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Relativistic formulas for the deuteron electromagnetic form factors are calculated in the impulse
approximation retaining terms to all orders in Q 2/M ={v/c)'. The formulas are given as double integrals
over the deuteron wave functions in momentum space, and hence can be evaluated for any deuteron model.
W'e evaluate these formulas numerically for 9 different deuteron models: Reid soft core, two Lomon-
Feshbach models, three Holinde-Machleidt models, and three four-component relativistic models. All of the
models give results for the A structure function considerably below the experimental results; the effect of
the relativistic treatment is to reduce the size of A by a factor of 2 to 5 at Q of 100 fm ' over what it
would be in the nonrelativistic approximation. We discuss briefly the role of exchange currents; the pair
terms are included in our calculation in a completely consistent manner, but the explicit pmy contributions
need to be calculated relativistically. We discuss in some detail the sensitivity of our calculation to the
almost unknown neutron electric form factor, observing that a Gz„roughly twice 6~ in the region of
Q = 100 fm ' would enable us to fit the data even without any pm' contributions. We discuss the high Q

'
limits of our formulas, obtaining the result that the form factor falls one power of Q' faster than that
predicted by the dimensional-scaling-quark model. We also study the low Q limits and give explicit
formulas for the corrections to the deuteron magnetic and quadrupole moments.

NUCI, KAB STBUCTUBE d calculated relativistic electromagnetic form factors,
xecoil tensor polarization, and relativistic corrections to p, & and Q„.

I. INTRODUCTION AND SUMMARY

Recent measurements' have made it necessary
to calculate electron-deuteron elastic scattering
without making nonrelativistic approximations or
q'/M' expansions. Here we report in some detail
on a relativistic calculation of the deuteron elec-
tromagnetic form factors in the impulse approxi-
mation (RIA), retaining terms to all orders in
q' /M'. A short description of our results has
been published previously. '

There are two effects that one must take into
account in a relativistic calculation, and we have
done both.

(i) The kinematics must be relativistic. Our
calculation is covariant, and our final formulas
contain kinematic effects to all orders in (v jc)'
or q~/M'.

(ii) At least one of the nucleons must be off the
mass shell. We include the most important con-
sequences of this by allowing the interacting nu-
cleon to be off shell, while still leaving the spec-
tator on shell. In this way, the covariant diagram
of Fig. 1(a) includes the three-time ordered dia-
grams of Fig. 1(b), and important effects such as
the photon splitting into an ÃN pair (the "pair cur-
rent, " in other words) are properly included.

/

However, in order to do this, we must also know
about amplitudes for N+ d -&, as well as the
usual d-N¹ This is best handled in a unified
way by considering a covariant deuteron-nucleon-
nucleon vertex function, with one nucleon off shell.
Following Blankenbecler and Cook, ' four invariants
must be used to describe the deuteron-nucleon-
nucleon vertex function. (In a nonrelativistic
treatment, one makes an approximation by putting
both nucleons on shell so that only two invariants
are needed. ) The four scalar functions that are
necessary can be rewritten so that they have the
character of wave functions. When this is done,
two of the functions are the familiar 8- and D-
state wave functions of the deuteron, and there are
two additional wave functions which are not present
in the nonrelativistic case. These new compo-
nents of the full wave function are associated with
the extra degrees of freedom present when the in-
teracting nucleon is a virtual Dirac particle, and
each has the character of a P state. They are nu-
merically small if measured by their contribution
to the overall normalization of the wave function,
but in momentum space they and the S and D wave
functions have comparable magnitudes at high mo-
menta. (We should note that although the orbital
angular momentum of these small components is
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(a)
D

der in q'/M', to previous results, and Section IG
estimates a theoretical uncertainty in this calcula-
tion. The full calculation is outlined in Sec. II.

A. Numerical results for different deuteron models

(b)

(c)

FIG. 1. (a) The relativistic Feynman diagram which
describes the impulse approximation (RIA). (b) Three
nonrelativistic time ordered diagrams included in the
BJA. The lines moving backward in time are anti-
particles. (c) and (d) Two examples of processes that
are not included in the BIA. Diagram {c)is a meson
exchange contribution and diagram {d) is an isobar con-
tribution.

The main results are given in Figs. 2 through
11 which show various combinations of deuteron
electromagnetic form factors for several different
choices of the deuteron wave functions. In each
graph, a solid line is inserted as a benchmark
representing a nonrelativistic calculation using
the acid soft core wave function. '

In Pigs. 2 through 6, we use our relativistic
equations for the structure functions with wave
functions calculated from a wave equation in
which both nucleons were assumed to be on shell.
The wave functions are the Holinde-Machleidt, '
the Lomon-Feshbach, ' and the acid soft core'
wave functions, and the P-state wave functions
are zero. These will be referred to collectively
as two-component models.

I = 1, they do not represent parity violating effects
because, in common with the small components in
the Dirac equation, the overall parity of a small
component is opposite to its spatial parity. )

The formulas that we derive are general and

may be evaluated with any deuteron wave func-
tions. In particular, if one chooses to neglect the
I' states, the calculation gives the deuteron form
factor correctly to all orders of (q/M) for any
choice of u and se, the S- and D-state wave func-
tions.

In addition to deriving the formulas, we have
evaluated them numerically for a number of deu-
teron wave functions and have examined them
analytically to determine the behavior of the deu-.
teron form factor for very high q'(~ q ~»M').
Also, our formulas may be expanded to zero and
first order in q, where they agree with known re-
sults.

As the description of our calculations is
somewhat lengthy, we shall present our results at
the outset. Section IA gives our numerical re-
sults and some conclusions; in particular, we
show the deuteron structure functions for several
models of the deuteron wave function. Section IB
examines the size of the relativistic effects, and
Sec. IC discusses the sensitivity of our results to
the choice of nucleon form factor. Section ID
gives some analytic results for the behavior of the
deuteron electromagnetic form factor at ultrahigh
q'. Section IE contains comments upon the role
of exchange currents in intermediate and high en-
ergy electron-deuteron elastic scattering, Section
IF compares our formulas, expanded to first or-
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FIG. 2. Numerical evaluation of the relativistic for-
mulas of this paper forA {Q ) using various two-com-
ponent deuteron wave functions. The models included
are Beid soft core, labeled RSC (Ref. 5); three Holinde-
Macheidt models, labeled HM1, HM2, HM3 (Ref. 6);
and two Lomon- Feshbach models with different percent
D states (Ref. 7). For comparison, the solid line lab-
eled RSC-NB is the result obtained from the nonrela-
tivistic formulas evaluated with Reid soft core wave
functions. Dipole nucleon form factors were used in
every case. The data forA(Q ) are from Ref. l.
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FIG. 5. The quadrupole form factor contribution to
A (Q ) evaluated using the relativistic formulas and the
same wave functions as in Fig. 2,
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In Figs. 7 through 11, the wave functions were
themselves also calculated from a wave equation
in which one of the nucleons is allowed to be off

8shell, and they are therefore completely consis-
tent with our formulas for the structure functions.
(These relativistic wave functions are completely
described in Ref. 8; briefly, they are determined
from a relativistic one boson exchange model
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FIG. 4. The charge form factor contribution to A (Q )
evaluated using the relativistic formulas and the same
wave functions as in Fig. 2.
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FIG. 6. ThThe recoil deuteron tensor polarization T{@2)
evaluated using the relativistic formulas and the same
wave functions as in Fig. 2.
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Gz, together with the magnetic form factor G„,are
defined in Sec. II, Eq. (2.S). The relations be-
tween A. and B and Gc, Gz, and G~ are
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In Figs. 4 and 5 and Figs. S and 10, the charge
and quadrupole contributions to A, Gc'(Q') and

(Q /18M~ )Gc'(Q'), are shown separately. Finally,
the tensor polarization of the recoil nuclei when
scattering from an unpolarized target is shown in
Figs. 6 and 11. When this quantity
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FIG. 10. The quadrupole form factor contribution to
A(Q ) evaluated using the same wave functions as in
Fig. 7.

and n = e'/4w = —„,, E is the energy of the incom-
ing electron, 8 the laboratory scattering angle of
the electron, the deuteron mass is M, = 1.876
GeV, q is the four-momentum transferred by the
electron, and we define Q = -q2 &0 so that
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FIG. 11. The recoil deuteron tensor pol.arization T(Q2)
evaluated using the relativistic formulas and the same
wave functions as in Fig. 7.
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FIG. 12. (a) The S-state, (b) the D-state, and the
two P-state deuteron wave functions, (c) e &, and (d) e, ,
for all the models used in this paper. Note that the
vertical scale of the S-state wave functions is different
from the scale of the others. The wave functions are
all precisely defined in Sec. II.
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is measured, one may be able to experimentally,
determine G~ and G separately.

All curves in Figs. 2 through 16 were evaluated
using isoscalar nucleon form factors given by the
empirical dipole formulas with form factor scal-
ing,

1
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where Q' is in (GeV/c) . The dependence of our
results on the choice of form factor will be dis-
cussed in more detail in Sec. IC.

As Figs. 2 and 7 show, all of the models lie be-
low the data for A. by a factor of 2-10, although
the Lomon-Feshbach model gives larger structure
than the other relativistically calculated models.
The reason this model is so much larger than the
others can be traced to the discontinuity in the 8-
state wave function (see Fig. 12), which intro-
duces large oscillations in momentum space which
keep the wave function large at high momentum.

There are two immediate questions: How has
the relativistic calculation changed the nonrela-.
tivistic result and why are the results consistently
low'P We discuss these questions in turn.

B. Size of the relativistic corrections
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One of the major goals of this calculation was to
gain some understanding of the size and nature of
the relativistic effects. This can be provided by a
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FIG. 13. Relativistic corrections to the structure func-
tionA(Q ). The ratio of A calculated with the relativis-
tic formulas of this paper to A calculated with the usual
nonrelativistic formulas is given for each model shown
in Fig. 2. Dipole nucleon form factors were used.

FIG. 14. Relativistic corrections to the fundamental
form factors Gc, G, and Gz. In parts (a), (c), and {e)
we show the relativistic and nonrelativistic result for
the HM3 model only. In parts (b), (d), and (f), the dif-
ferences for all of the models of Fig. 2 are shown. Di-
pole nucleon form factors were used.

detailed examination of Figs. 13-16, which we
will discuss now in some detail.

In Pigs. 13 and 14, we have displayed the rela-
tivistic corrections for the' two-component models
presented in Figs. 2-6, while Figs. 15 and 16
display the relativistic corrections for the four-
component models presented in Figs. 7-11.

In Fig. 13, we have displayed the ~atio of the
relativistic calculation of A. given in Fig. 2 to the
nonrelativistic calculation for each of the models
considered in Fig. 2. The figure shows that use
of the relativistic formulas tends to reduce the the-
oretical value of A by a factor of 2-5 at about 100
fm ' and that, except for the Lomon-Feshbaeh
models, all of the nonrelativistic models tend to
give about the same correction out to about 60
fm . In Fig. 14, we have displayed the relativis-
tic effects on each of the fundamental form factors
individually. Here we found it more illuminating
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to display the difference &(" between the relativis-
tic and nonrelativistic results, and because the
curves vary considerably, we have shown the dif-
ferences for all the models in Figs. 14(b), 14(d),
and 14(f)„but the individual relativistic and non-
relativistie results, from which differences are
calculated, are displayed only for the HM3 model
in Figs. 14(a), 14(c), and 14(e).

Note that both the form factors and the differ-
ences tend to.oscillate, but in such a way that in
all cases the effect of the relativistic corrections
is to shift the diffraction minima to lower Q with
a. corresponding increase in the following maxima.

In Figs. 15 and 16, we have displayed the rela-
tivistic corrections for the relativistic models of
Ref. 8. The principal differences between the re-
sults in these figures and those in Figs. 13 and 14
is due to the presence of the I' states, which con-
tribute additional corrections. The finaL formulas
have terms linear in the P states (i.e., interference
terms between the I' states and either an S or D
state) and quadratic in the P states, as well as
terms independent of the I' states. Any of the
structure functions could therefore be calculated
in four different ways: (1) nonrelativistically using

FIG. 16. Helativistic corrections to the fundamental
form factors G&, G+, and G&. In parts (a), (c), and (e),
we show, for the X= I. . model, each of the four possible
ways of calculating the form factor discussed in the text,
labeled NB, None, Lin, and Full, together with the dif-
ference between the full result and the NH result. In
parts (b), (d), and (f), we show the differences for each
of the relativistic models in Fig. 7. The mixing para-
meter X which differentiates these models is described
in the text and in Hef. 8. Dipole nucleon form factors
were used.

only the u and&a wave functions from the four-
component model, (2) relativistically, but using
only the u and u wave functions, (3) relativistical-
ly, but excluding the terms quadratic iri the I'
states (so that only terms independent of the P
states or linear in the P states are included), and
(4) the full result obtained by inserting all four
wave functions in the relativistic formulas. (In.
the first three cases, the u and se wave functions
must be rescaled to satisfy the nonrelativistic nor-
malization condition. ) For the /1 structure func-
tion, the first case is called A», the second
A„„,(for no P states), the third is A«, (linear in
the P states), and the fourth /lv„», and information
about all of these ways of computing ~ is presented
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in Fig. 15. In Fig. 15(a), the ratio RF„»——AF„»/
A» is presented for each of the three models con-
sidered in Figs. 7-11;this gives the total result
of including all relativistic effects. Figure 15(b)
also includes two other ratios for the ~ = 1 model:
R„„,=A„„,/A„„and Rz „——AL„/A„„.

The ratio A„„,shows that if the I' states are ig-
nored, the relativistic corrections are very simi-
lar to the results obtained from the two-compo-
nent models. Comparing R«, and RF„„(forthe
A = 1 case) with R„„,shows that adding the P
states introduces a sizable change in the results
and that the effect of the terms quadratic in the
I' states is somewhat smaller than the linear
terms, as one might expect. Comparison of the
BF„» ratios for the three models shows consider-
able model dependence, reflecting the fact that the
I' states are very tiny for A. =O and increase as A.

goes from 0 to 1.
Figure 16 shows the relativistic effects on each

of the fundamental form factors. In Figs. 16(a),
16(c), and 16(e), we have presented, for the A. = 1

model, each of the four possible cases discussed
above, labeled NR, None, Lin, and Full, together
with the difference between the Full result and the
NR result. The other parts, Figs. 16(b), 16(d),
and 16(f), show the differences between the Full
and NR results for each of the three models. We
can see from these figures that the total effect of
the relativistic corrections is to shift the diffrac-
tion minima to lower values of Q (just as we
found before) for Gc and Go (when A. =0 or 0.4),
but that for G„(and Go when A. = 1) we have the
opposite effect —the corrections shift the minima
to higher Q . These trends are a result of two
competing effects: the relativistic kinematics,
which tend to shift all diffraction minima to lower
Q as we observed before, and the P states, which
tend to have the opposite effect. For the electric
form factors G~ and G, the P-state effects tend
to be suppressed, so that only when they are ex-
ceptionally large (1=1)do they have a significant
effect, changing the direction of the shift in G
(where the linear and quadratic P-state terms
have the same sign) and significantly reducing the
shift in Gc (where the linear and quadratic P-state
terms tend to cancel). In G„, the P-state con-
tributions are less suppressed so that the sign of
the shift is opposite for all cases.

We now summarize the observations that can be
made from the numerical results presented in
these two parts:

(i) The relativistic corrections to A are signifi. -
cant at large Q . The "conventional" two-compo-
nent models and the four-component models with
A. =O (pure y'y~ coupling for the pion) tend to give
very similar corrections out to about 60 fm ', and

these corrections depress the nonrelativistic re-
sults and widen the difference between the data and
the theory. The Lomon-Feshbach models, which
are unconventional because they have discontinui-
ties in the wave function, and the four-component
model with A. = 1 (pure y' coupling for the pion)
give different corrections which are smaller and
which can be positive in the intermediate region
of Q' around 40 fm '.

(ii) Since the four-component models with dif-
ferent A. give relativistic corrections to A which
differ significantly from each other, we conclude
that these corrections are sensitive to the form
of the pion nucleon coupling in disagreement with
what might be expected on the basis of a naive
application of the equivalence theorem. " Further-
more, one should have some confidence in this
conclusion since the three four-component deuter-
on models we used are very closely related, ' and
because our calculation includes, in a completely
unified manner, "what other investigators often
calculate separately as relativistic effects, re-
normalization corrections, "and pair current cor-
rections. '

(iii) Using the dipole formula for the nucleon
form factors, none of the models do a satisfactory
job of fitting the data for the A structure function.
The results are systematically low. One explana-
tion for this is that there are sizable contributions
to electron-deuteron elastic scattering from pro-
cesses that we have not included, such as the iso-
sealar meson exchange process illustrated in Fig.
1(c) and scattering from isobar currents as in
Fig. 1(d). Others have found that the contribution
from the pry exchange current, in particular, can
be quite significant'4 "in this Q range, while the
contributions from the isobar currents are pre-
dicted to be small. " Neither of these processes
has been calculated to all orders in q'/M'.

(iv) The meson exchange currents are not nec-
essarily the only explanation for the discrepancy.
In particular, G~„ is not well known. The A struc-
ture function is more sensitive to G» —G»+ G~„
than to G»- G»+G„„, and goes approximately as
G~~2. We have used G~„=O; but a value of G~„
twice as large and of the same sign as G~~ at Q
of 3 (GeV/c)' is not inconsistent with any data and
would enhance A(Q') by an order of magnitude.
When the meson exchange and isobar current con-
tributions have been calculated to all orders in
q'/M', our theory may be sufficiently reliable to
permit extraction of G~„ from the data for A.

Further discussion of the role of the exchange
currents appears below in Sec. IE, following the
analytic discussion of the behavior of the struc-
ture functions at ultrahigh Q' in Sec. ID. In the
next section we discuss the uncertainties intro-
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duced by our lack of knowledge of the nucleon
form factors.

C. The nucleon electromagnetic form factors
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Thus far, all of the results presented here used
dipole nucleon electromagnetic form factors with
form factor scaling as in Eq. (1.6) with G~„set
equal to zero. The nucleon form factors, however,
are not well measured quantities. The proton
magnetic form factor G~~ is the best known with
uncertainties of 3%%ue to 5% in the Q' range un to
10 (GeV/c)', and there are data" up to Q' of 33
(GeV/c) . Measurements of G» extend~e only to
3 (GeV/c), where the uncertainty is nearly 100%%uc.

The neutron form factors are even less well known.
The magnetic form factor G~„has been measured"
up to 2 (GeV/c)' with uncertainties ranging from
10% to 40%%u&&. The neutron electric form factor
GE„ is the least well known. It has been deduced
in model dependent analyses of quasielastic and
elastic electron scattering' from deuterium only
out to Q of 1 (GeV/c)'. The errors are large,
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FIG. 18. Effect of various nucleon form factors on the
deuteron structure function B{Q ) evaluated using the
HM3 two-component model in the relativistic formulas
and the same nucleon form factors as in Fig. 17.
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FIG. 17. Effect of various nucleon form factors on
the deuteron structure functions A {Q ), evaluated using
the relativistic formulas and the two-component Holinde-
Machleidt model HM3 {Ref. 6). The various nucleon
form factors are Dipole from Eq. {1.6); IJL from Hef. 22;
Best Fit described in the text; Best Fit+ G~= 0,
same as the Best Fit form factors except the neutron
electric form factor Gz„was set to zero; Dipole
+I")„=0, the same as Eq. {1.6), but with the neutron
Dirac form factor F&„set equal to zero.
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FIG. 19. Effect of various nucleon form factors on the
deuteron structure function A {Q2) evaluated using the re-
lativistic wave function model for X=0.4 {Ref. 8) and the
same nucleon form factors as in Fig. 17.
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the nucleon structure where the valence quarks
are all in a spacially symmetric ground state"
and gives

Eff Nn ~ff EP

This parametrization was also considered by
Galster et al. ,'0 and it gives a value for G~„which
is about a factor of two higher than the best fit
value and is at the upper edge of the large experi-
mental error bars in the Q range up to 1 (GeV/c}.
Therefore, it is a plausible estimate for G~„and
is used here simply to give an idea of the size and
shape of a G~„ that might be required to explain
the discrepancy between the RIA and the data for
A(Q ), assuming for the moment that other possi-
ble mechanisms, such as meson exchange cur-
rents, are not present.

If we ignore the IJL curves and consider only
the dipole and the two best fit curves, we see in
each case the curves for A(Q') lie below the data
by as much as a factor of ten. The spread in val-
ues, mainly due to different values for GE„, is
less than a factor of two. This spread is about
the same size as that due to different deuteron
models, excluding the Feshbach-Lomon models,
as shown in Figs. 2-11. The discrepancy with
the data has been increased by making the calcula-
tions completely relativistic, as pointed out above.

A major task, then, is to explain this rather
large disagreement between the RIA and the data.
The favorite mechanism suggested as the possible
source of the extra cross section needed is the
possibility of scattering from meson exchange
currents. It is clear the meson exchange current
processes must also be included and calculated to
all orders in q'/M as are the impulse contribu-
tions in our treatment before the comparison with
the data ean be used to deduce information either
about deuteron wave functions or nucleon form fac-
tors. However, in the meantime, we can see from
Figs. 17 and 19 that it is possible that at least
some of the differences between the HIA and the
data might be due to using values for the neutron
form factor G~„which are too small. The curve
where E,„was set to zero is seen to pass nearly
through the data over. the entire Q range for the
HM3 wave function and to give much improved
agreement with the data for the A, = 0.4 wave func-
tion.

D. Behavior of the form factor at uItrahigh momentum
transfer

In the ultrarelativistic region Q' = —t » 4M„', our
results can be analytically expanded and the leading
term in a power series expansion M22/Q2 can be
obtained. This is of considerable importance for

[A(t) + B(t)tan'(-', 8)],
der l

dt~
I ~s

then at fixed angle,

~ 2(t l)) t-(2+2N)

(1.10)

and the B(t) or purely magnetic term dominates
A(t).

To compare our results with the quark model,
we must be careful to remember that the quark
model results are usually stated for the limit when
t becomes large with s/t fixed. (This was over-
looked in Ref. 2 leading us to an erroneous con-
clusion. } Using the relationship

-Mg t
(s -M,'}'+(s -M,')t

(where the last part is true for s»M22 and c.m.
scattering angle not directly backward), we obtain

2 t- (3+2 N)
4

s/t fixed

Hence, the rate at which the fixed s/t form
factor (1.13) falls with Q depends on N, the pow-
er at which the wave functions go to zero at large
relative momentum P. In order that (1.13) agree
with the quark model prediction, which is t ", we
would need M=2, or %=4 together with the nu-
cleon form factors going like t ' at large t. The
latter case seems ruled out by the data, and the
former case also seems unlikely for theoretical
reasons, as we discuss now.

comparison with the quark model' "and to assess
the importance of meson exchange effects' "at
high Q'.

The actual calculations are in Sec. II E, and we
shall just make some comments and state the re-
sults here. The high momentum transfer behavior
of the form factor depends upon the high momen-
tum behavior of the vertex function or wave func-
tions. If we assume that the wave functions go
like p ", where P is the magnitude of the relative
momentum, and that the nucleon form factors go
like t ' as predicted by the quark model and sug-
gested by. the data, then the deuteron structure
functions go like

A(t) t- (3+2')

B(t) t- (2+2M )

so that if we define an angle dependent form factor
by

do' d(x

d~ =dn
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The power & at which the wave functions go to
zero at large P can be determined by studying'e
the (covariant) wave equation which one uses to
solve for the deuteron vertex function. We use
the formulation where one nucleon is restricted
to the mass shell, and we suppose that the binding
is given by a series of one boson exchanges with
each BNN vertex having a form factor which goes
like (r'+p, '+pm') ', where r is the momentum
transfer through the boson and p, and p, are the
nucleon four momenta. If the boson-nucleon-nucle-
on(BNN) couplings include no momentum dependent
terms like yp», or a""q„, then it is reasonable to
choose & =1,~ while if there are such momentum
dependent terms, &= a would ensure the same
asymptotic behavior. In these cases, one would
obtain &= 4 and

a(t) - t-",
a(t) —t-"

F 2(g e) t-10

p 2 t-ll
alt fixed

(1.14)

Since the quark model predicts a t ' behavior for
the fixed s/t limit, we see that the RIA with X=4
falls faster than the quark model at large t. This
has implications for the role of exchange currents,
which we will discuss in Sec. IE.

E. The role of exchange currents

Before the experiment of Ref. 1, meson ex-
change currents were expected to dominate elastic
e-d scattering at momentum transfers above
1 (GeV/cP. Since the data turned out much smal-
ler than predicted by the early meson exchange
calculations, "there has been some confusion about
their ultimate role.

First, we wish to clearly distinguish between the
so-called pair currents illustrated in the last two
diagrams of Fig. 1(b) and terms in which the pho-
ton couples directly to mesons as shown in Fig.
1(c). When four-component wave functions are
used, this calculation consistently incorporates
all contributions from pair currents, which we
find it helpful to regard as relativistic effects. In
this part our discussion will be directed only to-
ward the true exchange currents of the type shown
in Fig. 1(c), not included in this calculation.

Our discussion should also distinguish between
asymptotic Q and currently feasible experimental
Q'. At asymptotic Q', we have seen that the quark
model predicts a different and slower falloff with
Q' than the RIA. If the quark model result cor-
rectly describes ultrahigh Q' e-d scattering, then
the impulse approximation cannot play an impor-
tant role at those momentum transfers, and one
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FIG. 22. Comparison of our result with various ap-
proximations discussed in the text. The ratio of A cal-
culated with various approximate relativistic formulas
to A. calculated with the usual nonrelativistic formulas
is displayed. All curves are for the Beid soft core
wave functions with dipole nucleon form factors.

can argue that, in nuclear physics terms, the ex-
change currents dominate. We remind the reader
that the pair currents are properly included in the
RIA, and this means that they cannot be among the
dominating terms at asymptotic Q'.

The Q region of the American University-SLAC
experiment is, however, not at asymptotic Q'

defined by the condition Q'»4M„' =16 (GeV/cp.
However, the exchange currents may already be
important, particularly since our own calculations
do not saturate the data. However, reaching de-
finite conclusions about the size of the exchange
currents by subtracting our calculation from the
data should require better independent knowledge
of the deuteron wave function and, especially, of
the neutron charge form factor. While it is now
clear that the early calculations" were too large
because they omitted form factors at the nucleon
vertices and used couplings that were in some
cases too large, recent calculations' suggest that
the pry contribution is, nevertheless, large above
2 (GeV/cP. However, in the RIA the full calcula-
tion differs significantly from a calculation that
includes terms only to order Q /M~', so we feel
that the exchange current calculations also need
to be done fully relativistically.

F. Low Q~ results

In Sec. II we show that when (Q/MP is small,
our formulas reduce to the correct nonrelativistic
limit. In addition to the usual integrals over pro-
ducts of S- and D-state wave functions, we also
obtain terms corresponding to overlap between
these wave functions and the P-state wave func-
tions and terms corresponding to products of P-

Q~
I (Gev/c) ~]
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state wave functions. At Q'=0 these terms give
corrections to both the magnetic moment and the
quadrupole moment. Most of these results have
been obtained previously by other investigators~ 28

but we shall record here the magnetic moment and
quadrupole moment formulas since the corrections
due to the extra parts of the wave function may be
larger than the experimental errors in the mea-
surement:

p,,= (I+@,)(i ,'I, ——,'a—„-I'„)

0

+ drMrfn, (u -v 2u) -v, (W2u+w)]+ &, ,
We ~

(i.Ie)

"rdr
+ (R5', +1)~ u v. + ~ v, )0

——zU 2vg +—v
5 & 2

(i. ie)

where E, = (p~+ u„—1)M„/2M, g~ and p,„are the
proton and neutron magnetic moments, & and ~
are additional corrections of order p'/M' given in
Sec. II, Eq. (2.77}, and

(1.17}

vg d'v.

We can also very easily obtain the corrections
to first order in g/M to the charge and quadru-
pole form factors from our formulas, and these
are given in Sec. II. It is not surprising that the
part of our result for those terms which comes
from products of the 8- and D-state wave functions
is identical to that obtained earlier by Gross"
using the same general method that we use here.
Friar and Coester and Ostebee" use a different
technique, butthe calculation of Coester and Oste-
bee and our calculation agree precisely, and both
have some terms proportional to the potential not
included by Friar. However, it has recently been
shown" that the extra potential terms we obtain
correspond to renormalization corrections and
part of the pair current corrections if one uses the
framework employed by Friar, and that when one
adds the terms linear in the P states, our correc-
tions to first order in Q'/M' agree with the sum of
Friar's relativistic corrections, the renormaliza-
tion corrections of Gari and Hyuga, ' and the pair
current corrections. ' Hence, it now appears that
both approaches agree to first order in Q'/M' as
long as one is careful to include all of the effects.

The advantage of our approach, however, is that
we automatically include corrections to all orders
in Q'/M'. In Fig. 22, we have compared our re-
sult with the Q'/M' expansion for the Reid soft
core wave function. Note that the potential terms
make the largest contributions (as observed by
Coester and Ostebee2') and that the Q'/M' expan-
sion follows the full result out to about 80 fm '.
The "argument" shift proposed by Friar some
time ago is also shown for comparison.

We conclude that if one does not require a pre-
cise theory, the first two terms in a Q'/M' expan-
sion will probably be sufficient for Q' below about
80 fm ', but that a precise calculation requires
the full theory even at lower Q'.

G. Estimate of a theoretical uncertainty

Our calculation of the RIA makes the approximation that the spectator nucleon is on shell. In this sec-
tion we wiLL estimate the error involved in this approximation and will see that the error is about the size
of the terms quadratic in the P-state wave functions and small compared to, e.g., the differences that re-
sult from using different wave functions.

The simplest way to make the estimate is to work with a scalar deuteron made from two scalar nucleons.
In this case, the d-n-P vertex is described by only one scalar function I", which we. shall treat as a con-
stant. We begin with the triangle diagram as in Fig. 1(a), and allow the spectator to be off shell, so that

dp 2(D. -po)
(2 )' (

' M')[(D-p)'-M'][(D'-p)'-M']'
where F(Q') is the isoscalar nucleon form factor, and we work in the Breit frame

D=(D„-A), D'=(D„+-',g).

(1.ia)

(i. i9)
Evaluating the integral in P, by the residue theorem gives three terms, and after combining the two terms
which come from the interacting nucleon poles we get
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)
E(q) dP ~ ( D E-2D +E+E
2D (2&)' . )P'((&, EP —-E.')((&, &P --& 'I (E.+& )I(&, +El-&')((&, +& P —E'I)'

(1.2o)

where E=E(p)= (M'+p')' ', and E, =E(p+2g).
The first term comes from the spectator pole and
is the term we have kept in our calculation; the
second term is the correction. The second term
is of order p~/M4 compared to the first term.

Finally, it can be seen from the definitions of
the wave functions that the P-state parts are typi-
cally of order p'/M compared to the S-state con-
tributions (see Sec. II). (One might also see this
directly above by decomposing the interacting nu-
cleon propagators in the first term, above, into
positive and negative energy propagators in some
appropriate reference frame. The former give
the analog of the usual S states and the latter give
the analog of the P states and are clearly smaller
by a factor pm/M'. ) Therefore, one expects the
correction or the uncertainty to be of the order of
the size of the contributioris quadratic in the &
states. A glance at Fig. 15(b) shows that the cor-
rection is roughly of the size. of the difference be-
tween (Ar„»/A„„) and (AL„/&Ma), which is not neg-
ligible, but which is, nevertheless, smaller than
other effects at low Q . The uncertainty is about
lo%%uo at Q = 4 (GeV) .

II. THE CALCULATION

We now turn to a description of the details of the
calculation. This section is divided into seven
subsections: A. Kinematics, B. The relativistic
impulse approximation (RIA), C. The matrix ele-
ments of the current, D. The final formulas,
E. The ultrahigh q limit, F. The formulas for
low q', and G. Numerical evaluation of the inte-
grals.

-qm=-(D' —DP —= Q ~ 0. (2.3)

+ G.(q')l. h" 8'* 'q) —h '*"(h 'q)]

—G,(q'). (& q)(&'* q)(D+D')"
4

(2.4)

Here f and $' are polarization four-vectors for
the incoming and outgoing deuterons, respectively,
and satisfy

$ 'D= $' 'D'=0. (2. 5)

It will be convenient to do much of our calcula-
tion in the Breit frame, where

q= (o,g),
D = (D., --.'4),
D'= (D„+-',Q},

(2. 5)

D, = (M„'+ —,'q')*",

and we choose Q to be in the positive z direction.
Note that because of the convention (2.3), Q is
both the negative of the square of the four-momen-
tum transfer and the square of the three-momen-
tum transfer in the Breit frame, and Q will al-
ways represent ~Q~. In this frame, the three
polarization states of the incoming deuteron are

The interaction of the deuteron with the virtual
photon is fully described by the vector function G',
which can be decomposed into three scalar func-
tions according to"

G"(q')=-(G (a*)(('" ()(&+&')"

A. Kinematics

~"(+I)=(0,~1, -a, o)/v 2,
~'(0)=( q, o, o, D,)/M„

(2.7)

, The matrixelement for elastic e-d scattering is'

,u(k')y "u(k)
G gag (2. 1)

and

q„-=(D' —D)„, (2.2)

where u and u are fermion spinors and k and k'
are the four-momenta of the initial and final elec-
trons; D and D' will. be the four-momenta for the
initial and final deuterons. Also $;(+I)= $ "(+1),

)o (0)= (0, 0, 0, 1) .
Then, in the Breit frame,

(2.8)

where the argument of the. $ refers to the compo-
nent of the spin in the z direction and not to the
helicity.

In the Briet frame, G' can be rewritten in terms
of quantities with a nonrelativistic appearance if
we introduce rest frame polarization vectors
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G'(i') = » (((.l "(.)G,(i') Equation (2. 11)defines the wave function which,
as written above, has two suppressed indices, one
Dirac index for the off-shell nucleon and one spin
index s for the on-shell nucleon. In the rest
frame of the deuteron D=0, p„,=p, and we de-
fine

(,'.(P, M,)(„=g[q;„(p}u.(-p, r)

where we have used the charge, magnetic, and
quadrupole form factors

GC=G~+ -qGg 9

Go ——G~ —G2+ (1+(7)G, ,
where (i = Q /4M~, G e(0) = 1, G~(0) = p, ~ in units
(2M~) ', and Go(0) = Q~ in units M~ '. As we do our
calculation, Eq. (2.9) will be useful in letting us
pick out Gc, G~9 and G directly.

Also in this section we will collect a few for-
mulas related to what we call the relativistic deu-
teron wave function or, more precisely, the bound
state Bethe-Salpeter wave function with one leg
on shell. Consider a deuteron with momentum D
and polarization $ breaking into nucleons of mo-
mentum p and D-p, conserving energy and mo-
mentum. The momentum P is to be on shell, p
=M', forcing the other nucleon to be off shell,
(D pp eM'. -The d-n-p vertex function and the
deuteron wave function are defined by

[M+ y (D -p)]1'"(P,D)4Cu'(P, s)
[(2~)'2D,]*~'(» - (D -P)')

(2. 11)

The first line defines the Blankenbecler-Cook'
d-n-p vertex function I'9 which is a 4x4 matrix
in Dirac space and is a function either of D and p
or equivalently of D and the relative momentum

~re19

+ (,„(p)v (p, -r)], (2. 14)

where M„can be a shorthand for the four-vector
(M4i 0) ~

This definition was motivated by the observation
that the propagation of an off-shell particle (mo-
mentum -p) can be viewed as a superposition of
positive and negative energy on-shell states. (If
D-p could be on-shell, the second term would be

'' absent. ) Using the decomposition

M+y (M, -p) M g u( —p, r}u(-p, r)
M' —(M~ -pp E~ „2E~-M~

v( p, -r)ir(p, -r))
M„

(2. 16)

where E = (M'+p')'(', we get (still in the rest
frame)

M

[(2 )'2M ] ~

u( p, r)t'"I' (p, M )Cu (p, s)
Z, (2Z, -M, )

-M
(ii( P) [(2~)32M ]1 /2

v(p, r)~;r.(P,M„)Cu'(p, s)

(2. 16)
1

P,.l =P -2D. (2. 12)

%e will specify the vertex function further only to
note that four scalar functions are imbedded within
it:

I"4 =F~"+—pP
G

Now a small amount of manipulation allows us to
define the four wave functions that we will use in
stating our final results. We have~ ~

1 l 1
q.'„(p)=~6, u(p) -—2u)(p) a &,

M —y '(D-p) IHy" +—p

where F, G, II9 and I are functions of phyl 9 and
our results couM be written in terms of them; but
we have chosen instead to use four equivalent func-
tions now to be defined and whose nonrelativistic
analogs are obvious.

+~zu(p)o PP '4 (~a2)"„„

(F',„(p)= 6
[-(-,')' 'v, (p)iv I) x (o

+Wsv, (p)p" (o](icr, ) ~„, ,

(2. 17)
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where u and ze are the familiar momentum space
8- and D-state wave functions and v, and v, are
the spin triplet and singlet P-state wave functions,
respectively. Care should be taken to observe
that the matrix indices on the right-hand side of
the equation are reversed from those on the left-
hand side. The numerical factors have been
chosen to give the momentum space normalization

p dp (u' + w + vg + v, )= 1 .

u(r) (2
0

w(r) 2 '~'
P'4i. (Pr)~(P),

0

v (r) 2 '~'
j P'&Pi, (J r) v&,.(P),

0

and in coordinate space

l dr(u'+u('+ v, '+ v,')=1.
0

B. The relativistic impulse approximation (RIA)

(2.2o)

The Fourier transforms are
The calculation is based on the diagram shown in

Fig. 1(a). The full diagram is

C'(q')= f tr —Cr"( ' D')~'*
(2w)4 M'-P'-fe ' ' M'-(D'-pP

(2.21)

where C is the Dirac charge conjugation matrix,
and I'", the isoscalar nucleon current

(2.22)

where I",~ and I"2s are the Dirac and Pauli iso-
scalar form factors normalized so that

E (0)=1,
F2s (0) = -0.12,

(2.23)

and I" is the deuteron-nucleon vertex function for
the incoming deuteron. The vertex function for
the outgoing deuteron can be computed from that
for an incoming deuteron by

r- r= y0r~y0. (2. 24)

(2.aS}

The & and @' are Dirac indices, s is a two-com-
ponent spin index, summation over repeated in-
dices is implied, and

0
'Cn =Isa &n'N ~ (2.26)

To obtain our starting formula, we perform the
integration over p„retaining only the positive en-
ergy pole from the spectator. The validity of this
approximation has been discussed elsewhere~ and
in Sec. I G. We next substitute the relativistic
deuteron wave function defined in E(l. (2.11) to ob-
tain

G"(v')=».f&'( z ('.".((" ~')(.'"

Vfe shall now write each deuteron wave function
as a rest frame wave function boosted to the Breit
frame. Our notation now will be that p is the
spectator momentum in the Breit frame, p, is the
spectator momentum when viewed in the rest
frame of the initial deuteron, and p~ will be the
same momentum in the rest frame of the final
deuteron. In the rest frames, the three-vector
part of the spectator momentum is the same as
the three-vector part of the relative momentum
that we used in defining the wave functions u, ze,
v„and v, .

The Lorentz transformation properties of the
are evident from its structure. First we note

that any spinor is given by

u(p, s) = S(I.,)u(0, s), (2.27)

where L~ is a boost in the p direction, and that

S(L ) =8~ p (8 I~)
(2.26)

cosh/ = E~/M,

and & are the Dirac matrices (not to be confused
with the index a). Then for any boost A, in the z
direction

S(A,)u(A, 'p, s) =u(p, s')S,",,"(R,)
(2.29)

S'(A )u (A 'p, s)=u r(p, s')S", "*(R )

where R, is the Wigner rotation

AqL~ -j~. (2. 20)
1

Therefore the wave function in the moving frame is
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(.("..(p, D)=(D S.. (A, )(„('.'.. (u„M,)
0

(2.31)

where &', are the polarization vectors (2.8) of the
deuteron in its rest frame, and A, is now the
boost from the rest frame of the initial deuteron
to the Breit frame,

A~ M~ —D,

Al~ j.

Az)o= $.
(2.32)

We now use (2. 31) to replace the wave functions
in (2.25) with rest system wave functions. We ob-
tain

E' = r'(/I, )F'S(A,), (2. s4)

and A, and R, are the boost and Wigner rotation
for the outgoing deuteron

AM2=D',
(2.35)

Substituting the decomposition of the wave func-
tion into g', into our formulas, and remembering
that summation over repeated indices is implied
gives us the result

G'(q')=2Mgf d P —'&"~" (R)('"(" (P M)
2 Ov g2a

(2.33)
where the transformed form factor F is

(2. s6)

where the current matrix elements are

F„"'„'=—u(-p„r )2F' u(- p„r,),

F„"„= u(-p„—r2)F'z) (p„-r,),
(2.37)

where Q is the azimuthal angle of p and

(E2+ M)(D2+ M2) —2P,Q

[2M, (E, + M)(E, +M)(D, +M,)]'" '

1
~ 1 2PiQsin(-, (dz) =

[2M2(E1+M)(E2+ M)(DO+ M2)]1/2

(2.40)

Equation (2.36) has a structure which can be
easily understood. It gives the form factor as a
sum of three types of terms

G„(q') =G (q')+G; (q')+ G„(q'), (2.38)

where the first term, the (++) term, corresponds
to the virtual nucleon being in a positive energy
state both before and after the interaction and is
the relativistic generalization of the usual non-
relativistic impulse approximation. If the P states
of the deuteron were negligibly small, this would
be the only term which would contribute. The
next term in (2. 38), the (+-) term, corresponds
to the overlap between positive and negative energy
states. Finally, the last term gives the contribu-
tion from products of negative energy states alone.

The Wigner rotations R, , are
@(1/2)(R '( -(j/2)()22 -(z/2)((2s)1 2e(z/2)()22g2 —e e 2

(2.39)

ggp —MqEp + DOM . (2.42)

C. The matrix elements of the current

The matrix elements of the current are straight-
forward, but tedious to calculate. We will merely
list the results here, which can be expressed as
matrices in a 2x2 spin space.

To calculate the charge and quadrupole form
factors we need only the time component of the
current, F'. Each of these matrices can be given
in terms of two scalar functions:

ln these formulas, p, =p cos6I, p, =p sin6, and
E, =(M'+p1')'/ . The rotation R has the same
form, but with E, replaced by E2 = (M + p,2)1/' in
the denominator and Q replaced by -Q in both nu-
merators. When these results are combined we
obtain

(,/, ), 9R2+zcr (pXQ/2)
M [(E +M)(E +M)]1/2

where
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-o„
[(E,+M)(E, +M)]~~2

[( )( )]
F:«9 Q[X+ +io (p XI»)&) Y ]

(2.42)

The expression for F has the same form as that
for F"', and F '=(F" )t

The X's and Y's are given in the formulas below,
~h~~e Q= I@I and p =p cose, p, =p sine, and K
=M, (E, +M)(E, +M):

EE-=» ' (M'+» ')+ ' -» *)
2D2 2DOE M

Md d

F2E »mp

EY"=. »» -(D + —(») + 2D»(»)1 J. I 0 4

F2 22'2ME p Q

EY"=»~»~+—52 + E~),

p'J.

+F D
M +p +E'D~ Qp~

„M Md 2MMd

EY =», —'+»,-(l -D '
(D.». FADE»))-

4

KX =F~2EPL~ —
2 QPE»

2DDE&,

+ [Dop, —E~(DOEq+MMg)] 2

+—Qp,2(DQ +MM~)»

2
EZ'-=F, '

[Q(D+, +M,M) —2D,'P, ]

KY =F~Fp+ —5Rp . (2.44) F2
-2M Q'p, p. » (2.47)

To calculate the magnetic form factors we need
the spatial components of the current. We cal-
culate the (+) component defined as

KA' =-F DP

F +& l (F(*&p F(2)&) (2.46)

For these components it is convenient to introduce
four scalar functions to describe our results:

2EI,
[(E2+M)(E2 + M)]~ ~3 2P 2P

+g F P P 2

KA = 2E~P~ + 2
—P, Md,

A"
+ „Qo' 'p~ ~

(2.46)

X (P)=X (P), Y (P)=-Y (-P),
z (p) =-z' (-p), ~ (p) =~ (-p).

[(Ez +M )(Em + M )]2 f2 2p 2p

A'
+ p- 0 ps~

where p = (1/&2)(p„-ip„) and p, = (p„p„,O). The
decomposition for the (- -) components is the same
for the (++) components, and the decomposition
for the (-+) components is the same as the (+-).
The functions are

It is now a straightforward matter to combine
these matrix elements with the Wigner rotations
and the expressions giving g' in terms of u» u)2

v„and v, . Since the indices for the wave func-
tions in matrix form [Eq. (2.17)] are reversed,
the expressions in (2. 36) become a trace of prod-
ucts of Pauli matrices which are not difficult to
evaluate. The terms in G~ and G can be sepa-
rated by averaging over (t). The results are given
in Sec. IID.
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D. The final formulas

In this section we quote the final formulas. Each of the form factors can be written as a sum of three
terms,

G~ =G~" +G + G~

where i= C, q, or I for the three form factors. Letting j stand for (++), or (+-), or (--), we denote
the typical term by G~.

The G~&'s must be computed numerically by double integration over products of the momentum space
wave functions:

+1

G~] —— P dp dz-
0 -1 0 p

Using the notation

3
Wl 2=~M(P1 2»

(2. 5o)

the 0's are

I =(Rsltx —p, q x )(U, U + —',

llaw

+ —', ', (p '~P)
Pl P2

+(x"+2on, r")-,','', '- p,'q'(p, p, )+ &"q'p, '-', &,&, ,
„,W1W2 EP

2M Ug IVY'' (PPt)X"- '(PX") ' *(PP '-P')+ ' '( )(P P 'P'))--
W 8" &E

P~' ——2M& U1U2+ U1W2 25Rt, X"+A" —~
P+' —QZ"

W1W2 „2@~p&p &p (- )&( ~,. (- . ) p +Px q &p.
+p 2p 2 P~ 2M 2 4M P1 P2 I ~~ P1 P2 2M„4M„2

I

Vt Vs
=2(20RqX' +P, (PI" )( Cl 'P„()+ —U 'P Q+ ' QP + QP (P P))'

TV V' U V'+2(~+- kg y+ )Px & 2 1 2-1P2x q@ + 2 1 (», ) 2@+- 2q22 2 1(2gg y )P
'

3 p p 2p M P p 2p Pl P2 Pj. 3
p P @Pic

W V *'( ' *'' ')8q (( p Px
p q p q p 2~ q 2g - lx p 2p q lx 22

(X - —Pan, X -) *(-' ' '--' * '-+ * 'P (P +-'P )+ ' '(P P lP'))-
U Vt

+ r '-,' ' ' (2m, + qp„),
1
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-=2M"
Umi

—+ i[-X' (2P„9R + —', QP, )+ F gg +Z' (5g ——'QP, ) -d4. " I), ]
1 1 )
Vg Vt

+V, ~- ' -l' -(~+-',@„)-A'-2p,pg, ]
1 1

1 2 4 4'

+ ' ' x
i 2(p, p. )( +-'e') - ' '* pi+i ( ' '+-'Q( )i

+ Z'-(p, p, ) (On, - -'. QP„)+a'-(p„P„-P,')(2m, P„+QP,')
J

2 V'V' VtVt Es-=2~X — ' '( ~ -)+(2onr-+X-)- ' 'p'q'~
C 3pp P1 P2 g' 3pp

2 2 -- 1V2 ~
~ E V'V

+(20' X +p,mq F )- i 2 (p p )+(29Rp F -X )—', P, Q
1 2 4 ~ll 2

( ~~ VtVt Vt Vt VtVt *2E' ' (-'p'-p p )+l- ' ' -'p'-(2m r +x )q'
VsVa ( ' V'V'

+(2mr, x-+p'q'r-) ' ' (~"~" '~''+2(2oa y--x-)~' ' '(p +~ )i
PiP2 q' ' Q PiP2

VtVt
d-„-=aM, 'l d 'd(~-+q P)- ' "+d (d„dd, --'.ed.')+d P.'(2dd, +e,.))

-l l(p, .p.)+z u..(~+le,.)] .
Recall that p, and p, are the relative three-momentum of the incoming and outgoing deuteron, respective-

ly. We have

Dop, + —', QEpi~

4
(2.52j

u(P) —P ".
P» oo

(2.54)

E. The ultrahigh Q2 limit

The ultrahigh Q' limit means that Q' » 4M,'.
This is beyond the range of current experiment,
but asymptotic formulas are of particular interest
as discussed in Sec. I.

As a first step toward determining the power de-
pendence of the form factors on Q' in the ultrahigh
Q' region, we study the generic overlap integral

l(Q)= fd'P "(P,)d'(P, ), (2. !ia)

where u and u' stand for any one of the four deu-
teron wave functions, and p, and p2 are the magni-
tudes of the Lorentz transformed three-momenta
given in (2. 52), i.e., the magnitudes of the inter-
nal relative momenta of the incoming and outgoing
deuterons evaluated in their respective rest
frames. %e will assume that

C~u(P)=~ p, ~p, , (2. 55)

which corresponds to a position space expansion
in Hulthen functions of different range

u(r) n 'i' g e ~"
(2.55)

If we define the nth moment of the coefficients as

M„= Q e)Pi, (2. 57)

then, when the first n moments of the coefficients
are zero, the reduced wave function u(r) will go
like x" at the origin, and the momentum space
wave function will go like p '""if n is even, and

In order to discuss this integral in a reasonably
general way, we assume that each of the four wave
functions has a momentum space expansion of the
form
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p-'"'" if n. is odd.
The problem has, therefore, been reduced to

understanding the behavior of the typical integral

d -- I-"(Q)=~""(~,"~, )(~: ~;)
where, from (2. 52)

(Nonrelativistically, the denominator is of order
Q everywhere except at the end points where it is
of order Q'. ) Away from the end points, the Q4

behavior comes from a Q' behavior from each wave
function, which means that the momentum of each
wave function is large. Hence, we conclude that
the original integral (2. 53) goes at ultrahigh mo-
mentum transfer like

(2. 59)
I(Q) Q

(2N )-.)- (2. 66)

For comparison, the corresponding momenta in
the nonrelativistic case are simply

P,'=P,'+ (P.~-.'Q)'.

The integral (2. 58) can be evaluated exactly by
first integrating over P, in the complex p, plane
and then doing the P, integration by standard
means. The result is

2N M4 (y(+ y~)M [N ii) +)8g 2DO"—al ctal1

( y) -'y))M
2 Y)7$

(2. 6i)P) + Pg 2D()

I y( —y) I Q

where the extra power of Q comes from the volume
of the region (2. 65). [This can be obtained by ex-
panding (2.61).]

Finally, we turn to the question of how the form
factors themselves behave at ultrahigh Q'. Since
the wave functions do not peak in any well defined
region, the behavior of the kinematic factors will
determine what region of the p„p, space domi-
nates the integrand. For example, if an extra
factor of p, can be found in the numerator, it
must be assumed to be of the order Q, and the
integrand is dominated by the end points, whereas
a factor of p, in the denominator will tend to re-
strict the integrand to small values of p, ~M.
Note, however, that a single power of p, in the
denominator will contribute a factor of

where

y, = (M' —P,')'". (2. 62)
P, - g in@, (2. 6V)

It is then a straightforward matter to expand this
result in a power series in Q ', and obtain the re-
sults quoated in Ref. 2.

However, it is useful for our purposes to discuss
the behavior of (2. 58) from another point of view.
From (2.59) we see that the minimum value of P,'
(or p, ') occurs when

since the integrand will reach large Q before con-
vergence is imposed by the wave function.

Finally, when the kinematic factors are thor-
oughly examined, we obtain the following results.

Q-(2N+4) lnQ
Q ~ ()2)

p, =0,
(2.68)

Q- (2N+8)lnQ

Q- (2N+4) lnQ

(2.68)

At these two points, which we shall refer to as the
"end points", one wave function has p = 0 and the
other wave function has

QM
4m 4

Q~4o 4
(2. 64)

p~~ M,

P &Q
(2. 65)

so that the end points are not specifically favored.

One might expect that the integrals would be domi-
nated by contributions from the end points, as is
the case nonrelativistically. However, examina-
tion of the full denominator in (2. 58) shows that,
as Q —~, the denominator is of order Q4 over the
entire region defined by

where we have assumed a Q
4 falloff for the nucleon

electromagnetic form factors.
The behavior of the A. and B form factors follows

from E(l. (1.4), and ignoring the lnQ terms, we
obtain the results given in E(l. (1.9). The final re-
sults depend on N, as discussed in Sec. ID.

We turn now to a discussion of our low Q' re-
sults.

F. The formulas for low Q2

Formulas for low Q' have been obtained pre-
viously, and so we shall take the low Q' limit of
our formulas mainly to show our agreement with
the earlier work. By low Q, we mean that g
= Q /4M4 «1, so it is only necessary to retain
terms of first order in (Q/M)'. However, we
will not assume Q' is so small that it is much less
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Ga = Gest + (2Gus —Gzs)Da' )

GM = GESDM+ GMSDM

(2. 69)

where G» and G» are the isoscalar electric and
magnetic form factors of the nucleon related to

than p, a typical value of the integration variable.
Assuming that the dominant contributions come
from the (++) parts, we will calculate these to
first order in (Q/M)' and the remainder only to
lowest order. Furthermore, we will calculate the
magnetic form factor only to lowest order, since
the leading contribution from this term to A(Q ) is
only of order g anyway.

With these simplifications, the momentum space
formulas can be written (following the standard
style for low Q results)

Gc= GzsDc+ (2Gus Gas)EPc

I", and I'2 by

ES +1S 4M2 +2S t

GMS +ls +2S t

(2.70)

Dc=Dc+Dc ~

D8o D80++ y D8P+-
C C C

Dq —Dq'+ Dq,
D8o D80++ y D80+

Q
— Q Q

D„"=DM"+D, -,
D'=D'"+DE -+D-

M . M M M

where

(2. 71)

and the D's are body form factors involving the
deuteron wave functions. We have

Mg dP
D~ — [QgÃ2+Mg N2Pg('pg 'p)))] qD 4n'

~t+~t- P+ P- + ~8+~8- P+ P-

3Q d p M%)pg~-
4& p 2p 2 PJ SP1 P2

ap' =2Mf —(-,')'"u v, .(), .Q)+ —Mu, .(). t))+(-', )"*~
(

'+U, .~(() Q)(P P)-(P, Q)ll,

Dq'= —' (&gi&2(Px 'Q) ' 4(Pi 'Pm)l 2(px 'Q)(p2 'Q) 2(pi pm)l +2(pl Q6) y

2M dP
frq — @' 4 (3v„v, --,'v„v, )[gP". Q)(P Q)-2(P, P )],

6W2M~' 1 d'p u„ru (2.72)

+
2

'2 2 4 [2(p. 'Q)(p Q)-k(p. 'p)]--,'P, '(p 'l)P.'
2p.'p '

, 2 ..+~&. I'.(p Q)- ' I4P.(p. Q)I.(p Q)+9p,' ', ',. Q

f 4 (+p p~ ( )t ) q' (k P +(i O)(i 0)II

3 2d p Bl~'N- 9pq (~ g)(~ ~
)

4 p mp 2 Qa p- p+'p-

d P I-2~&(P Q)» +~&(P Q)» + " [2(-')"P '( Q) --'(-')'"QP ']
7r

+"", [3~&(p, p)(p Q)-~&p'(p, 0)]j,

— ""-)'+ —" '( +( O)( .@])4pp i -2p@ i ~gp p P+ P- P+' P- ~
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The arguments of the momentum space wave func-
tions have been abbreviated 1, 2, +, or —,de-
pending on whether they are p„p„p„orp [cf.
Eqs. (2. 59) and (2.60)]. P, is the l,egendre poly-
nomial.

As stated above, in the largest terms D~ and
Dz', we retain the integrands accurate to first
order in q. In this case, realizing that if Q/M
«1 then p/M «1 also, we expand (2. 59) to obtain

- w(r)
w(p)Y, „(p)=—— d'r e"'Y (r)

ii()i)a„()))=—J s'i".8"'s'„(n)

v( p) Y,„(p)= —
4

d'r e""Y,u(r)

Mi(n)r (ji)= ——J s re"'r (n)

(2. 74)

p 'Q p + o!
P22=P'+@ 82M2+ 8M'

(2. 73)

!w(r) ",w (r')
0

where n = Me and & is the binding energy of the
deuteron. In all cases x represents a unit vector
in the x direction (for any x).

While the low Q formulas (2.72) are simple
enough, it is possible to reduce them to a single
integral if we transform them to position space.
[Unfortunately, this is not possible for the exact
formulas (2.49).] To do so we use the identities

All the angular functions in the formulas (2.72)
can be expanded in Y, 's so that the only combina-
tions needed are those given above in (2.74). It
also turns out that terms involving the integral
over M) cancel. For the more complicated terms
D~ and D', we note that except for the factor
M, /D, all of the (Q/M)' terms come from the argu-
ments p, and p2, and using a Taylor expansion,
we can express these terms as

d'P D" f(P...P...P,)
0

(2. 75a)sans* S ' "saM* + n(' 0 q')s~ -'(ann'

~ ~

Q' Q'

The last term on the right-hand side of (2.75b), with the Schrodinger operators p, + ()(', gives rise to the
potential corrections included by Coester and Ostebee and also by Gross. Only the first set of terms
was obtained by Friar. ~ In order to remove the potential terms we would have to remove also the last
term from the previous expression (2.75a), but we would then lose the other derivative term (obtained by
Friar) in (2.75b). Hence, from the point of view of our calculation the potential terms are essentially in-
terrelated with the other corrections.

Next, we give the position space form of these low Q results. If 7= Qr/2, and j, is the spherical Bessel
function of order /, then

0(2 2 4 00

Dc= dr j0(~)(u2+ w'+ v, '+ v,') —,+, „, dr j,(z)(u2+ w2)

g2 d2 ~ +72 6+,„. drj, (7) u ——,- + n2 u + w —,+ —,+ o2 w,
0

' dr'

+$2 & 2~ —™Y V Q+ 20 + V Q — 2'
0

6&2M 2~2 2v 2 s) 2 8M 16M dQ ) 2~2

Q2 d2 d2 ) d2 6 ) w d2 6
drj2(r) w —

2 + n ~u+u —
2 + —2+ H ~w ———

2 +—2+ o w2M' dQ2 0 dr &
dr r2 J 2 dr2 r2
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D' — dz 2nvu' — 2zvu-nezo' -' jo 7 +j2 & + —, j2 & +j4 &

0

+M [(2/~3)u][, +(1/~2), ][,( )+,( )]-M (~3,)(—,', [j.( )+j.( )]+ —,', [j.( )+j.( )]I

+Mr [(-',)'~'u)v, g—", [j,(7')+j,(7'}]——,', [j,(7)+j,(~)]]), (2.76)

D„"= dz 2u' -uP -v, ' -2 2v, v, j, 7 + 2use +zv' -v,' + 2v, v, j, v

OO

D~= Ch (2u)' —v,'+ -', v, ')[jo(r) +j~(~)] + v, ~

— u -u) - v, u+ —u) [j,(v) +j, (r)]

+ v, v,WR mj, (r) -j,(r)]I,
Finally, we record here the additional contributions to the magnetic moment and quadrupole moment

presented in Eqs. (1.15) and (1.16). They are written as integrals over the full momentum snace wave
functions and their derivatives (denoted by a prime):

AV

p dp Q+ 2ZO 2Q $0 +—2Q gg'

0 2

+ - (E -M) — (W2u -u)) iv,'+ —' + 7v,'+ — +—37v,' —16—1 1 !
q v~ u 8vg u) vg

vS va ],
' p 5va ' p 35 ' p

E2v t (W2u u) ) — u v
g

+ —u) v t ~

0

2v2 2! 1 „~ 2 „„11~,Qv2+ p'dp p' iu+ —u) u)" ——,'p'(v, v,"-2v, v,")+ pul'+ uu)

+(,2 (
— puu) ' —m' — uu) + ~

(2.77)

+ [(u+~2u))(pv, '+-3v, )+ (v 2u -u))(pv,'+ -'v, )]+ —,uu)

+ F2 p dp (—pu'10 +pvqvg —3uu)) + —pB + uu) + —u) + v(
6W2 p 2 2 22W2

s t E(E+M 15

+ [(~2u -u))(pv, '-v, )+ (2u+M u)()p,'v+-,' v)] +——
p

(~2u -u))v,4&3 p +- 2 —p'
i5 @+I 3EE+M

%e now turn to a discussion of the numerical evaluation of the integrals.

G. Numerical evaluation of the integrals

The two-dimensional integrals in Eq. (2.49)
were carried out in a straightforward manner. For
a given value of z, a vector of values of the inte-
grand were prepared for each 8~ on a. regularly
space grid with spacing ~p and maximum value
P „. The integrals were performed using a Simp-
son's rule over the &p, &z grid. At each Q'

point, we first evaluate the integrQIs using G»
=1.0 (0.0) and G„z ——0.0 (1.0), and then from the
linear Eq. (2.69) we determine the deuteron body
structure functions D~, Dz, D~, D~, D~, and Dg'.
The full deuteron structure functions can then be

found quickly for arbitrary nucleon form factors
without costly evaluation of the integrals for each
case.

Tests were made to establish that the numerical
procedure was convergent as a function of the grid
sizes 4P and &z and for the end point P „. The
criterion for convergence was that a given de-
crease in step size or increase in p „should
change the results for the charge, quadrupole, and
magnetic contributions to A, Eq. (1.4}, by less
than 1% over the entire range of Q' from 0 to 200
fm '. Each parameter was tested independently while
the other two were set to a convergent value. The
final parameters used were
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p,„=12fm ',
&p=—0.04 fm ',
&z =-0.01.

The maximum value of p, , for which momentum
space wave functions are required is given by Eq.
(2. 59) with s =1.0, P =P „, and Q =Q „'. For
Q „'= 200 fm ', this gives p» —24. 5 fm '. A
table of regularly spaced p-space wave functions
with grid size ~p&. 04 fm ' mas prepared in ad-
vance of the structure function calculations. %ave
functions at arbitrary p mere then obtained by
linear interpolation from the table. Approximately
45 seconds of computer time on an IBM 370/188
were required to evaluate all the structure func-
tions at one value of Q for one choice of nucleon
form factors.

The numerical values for the deuteron wave
functions in position and momentum space for the
relativistic models mere readily available using
the coefficients for the expansion in hankel func-
tions (of imaginary argument) given by Buck and
Gross. e The numerical values for the Reid soft
core mave functions in momentum space were ob-
tained here by numerical Fourier transformation
from the values given in r space. ' For the

Holinde-Machleidt (HM) and Lomon-Feshbach (LF)
models, values were obtained from an expansion
in hankel function (identical to that used in Ref. 8)
fit to the original points in momentum space or
position space as supplied by the authors. The
position space wave functions used in the nonrela-
tivistic formulas mere obtained by analytic Four-
ier transform of the momentum space functions.
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