Charge distribution in the thermal neutron fission of ²⁴⁵Cm: Fractional cumulative yields of ¹³⁵I and ¹⁴⁰Ba

Tarun Datta, S. P. Dange, S. B. Manohar, A. G. C. Nair, Satya Prakash, and M. V. Ramaniah Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India

(Received 6 July 1979)

Fractional cumulative yields for ¹³⁵I and ¹⁴⁰Ba have been determined in the thermal neutron induced fission of ²⁴⁵Cm following the respective daughter product activities. The fractional cumulative yield values obtained are 0.951 ± 0.014 and 0.969 ± 0.006 for ¹³⁵I and ¹⁴⁰Ba, respectively. The fractional cumulative yield value for ¹³⁵I has been compared with the one reported earlier and an attempt has been made to correlate the value to the neutron to proton ratio of the fissioning nucleus. The data have been analyzed to examine the effect of shells on the width of the charge distribution. This indicates a narrower width of charge distribution for mass chain 135 and a broader width for mass chain 140 compared to normal width of the distribution.

NUCLEAR REACTIONS, FISSION Thermal neutron fission of ²⁴⁵Cm, measured FCY, data analyzed in terms of neutron to proton ratio, odd-even effect and shell effect.

INTRODUCTION

Charge distribution studies in the low energy fission of actinide elements have indicated the effect of the 82 neutron shell on the width parameter (σ) of the distribution. Recent studies by Tokay et al.¹ have revealed the isotopic mass dispersion discontinuities in various fission processes which have been attributed to the neutron shell effect. In ${}^{235}U(n_{th}, f)$, several authors ${}^{2-6}$ have pointed out that the width of the distribution in the mass region 132–136 is smaller than the normally observed σ value (0.56 ± 0.06) with minimum around mass 136. In 252 Cf(sf), a low σ was indicated for the 135 mass chain, as reported earlier from this laboratory.⁷ It was therefore considered interesting to study the influence of shells in the mass region 130-140 in different fissioning systems of comparable excitation energies.

In ²⁴⁵Cm (n_{th}, f) the fractional independent yield (FIY) of ¹³⁵Xe has been determined by Harbour and Troutner⁸ using direct gamma counting. However, the width of the charge distribution for the mass chain 135 in ²⁴⁵Cm (n_{th}, f) , as one would expect from the reported⁸ ¹³⁵I fractional cumulative yield (FCY), is higher in contrast to the low value observed for the same mass chain in other fissioning systems. Further, an analysis of the ¹³⁵I FCY values in terms of neutron to proton ratio in different fissioning systems indicates that the FCY value for ¹³⁵I as reported in Ref. 8 is low. Therefore, a redetermination of the FCY of ¹³⁵I in ²⁴⁵Cm (n_{th}, f) was considered worthwhile. In addition, the FCY value for ¹⁴⁰Ba has also been determined for the first time in ²⁴⁵Cm (n_{th}, f) .

EXPERIMENTAL

Curium-244 obtained from the Oak Ridge National Laboratory was analyzed mass spectrometrically in this laboratory and the isotopic composition (atom %) was found to be as follows: 244 Cm -93.86%, ²⁴⁵Cm-2.01%, ²⁴⁶Cm-4.13%. As the fission cross section of ²⁴⁵Cm is about 1660 times that of ²⁴⁴Cm. more than 98% of the fissions were due to ²⁴⁵Cm. Electrodeposited target of 244 Cm(~ 80 µg) was prepared from isopropyl alcohol medium on gold plated aluminum foil.⁹ The target was covered with a 0.0025 cm thick superpure aluminum foil and was irradiated in the swimming pool type reactor "Apsara" in a flux of $\sim 1.2 \times 10^{12} n/\text{sec cm}^2$. The length of the irradiation was varied from 1 to 6 h depending on the nuclide of interest. After each irradiation, the catcher foil was mounted on a 0.06 cm thick aluminium plate and was counted in a fixed geometry on a 60 cc Ge(Li) detector coupled to a 4096 channel analyzer. The resolution of the detector was 1.5 keV at 122 keV and 3.9 keV at 1332 keV. The direct gamma counting of the 249.6 keV and 1596 keV gamma rays of ¹³⁵Xe^s and ¹⁴⁰La, respectively, was carried out for optimum time at suitable intervals. To avoid pile up the counting rate was maintained low enough to keep the dead time below 5%. The linear compton subtraction was done visually. In order to confirm the methodology used in the determination of ¹⁴⁰Ba FCY in the present work, the same was also redetermined in 233 U(n_{th} , f). The obtained 140 Ba FCY value in ${}^{233}U(n_{th}, f)$ was in agreement with the earlier reported value.¹⁰

CALCULATIONS

The isobaric mass chains 135 and 140 are as follows:

¹³⁵ Te	$15.5\%^{135}Xe$	$^{135} Xe^{\epsilon} - \frac{\beta}{\beta}$	→ ¹³⁵ Cs
18 s $^{140}Cs \xrightarrow{\beta^-}$	6.59 h 84.5% ¹⁴⁰ Ba_β ⁻	9.17 h → ¹⁴⁰ La <u>β</u>	$2 \times 10^6 \text{ y}$ ¹⁴⁰ Ce
64 s	12.8 h	40.2 h	stable.

The half-lives of the isotopes have been taken from Ref 11. The branching ratio of 135 I to 135 Xe^m is 15.5%.¹² Since the half-lives of the precursors of ¹³⁵I and ¹⁴⁰Ba are short compared to the irradiation times as well as the intervals between the end of irradiation and the time of the first counting, the isobaric chains could be assumed to consist of 135 I, 135 Xe^m and 135 Xe^s for mass chain 135 and 140 Ba and 140 La for mass chain 140. In the case of 135 I, the decay to $^{135}Xe^{f}$ is partly through $^{135}Xe^{m}$, hence the growth and decay of ¹³⁵Xe^m and ¹³⁵Xe^f during the irradiation and in the time interval up to the mean counting time depend on their branching ratios, relative independent yields, and their halflives. The ratio of the independent yields of metastable and ground states for ¹³⁵Xe has been assumed as 1.0 in the absence of any data. Since 84.5% of ^{135}I decays to $^{135}Xe^{\text{e}}$ and the half-life of 135 Xe^{*m*} is short compared to the time of irradiation and the mean counting time, the error in FCY of ¹³⁵I due to the above assumption is negligible. The growth of the activity of the daughter product 135 Xe^{ℓ} (249.6 keV) was used to determine the 135 I FCY value taking into account the contribution of 135 Xe^{*m*} to 135 Xe^{*t*}. Detailed calculations are given elsewhere.⁷ For the mass chain 140, consisting of only ¹⁴⁰Ba and ¹⁴⁰La, the peak area A of 1596 keV gamma ray of ¹⁴⁰La was related to the initial number of atoms of ¹⁴⁰Ba (N_{Ba}^{0}) and that of ¹⁴⁰La (N_{La}^{0}) independently formed at the end of the irradiation by Eq. (1):

$$Y = K X N_{Ba}^0 + K N_{La}^0, \qquad (1)$$

where

$$Y = \frac{A t'}{t''} \frac{\lambda_2 e^{\lambda_2 T}}{(1 - e^{-\lambda_2 t})(1 - e^{-\lambda_2 t'})}$$
(2)

and

$$X = 1 - \frac{\lambda_2}{\lambda_2 - \lambda_1} \left[1 - \frac{\lambda_2}{\lambda_1} \left(\frac{1 - e^{-\lambda_1 t}}{1 - e^{-\lambda_2 t}} \right) \times \left(\frac{1 - e^{-\lambda_1 t'}}{1 - e^{-\lambda_2 t'}} \right) e(\lambda_2 - \lambda_1) T \right], \quad (3)$$

where K is the net counting efficiency for 1596 keV gamma ray, λ_1 and λ_2 are the decay constants of ¹⁴⁰Ba and ¹⁴⁰La, respectively, t is the time of irradiation, and T is the interval between the end of the irradiation and the starting time of counting. t' is the clock time while t" is the live time of counting. Measurements with varied t were carried out and the calculated values of X and Y were fitted into a straight line using least-squares analysis (as shown for ¹³⁵I in Fig. 1).

The FCY of 140 Ba is given by Eq. (4):

FCY
$$(^{140}\text{Ba}) = \frac{N^0_{\text{Ba}}}{N^0_{\text{Ba}} + N^0_{\text{La}}}.$$
 (4)

According to Eq. (1), it is given by

FCY of ¹⁴⁰Ba =
$$\frac{\text{Slope}(N_{Ba}^{0})}{\text{Slope}(N_{Ba}^{0}) + \text{Intercept}(N_{La}^{0})}.$$
 (5)

RESULTS

Table I shows the data on the measurements of the FCY of ¹³⁵I and ¹⁴⁰Ba. According to Wahl *et al.*,^{2'} the charge dispersion in an isobaric mass chain follows the Gaussian distribution as given by

$$Y_{Z}^{\text{cum}} = (2\pi)^{-1/2} \sigma^{-1} \int_{-\infty}^{Z+0.5} \exp[-(Z-Z_{p})^{2}/2\sigma^{2}] dZ \qquad (6)$$

where Y_z^{cum} is the cumulative yield up to Z + 0.5, Z_p is the most probable charge for the mass chain, and σ is the width parameter of the distribution. The normal value of σ was observed to be 0.56 ± 0.06 by the same author.² The probability plot of FCY vs $(Z - Z_p)$ for different mass chains for a given fissioning nucleus or, for a given mass chain in different fissioning nuclei should be a straight line for a defined σ value. Figure 2 shows such a plot consisting of two straight lines drawn for $\sigma = 0.50$ and 0.62 as limits of the normal value of $\sigma = 0.56 \pm 0.06$. The FCY values for ¹³⁵I in different fissioning nuclei and in ²⁴⁵Cm(n_{th} , f) as ob-

FIG. 1. Plot of Y vs X for ${}^{135}I_{-}{}^{135}Xe^{s}$ system.

135 _I			¹⁴⁰ Ba			
Ser.no.	Slope	Intercept	FCY	Slope	Intercept	FCY
• 1	31,115	1.722	0.947	1 536 580	38 888	0.975
2	6.825	0.310	0.956	2184400	82979	0.963
3	31.757	1.250	0.962	261 663	10 025	0.963
4	35.410	2.695	0.930	318 367	7833	0.975
5	59.356	2.232	0.963	436 373	13 190	0.970
Average	e FCY value	0.951 ± 0.014			$\textbf{0.969} \pm \textbf{0.0}$	06

TABLE I. Fractional cumulative yields of 135 I and 140 Ba in the thermal neutron fission of 245 Cm.

tained in the present work and the one reported by Harbour and Troutner⁸ are plotted in the same figure where Z_{p} values for the 135 mass chain in different fissioning systems are obtained using the empirical relation as given by Wahl *et al.*,²

$$Z_{p} - Z_{\text{UCD}} = \mp (0.45 \pm 0.10) \tag{7}$$

for heavy or light fragments, as the case may be. $Z_{\rm UCD}$ is the most probable charge for the fission product mass chain calculated using the unchanged

charge density (UCD) hypothesis. In ²⁴⁵Cm(n_{th} , f) system the Z_p value for the mass chain 135 (A'=136.4), as obtained using Eq. (7), is 52.78. Using this Z_p value in the plot of Fig. 2, the observed FCY (0.951) indicates $\sigma \sim 0.45$. In a similar fashion a Z_p value (54.88) for the mass chain 140 was obtained using A'=141.80 as calculated based on Ref. 8. The Z_p for the 140 mass chain was also calculated following the prescription of Nethaway¹³ (54.84) and Coryell (54.51).¹⁴ The ¹⁴⁰Ba FCY value

FIG. 2. Plot of ¹³⁵I FCY vs $(Z - Z_p)$ in different fissioning nuclei.

(0.969) for the average Z_{p} value (54.75) shows a σ value ~0.85.

DISCUSSION

The value of FCY for ¹³⁵I obtained in this work is 0.951 ± 0.014 which is different from the value (0.83 ± 0.02) reported by Harbour and Troutner⁸ for ${}^{245}Cm(n_{th}, f)$. The value of Z_{*} obtained using Eq. (7) is 52.78. In an attempt to examine the reason for the above difference, a comparison of the reported FCY values of ¹³⁵I in different fissioning nuclei of comparable excitation energies is made as shown in Table II. The values are plotted in Fig. 3. It is seen that the FCY of ¹³⁵I increases with the increase of neutron to proton ratio (N/P)of the fissioning nucleus. This trend is understandable since with increasing N/P ratio of the fissioning nucleus, the Z_{UCD} value and hence the corresponding Z_p value decreases for a given mass chain. Thus, for ¹³⁵I, the FCY increases with decreasing Z_b value [or with increasing $(Z - Z_b)$ value] for a given σ value as apparent from Eq. (6). However, the calculated Z_{b} values are dependent on the adequacy of Eq. (7) for different fissioning nuclei as well as on the knowledge of the prompt neutron number for calculation of the A' values for ¹³⁵I. Eventually, the close correspondence of the calculated Z_{p} values using Coryell's¹⁴ method with those obtained using Eq. (7) (as shown in Table II) gives credence to the use of the latter. Hence for

FIG. 3. Plot of ^{135}I FCY vs N/P ratio of different fissioning nuclei.

Fissioning system	A'	N/P	Z_p Coryell	Z_{p}	Z_{p} $\sigma = 0.56 \pm 0.06$	FCY
233 U	136.1	1.5430	52,99	53,06	53.00 ± 0.04	0.81 °
235 U	136.0	1,5652	52.53	52,57	52.48 ± 0.01	0.965°
²³⁹ Pu	136.1	1.5532	52.79	52.86	52.93 ± 0.05	0.849°
²⁴¹ Pu	136.1	1.5745	52.37	52.42	52.47 ± 0.02	0.968°
^{245}Cm	136.4	1.5625	52.70	52.78	52.57 ± 0.08	0.951^{a}
					52.97 ± 0.02	0.83 °
²⁴⁹ Cf	136.7	1,5510	53.01	53.13	52.25 ± 0.02	0.63 °
²⁵² Cf	136.2	1.5714	52.21	52.40	52.40 ± 0.12	0.975 ^b

TABLE II. Z_p values for the 135 mass chain in various fissioning systems.

^a From the present work.

^b From Ref. 7.

^c From Ref. 8.

¹³⁵I, FCY increases with the increase in N/P ratio of the fissioning nucleus due to decrease in the Z_{\bullet} value. Figure 3 shows that the value obtained in the present work fits well with the expected trend (as shown by the dotted guideline in Fig. 3). The reported value of Harbour and Troutner⁸ is appreciably lower than what one would expect from the trend. The value of FCY for ¹³⁵I obtained in this work gives a value of ~0.45 for σ which is lower than Wahl's normal value of $\sigma = 0.56 \pm 0.06$. It has been pointed out by several authors that the deviation in the σ value from the normally expected value (0.56 ± 0.06) could be due to a shell effect^{15, 16} and/or an odd-even effect.¹⁷⁻²¹ In the 235 U(n_{th} , f) system, a minimum in the σ value exists around the mass region 132-136,²⁻⁶ which was attributed to the 82-neutron shell effect by Wunderlich.⁵ The observed low σ value in the mass chain 135 in 245 Cm (n_{th}, f) could therefore be attributed to the shell effect analogous to that in 235 U(n_{th} , f). However, the probable effect of nucleon pairing (odd-even effect) in modulating the σ value could not be ruled out as shown by several authors.¹⁷⁻²¹ In fact, it was indicated by Clerc et*al.*²⁰ that the width parameter σ is an oscillating function of the fission product mass in the lighter mass region in the 235 U(n_{th} , f) system. The oscillatory trend of σ was attributed to the odd-even effect in general and also to the magic shell effect for nuclides at the proximity of magic shells.

The possible influence of nucleon pairing on the σ value of the fission product mass chain 135 was evaluated following the prescription of Amiel *et al.*^{17,18} pertaining to a heavy mass chain as re-

quired in the present work. The normalized fractional independent yields of the isobaric nuclides of the fragment chain 136 (which leads to product the mass chain 135 following neutron evaporation) were calculated for various σ values with $Z_p = 52.78$. These yield values were corrected for the oddeven effect according to Eq. (8):

$$Y(A, Z) = Y_{\text{normal}}^{(A, Z)} (1 + 0.22\delta_{p} + 0.08\delta_{N}), \qquad (8)$$

where $Y_{norma1}^{(A,Z)}$ is the initial normalized fractional independent yield for fragment (A,Z), δ_P or δ_N is +1 or -1 for even or odd number of protons or neutrons as the case may be. The sum of the corrected fractional independent yields was normalized to unity. It was observed that for $\sigma \sim 0.50$, the odd-even effect corrected normalized FCY value for ¹³⁵I compared well with the determined FCY value. The low value of σ (~0.45) for the 135 mass chain could therefore be attributed to the odd-even effect as well as the shell effect.

In the 140 mass chain, the determined FCY value for ¹⁴⁰Ba (0.969±0.006) indicates a high σ value ~0.85 for the calculated average Z_p value 54.75. Large σ values for the 140 mass chain were also observed in ^{233, 235}U and ²⁴⁹Cf.^{10,22} The odd-even effect in the fragment mass chain 142 (A' = 141.8for the 140 mass chain) was evaluated in a similar fashion as in the case of ¹³⁵I for various σ values with Z_p value 54.75. It was seen that the corrected normalized FCY of ¹⁴⁰Ba for σ ~ 0.75 agreed well with the determined FCY value. Therefore the high σ value for the 140 mass chain could be due to the odd-even effect and absence of the shell effect.

²A. C. Wahl, A. E. Norris, R. A. Rouse, and J. C. Williams, in *Proceedings of the Second International*

¹R. K. Tokay and M. Talat-Erben, Phys. Rev. C <u>19</u>, 871 (1979).

Atomic Energy Symposium on the Physics and Chemistry of Fission, Vienna, 1969 (IAEA, Vienna, 1969), p. 813.

- ⁴P. O. Strom, D. L. Love, A. E. Greendale, A. A. Delucchi, D. Sam, and N. E. Ballou, Phys. Rev. <u>144</u>, 984 (1966).
- ⁵V. F. Wunderlich, Radiochim. Acta 7, 105 (1967).
- ⁶W. Rudolph, K. L. Kratz, and G. Herrmann, J. Inorg. Nucl. Chem. 39, 753 (1977).
- ⁷S. B. Manohar, Tarun Datta, S. S. Rattan, Satya Prakash, and M. V. Ramaniah, Phys. Rev. C 17, 188 (1977).
- ⁸R. M. Barbour, D. E. Troutner, and K. W. MacMurdo, Phys. Rev. C <u>10</u>, 769 (1974).
- ⁹A. Ramaswami, S. P. Dange, Satya Prakash, and M. V. Ramaniah, Radiochim. Acta 19, 46 (1973).
- ¹⁰D. E. Troutner and R. M. Harbour, J. Inorg. Nucl. Chem. 34, 801 (1972).
- ¹¹W. Seelmann-Eggebert, G. Pfennig, and H. Munzel, *Karlsruher Nuclidkarte*, 4 Auflage 1974 (Institut fur Radiochemie, Kemforschungszentrum, Karlsruhe, 1974).

- ¹²H. Feuerstein and J. Oschinski, Inorg. Nucl. Chem. Lett. 12, 243 (1976).
- ¹³D. R. Nethaway, Report No. UCRL-51538, 1974.
- ¹⁴C. D. Coryell, M. Kaplan, and R. D. Fink, Can. J. Chem. 39, 646 (1961).
- ¹⁵H.O. Denschlag, J. Inorg. Nucl. Chem. <u>31</u>, 1873 (1969).
- ¹⁶S. M. Qaim and H. O. Denschlag, J. Inorg. Nucl. Chem. <u>32</u>, 1767 (1970).
- ¹⁷S. Amiel and H. Feldstein, in *Proceedings of the Third* International Atomic Energy Symposium on the Physics and Chemistry of Fission, Rochester, 1973 (IAEA, Vienna, 1974), Vol. I, p. 66.
- ¹⁸S. Amiel and H. Feldstein, Phys. Rev. C <u>11</u>, 845 (1975).
- ¹⁹N. G. Runnalls, D. E. Troutner, and R. L. Ferguson, Phys. Rev. 179, 1188 (1969).
- ²⁰H. G. Clerc, W. Lang, H. Wohlforth, K. H. Schmidt, H. Schradar, K. E. Pferdekamper, and R. Jugmann, Z. Phys. <u>A274</u>, 203 (1975).
- ²¹G. Siegert, H. Wollnik, J. Freif, R. Decker, G. Fielder, and B. Pfeiffer, Phys. Rev. C 14, 1864 (1976).
- ²²MattEichor and D. E. Troutner, J. Inorg. Nucl. Chem. 33, 1543 (1971).

³A. Notea, Phys. Rev. 182, 1331 (1969).