an extended version of IA which would account for
the presence of the A(1405) resonance. As a mat-
ter of fact, the efforts to include the A(1405) are
not necessarily orthogonal to the procedure ap-
plied in this paper. . our K=P and K -n potentials
have Seen adjusted in such a way that they give the
correct values of a and a„but one may wonder
whether the resonance would also show up in our
scheme. It is difficult to answer this question be-
cause the resonance is in the I=0 channel and it is
not clear whether it should be present in the K -P
channel or not. Besides that, we do not really
know the shape of the K -P potential. In this situa-
tion the only reasonable thing one can do is to
continue analytically the effective range expansion
in the E -P channel below threshold, neglecting the
effective range term. The position of the pole in
the t matrix can then be easily evaluated and re-
lated tothe scattering length a~. Writing a~as a~= a
+ iP, we obtain the following expressions for the
position (&„) and the width (I'„) of the resonance:

&a= (I/2&r~)(n'- &)(&'+ &) ',
I"s = (I/2Vrg)(-«&)(o" + i3') '.

As seen from the above expressions, for the
A(1405) to appear in the Jf -P channel, the scat-
tering length a must be such that the following
inequalities should hold

fRea f &/ima /,

(Rea ) ~ (Ima ) & 0.
In this paper (cf. Sec. IV) we used two sets of
values for the scattering lengths deduced from
KN scattering data by different authors. Using
the above inequalities, one set of data predicts
a resonance in the E -P channel, the other does
not, which gives some indication of the importance
of the resonance in explaining the kaonic atom data.

IV. COMPARISON KITH EXPERIMENT

&ate. The bulk of kaonic atom data considered
in this paper comprises of the level shifts and
widths of the lower levels, supplemented in some
cases by the values of the widths of the upper
levels. The measured quantities are envisaged in
Table D together with a reference to the approp-
riate experi. mental paper from which they have
been taken. We believe that Table II presents
rather complete mundane statistics.



1522 A. DELOFF 21

TABLE II. Kaonic atom level shifts and widths. Theoretical values have been calculated from the potential (17) with

bq =1.05 fm and MAR scattering lengths. The nuclear densities were of Fermi shapes except for the two lightest ele-
ments where we used harmonic oscillator density {the corresponding entries in column a are marked by an asterisk).

Element Level a (fm) c (fm)

~ (ev)
Expt. Theor. Expt.

r(eV)
Theo r. Ref.

6Li
'Be

LOB

41B
12C

i2C

Al
28si

3ip
82 S
32S

35gl
35cl
53go
58gi
58gi
58Ni

63Cu

63Cu

64Zn
1OvAg

114cd
208pb

208pb
238U

238U.

2P
2P
2P
2P
2P
3d
3d

3d
4f

4f
3d
4f
4f

. 4f
4f
Gg

4f
Gg

4f

Gg

7i
Bj
7i
8.j

0.333+
0.667*
0.48
0.48
0.44
0.44
0.52
0.59
0.56
0.56
0.59
0.59
0.57
0.57
0.569
0.565
0.565
0.565
0.50
0.50
0.65
0.503
0.585
0.549
0.549
0.605
0.605

1,864
1.739
2.20
2.17
2.39
2.39
3.07
3.01
3.20
3.20
3.20
3.20
3.33
3.33
4.08
4.19
4.19
4.19
4.29
4.29
4.32
5.38
5.27
6.62
6.62
6.81
6.81

-2~ 26
79 ~ 21

208 + 35
167 + 35
590 + 80

130 + 50
240 + 50
330 + 80

550 + 60

770 + 400

80 + 50
180 + 70
260 ~ 90

24Q + 220

-60 + 300
500 + 130
250 + 120

260 + 400

3.15
48.5

188
'199
590
-0.02
69

132
269
-0.15

466
-0.30

808
-0.34
85

139
139
-0.26

211
-0.14

319
211
255

5.9
-0.21
74
-1.67

55
172
810
700

1730
0.98

490
810

1440
1.97

2330
3.25

3800
5.69

980
590

1340
6.0

1650
7.1

1700
2420
3000

370
4 1

1-500
45.5

29
58

100
80

150
0.19

160
120
120

0.33
200

0.41
+ 1000

1.5
150
210
140

2.3
720

3.8
400
510
350
15Q

2.0
750

24

49
243
690
704

1569
0.68

441
881

1389
2.16

2264
4.48

3293
7.93

750
1034
1034

3.38
1160

3.92 .

1834
1279
1979
216

1.92
1256

17.4

24
24
25
25
25
25
26
26
25
25
25
25
25
25
27
26
27
26
26
26
25
27
27
26
26
26
26

InPut. The values of the parameters entering
our optical potential (17) have been specified as
follows, The scattering lengths a and a„have
been taken from Hefs. 19 and 21 and we have
divided these data into two sets. In the first set
(called OLD hereafter) we took an average from
three different analyses'~ to obtain a and a„. In
the second set (called MAR), the a and a„were
adopted from a very recent analysis carried
through by Martin ' who uses dispersion relations
to tie up the low- and high-energy ZN scattering
data to infer the K-matrix parameters. Hence,
the scattering lengths used in this paper are

OLD: a = (—0.8865+i 0.6885) fm,

a„= (—0.09+ i 0.56) fm,

MAR: a =(-0.655+i0.705) fm,

a„=(0.35+i 0.66) fm.

We wish to emphasize that, as follows from (18),
the OLD data indicate a resonance below threshold
in the Z -P channel, whereas MAH predict no

resonance. As will become apparent in a mo-
ment, this fact has virtually no effect on the

quality of the fit achieved by means of our optical
potential (17).

The adopted nuclear densities have been either
of Fermi shape or Gaussian corresponding to a
harmonic oscillator model. The current values
of the parameters have been taken from a recent
compilation in Hef. 23 and are listed in Table II.
Finally, the kaon mass used in this paper was
~~=493.715 MeV. As mentioned before, formula

. (17) contains one free parameter, viz. , the pro-
duct &q. The latter has been adjusted to the kaonic
atoms data presented in Table II.

Results. The theoretical values of q and I'have
been calculated from the appropriate Klein-Gordon
equation with the potential (17), using a very rapid
procedure described in Hef. 3. The free parameter
bq has been varied from 0.5 fm to infinity and for
each value of &q we computed e and 1" for all en-
tries listed in Table II together with the total y'.
Setting bq- ~, formula (17) reduces to the IA
limit of the optical potential. As might have been
expected, the fit in this case is poor, the values
of y were y =186 for MAH, and y =384 for OLD.
Actually, the agreement for & is not too bad, only
the gammas are far off, being too small by a fac-
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a = [(0.44+ 0.04) +i(0.88 t 0.07)f fm, (20)

which differs significantly from the value pre-
dicted by the IA version of the optical model. The
latter yields

(-0.488+i 0.596) fm, for OLD
RE=2 s +Qq

(-0.15+i 0.68) fm, for MAR.

Hence, for either input the real part of a is of the
opposite sign than (20) which, as was discussed
in Sec. III, simply means that IA is inadequate.
However, many authors seem to be puzzled by this
"change" of sign and suggest various explanations
within the IA, or extended IA models. In particu-
lar, as mentioned before, the A(1405) mechanism
has been popular in certain quarters. On the other
hand, a careful application of the optical model ef-
fected in this work results in a nonlinear relation

tor of 2 to 3. When bq is getting smaller, the fit
rapidly improves, for both OLD and MAR inputs.
The shifts and widths show an increasing tendency
and the corresponding X reaches for either input
a pronounced minimum for bq around 1 fm. For
smaller bq, the shifts will grow and eventually
change sign and become positive (for bq values
around 0.5 fm). The best fits obtained for OLD
and MAR inputs are of nearly the same quality,
as may be seen from the corresponding X values

OLD: best fit for by=0. 95 fm, X =89.3,
MAR: best fit for bq =1.05 fm, y =71.7.

In Table II we have displayed our best fit values
of g and I' obtained with MAR input, the other in-
put gives essentially very similar results.

It. is perhaps worth mentioning that the model
developed in this paper agrees better with experi-
ment than our previous folding model ' where we
kept the shape of the E7N potential fixed (Gaussian)
and adjusted the range of the KN potential to the
K -'He scattering data. Qualitatively, in the fold-
ing model the calculated widths were systematical-
ly slightly overestimated and for the kaonic atom
data presented in Table D we obtained y =209 for
OLD, and, respectively g'=149 for MAR input.

It seems of interest to compare our model with
the purely phenomenological approach. e Setting
for simplicity 2Z=2N=A and comparing (2) with

(17), the effective strength of the potential (17) may
be written as

Q Qn= —= fl

2 1r rrr/bq 1+r/bq)'r

By contrast, in the phenomenological model the
strength parameter- N was not related to the KN
scattering data and had to be f itted to the kaonic
atom data, e.g. Koch and Sternheime obtained

between V and the KN scattering lengths which in
consequence leads to the correct sign and magni-
tude of V. Indeed, setting bq =1 fm, formula (19)
gives

& = (0. 46 +i 1.01) fm, for OLD

8 = (0.42 + i 0.74) fm, for MAR .
Thus, in our model the real part of N is positive
and quite close to the values obtained in Ref. 6.

Summarizing, in the presented approach our
main incentive was to provide a better understand-
ing of the qualitative features of kaon-nucleus
interaction. The derivation of our optical poten-
tial rests on two basic assumptions, viz. , (i)
that the nuclear excited states may be neglected,
and, (ii) that the range of the microscopic KN
interaction is small as compared with the nuclear
radius. The first assumption implies that to ob-
tain the optical potential one has to sum up the
microscopic potentials rather than the free scat-
tering amplitudes. In consequence, the strength
of the effective potential turns out to be a non-
linear function of the elementary KN scattering
amplitude. The second assumption bears directly
on the shape of the optical potential which, in the
first approximation, follows the shape of nuclear
density.

A palatable feature of the presented approach
is that we not only provide a theoretical justifica-
tion for the phenomenological potential, but we
have also managed to explain the origin of the
complex depth lf in (2) by relating it to the ZN
scattering lengths. Another important advantage
over the phenomenological model is that we halved
the number of free parameters, i.e. , the two
parameters of the phenomenological model (real
and imaginary parts of 0 have been expressed in
terms of a single parameter related to the unknown

range of the KN interaction).
Concluding, we are of course aware that there

would be a number of secondary effects which de-
serve a more careful treatment and might improve
the agreement with experiment. To mention but
a few, the coherent approximation may be extend-
ed by adding some of the excited states, the KN
dynamics may be generalized by employing a many
channel formalism and taking into account effec-
tive ranges, or higher partial waves, the deriva-
tive terms &" p(r) may be included assuming dif-
ferent distributions for neutrons and protons, the
product formula (14) may be truncated at the next
factor making the strength a more complicated
function of the scattering amplitude, etc. On the
other hand, since every extension unavoidably in-
troduces unknown parameters, we felt that it would
be premature to include all those refinements
with the present quality of the data.
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