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Some limitations of the conventional time-dependent Hartree-Pock method for describing complex
reactions are noted, and one particular ubiquitous defect is discussed in detail: the post-breakup spurious
cross channel correlations which arise whenever several asymptotic reaction channels must be
simultaneously described by a single determinant. A reformulated time-dependent-$-matrix Hartree-Pock
theory is proposed, which obviates this difficulty. Axiomatic requirements minimal to assure that the time-
dependent~matrix Hartree-Fock theory represents an unambiguous and physically interpretable
asymptotic reaction theory are utilized to prescribe conditions upon the definition of acceptable asymptotic
channels. That definition, in turn, defines the physical range of the time-dependent-4-matrix Hartree-Fock
theory to encompass the collisions of mathematically well-defined "time-dependent Hartree-Fock droplets. "
The physical properties of these objects then circumscribe the content of the Hartree-Fock single
determinantal description. If their periodic vibrations occur for continuous ranges of energy then the
resulting "classical" time-dependent Hartree-Pock droplets are seen to be intrinsically dissipative, and the
single determinantal description of their collisions reduces to a "trajectory" theory which can describe the
masses and relative motions of the fragments but can provide no information about specific asymptotic
excited states beyond their constants of motion, or the average properties of the limit, if it exists, of their
equilibrization process. If, on the other hand, the periodic vibrations of the time-dependent Hartree-Fock
droplets are discrete in energy, then the time-dependent-3-matrix Hartree-Pock theory can describe
asymptotically the time-average properties of the whole spectrum of such periodic vibrations of these
"quantized" time-dependent Hart''ee-Fock droplets which are asymptoticaHy stationary on a time-averaged
basis. Such quantized time-dependent Hartree-Pock droplet spectra promise the closest analog to the rich
array of asymptotic channel eigenstates in the exact Schrodinger theory which single time-dependent
Hartree-Pock self-consistent determinants might describe. Whether the time-dependent Hartree-Fock
droplets are classical or quantized is determined by the mathematical properties of the periodic solutions of
the time-dependent Hartree-Pock equation. If the droplets are in fact classical, then the question remains
open whether an explicit requantization, by assumption, could consistently restore the close structural
analogy with the exact theory. %'e argue that if the statistical interpretation of the single determinantal
wave function, which is central to the present restructuring of the conventional time-dependent Hartree-
Pock description, were to be found inadmissible, then no basis would remain for considering the
determinant as a "wave function" in the Schrodinger sense. Finally, we note that the conceptual basis of
this time-averaged 3-matrix theory need not be restricted to the time-dependent Hartree-Pock theory, but
might apply as well to other nonlinear Schrodinger-type models which purport to provide an approximate
wave function to describe physical reaction processes.

NUCLEAR REACTIONS Structural analysis of scattering theory for time-depen-
dent Hartree-Fock single determinantal wave functions; scattering matrix de-
fined as a time average; channels labeled by time-averaged properties of peri-
odic solutions; time-averaged channel orthogonality; classical and quantal time-

dependent Hartr ee-Pock droplets.

I. INTRODUCTION

A. The numerical time4ependent Hartree-Fock method

The Hartree-Pock, or "average field" method
for describing complex systems, either in their
stationary states" or as they evolve in time"
is almost as old as the wave mechanics itself.
The practical applications of stationary state
Hartree-Pock methods also extend far back in
history, and the use of time-dependent Hartree-
Fock &methods to calculate dynamical features of
many-body systems is quite well established.

%'ithin this long history, a novel role has re-

cently been cast for the method with the demon-
stration' that numerical time-dependent Hartree-
Fock (TDHF) model calculations for plausibly
realistic systems with Skyrme-type forces could
be executed in modern computers. Subsequently,
the restriction to one dimension' ' and to two
dimensions' "were overridden, although the
practical restriction (arising from the still ex-
horbitant cost of including six dimensional inte-
grals in the numerical calculation) to radial 5-
function forces still remains. "

These developments introduced a proliferating
technique in the study of complex nuclear sys-
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tems: the numerical experiment, under which
the properties of a complex mathematical system,
like the TDHF equations, is studied by cal.culating
numerical results and studying their behavior for
clues to the nature of the mathematical system
which generated them. "

The goal. of the present work is to place these
numerical experiments into a context appropriate
for their interpretation by studying the specific
restrictive consequences of the single-deter-
minantal assumption for a wave mechanical.
reaction theory.

It should perhaps be noted that some of us set
out at first with the suspicion that such a gross
simplification as the single-determinantal approx-
imation must qualitatively restrict the physical.
range of the resulting theory, and with the expec-
tation that a valuable service could be performed
by listing and studying such deficiencies. " Such
an attitude is not uncommon among researchers
in the field, although sometimes it is stated more
obliquely as in the claim that TDHF is a "clas-
sical" theory, or in the expectation that TDHF
can describe only mean values of such quantities
as fragment excitation energies.

However, we set for ourselves the requirement
that our criticism has also to be sharp and

specific, a requirement which turns out to be a
substantial burden. Not surprisingly, for one
must expect that famil. ies of systems might be
constructed such that the Hartree-Fock approx-
imation improves monotonically with certain
variable parameters (such as, e.g., the range of
the two-body interaction), offering prospective
counterexamples to any too broad a claim of de-
ficiency. Thus any valid criticism must somehow
either incorporate or elude such specific proper-
ties. As a result, we found that specific proof of
qualitative deficiency is not easy to marshal
against TDHF.

Nevertheless, there emerged one ubiquitous
qualitative flaw in the TDHF reaction theory: the
occurrence of post-breakup spurious cross channel
correlations (Sec. III), which afavays occur when-
ever a single determinant is obliged to describe
many reaction channels. This deficiency must
therefore as a matter of principle afflict any at-
tempted description of a multichannel. reaction by
the conventional initial-value TDHP description.
(Note that this is a difficulty essentially related
to the theory as a t'eaction theory, and is irrel-
evant for any application involving only bound
states. ) Moreover, even this difficulty, we found
can be circumvented within the single-determin-
antal restriction, but only by a complete restruc-
turing of the conventional. initial-value theory,
which we refer to as the time-dependent-8-

matrix Hartree-Fock (TD-8-HF) theory, ""
TD-8-HF takes the single-determinantal. restric-

tion to comprise the essential element of the
TDHF method. From such a viewpoint the TDHF
equation is a dynamical system anal. ogous with the
time-dependent Schrodinger equation (albeit ap-
proximately), capable of generating a time-de-
pendent solution for every possible initial condi-
tion (within its determinantal restriction). Then
one is l.ed to a sharp structural question: How

does the restriction to single determinants alter
the qual. itative structure of the TDHF reaction
theory as compared with the Schrodinger asymp-
totic reaction theory 7 This question then emerges
as the main target of the present research.

We find that the answer lies in still unknown

properties of the TDHF periodic solutions. In
particular, a remarkably compl. ete analogy to the
Schrodinger reaction theory can be realized within
the dynamics of single determinants if (a) periodic
solutions to the nonl. inear TDHF equation are
al. lowed to play the role of stationary Schrodinger
solutions, and if (b) the spectrum of periodic
TDHF solutions is discrete in energy. 'The re-
sulting theory, however, predicts measurements
only of time-averaged properties of the periodic
solutions, which here substitute for the eigen-
values which characterize the asymptotic eigen-
states of the exact Schrodinger theory.

Otherwise the content of the TDHF reaction
theory is seriously restricted by the nonorthogon-
ality of energy-degenerate asymptotic states. It
can then describe trajectories, but provides no
information on the internal. states of the emergent
droplets, apart from average values of asymp-
totically conserved quantities such as energy and
angular momentum.

Thus, although TDHF is surely not an exact
theory, it m3y nevertheless be recast into a
structurally faithful image of the exact theory,
provided the (still unknown) properties of its
periodic spectrum are suitable.

In Sec. II we review the bases of the conven-
tional. TDHF numerical method, noting the economy
of its (single) assumption and the remarkable
range of qualitative features of nuclei'8 which that
assumption incorporates.

In Sec. III we outline briefly the several ways in
which, for all. its economy and appropriateness,
conventional. TDHF is an aPProximate theory. "
Of these we focus in Sec. IV on one, "'"the in-
terpretation of the postbreakup asymptotic phase,
and especially the postbreakup spurious cross
channel correlations which it, inevitably, involves.

In Sec. V a restructuring of the single-determi-
nantal assumption is developed, the TD-8-Matrix
HF method, which succeeds in eliminating the
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post-breakup spurious cross channel correlations,
and expands the theory by introducing many wave
functions while still remaining within the single-
determinantal assumption for each wave function
and the self-consistent Hartree-Fock description
of its time evolution (considered as Axiom I of the
theory). This method focuses upon overlap am-
plitudes, " '

(C~l C q), among the single-determi-
nantal solutions allowed in the theory as funda-
mental for extracting its physical content. Indeed
this statistical interpretation of the determinantal
wave amplitudes, which are here to be interpreted
on the time average, comprises Axiom II of the
present theory.

In Sec. VI, two minima/ requirements are
ascertained for the TD-8-HF theory (or for any
time-dependent theory} to provide an asymptotic
description of reaction processes analogous to
that of the exact Schrodinger theory. The implica-
tions of these requirements for the exhaustive
labels which can specify final state reaction chan-
nels in the single-determinantal, self-consistent
time-dependent framework are extracted. One
finds that these minimal requirements can be
satisfied by requiring the channels to describe
stationary Hartree-Fock solutions, and (pro-
vided the measurements predicted by the theory
are stipulated to be time-averaged measurements)
periodic TDHF solutions for each emergent
fragment. Then the theory describes the collisions
of mathematically mell-definable objects which
we refer to as "TDHF droplets. " The correspond-
ing asymptotic reaction channel. states are as-
sociated one to one with the periodic TDHF
vibrations of the isolated droplets.

In Sec. VII, the properties of the TDHF droplets
and their reaction channels are discussed. In

particular, the close interrelationship between the
consistent application of the statistical interpre-
tation and the mutual orthogonality of the reaction
channels is analyzed in detai1. . The resu1t is that
mutual channel orthogonality, on a time-averaged
basis, is, or is not, a property of the theory de-
pending on whether the periodic spectrum is, or
is not, discrete in energy. Thus two qualitative
possibilities emerge: (a) the continuous periodic
energy spectrum, which we show imp1. ies "in-
trinsically dissipative" TQHF droplets, and al-
lows only a "trajectory" theory, describing as-
ymptotically only the realtive motion of "thermal-
ized" droplets; (b} the discrete periodic energy
spectrum, for which the theory can predict re-
action amplitudes to each member of the discrete
set of asymptotic reaction channels, in full
analogy with the exact Schrodinger reaction theory.

Section VIII discusses the general bases for the
central assumption of the theory (Axiom II) that

the wave function, during each instant of time in
the interaction interval, obeys the statistical as-
sumption of quantum mechanics as regards the
transition amplitude to other states, which evolve
into the future along different dynamical trajec-
tories. The implication is emphasized that the
whole TDHF method woul. d be discredited as a
proper quantum reaction theory, if this statistical
interpretation were shown to be inadmissible.

In Sec. IX the application of this statistical
interpretation to the TDHF wave functions in the
TD-8-HF method is seen to depend not at all
upon the specific properties of single-determi-
nantal wave functions. Therefore, one concludes
that it offers prospect of application to a class
of nonlinear models which provide an approximate
time-dependent Schrodinger wave function and
have solutions which satisfy certain periodicity
and translational properties. At this level of
abstraction, the present method is seen to cir-
cumvent the difficulties which follow from the loss
of the superposition principle by a careful selec-
tion of acceptabl. e continuum states to which the
statistical interpretation of quantum mechanics
shall apply.

Section X summarizes the results and conclu-
sions of this work.

II. CONVENTIONAL INITIAL-VALUE TIME-DEPENDENT
HARTREE-NOCK THEORY

%'e consider the numerical time-dependent
Hartree-Fock method"" which so economically
and completely incorporates the qualitative fea-
tures of Nuclear Fermidynamicsx, xs into
single assumption that the exact solution, 0,
will be approximated as

a single determinant. This assumption, imposed
as a restriction on the same variational principle
whose unrestricted variation yields the time-
dependent Schrodinger equation

(a-ins/sf)e =o

leads to the constant-(K) Hartyee Fock-equaiion, ~o-3'

X[@]C =(X -(X"'-a))e =its/sic (3)

to describe the time evolution of the determinantal
wave function. Then, the statement that

'I

c(i)l =,. =c., (4)

specifies the initial condition, whence Eq. (3)
determines" "the solution 4 (i) for all subsequent
times.

Within its single-determinantal assumption the
TDHF method incorporates several qualitative
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features remarkably appropriate for nuclear
systems. "'8 In particular, it describes small,
finite, and self-bound systems; it seems to allow
very naturally for initially very disequilibrized
states, and for substantial matter flow, and the
consequent (sometimes qualitative} global alter-
ation of the self-consistent nuclear field. Thus
it offers promise of structural relevance to the
long mean free path of nucleons inside the nu-
cleus4' 4' (which property follows from the Pauli
exclusion principle and allows the shell model
behavior of nuclei to occur48'4'); to the distinctly
finite number of nucleons in the nucleus, and the
consequent granularity of their single-particle
spectra (which properties leads to Strutinsky"
corrections of the collective potential energy
surfaces'0 ' and to corresponding structure in
inertial" "and presumably, the dissipation
parameters"'"'); and to the strong equilibriza-
tion tendency which is guaranteed by the initial
conditions of the heavy ion reaction problem. "
In addition, the method is constructed specifically
to describe the self-bound property which nuclei
share, and the response of the average field to
matter flow.

We emphasize that the successful incorporation
of these several important qualitative physical
features into the concise assumption that the wave
function is a single determinant, which the time-
dependent Hartree-Fock method achieves, is no
assurance that the resulting description wil. l
adequately describe observed nuclear data. In-

deed, the principle of commensurability" might
on general grounds dim one's hope to get so
much from so little (and in Sec. IV we focus upon
one specific deficiency of this assumption).

Even so, the TDHF is of great interest, pre-
cisely because of the very economy of its as-
sumptions, as a theorist's theory, to teach one
how to look at problems in Fermidynamics" and
what reasonably to expect from them. For this
reason alone, even if no expectation whatsoever
of immediate meaningful confrontation between
TDHF and observed data existed, the properties
of the single-determinantal assumption would
still deserve study.

III. APPROXIMATE ASPECTS OF THE CONVENTIONAL;
NUMERICAL TDHF METHOD

We emphasize that in spite of the remarkable
incorporation of the main qualitative nuclear
properties into the TDHF method (as exhibited
in Table I" "), the method is still an approximate
method. Its restriction to a single determinant
limits the accuracy of TDHF in each of the three
aspects of its time-dependent description":

(i) The specification of the initial wave function
4q(tq} by a single-determinant approximation is
(generally) inexact, and inflexible.

(ii) Its propagation forward in time to and
through the collision by K"" instead of H EXACT

is approximate (omitting, e.g. , some two-nucleon
correlations). Furthermore, the variational

'TABLE I. Time-dependent Hartree-Fock compared with others. Six physical features of relevance to nuclei are tab-
ulated against four theoretical approaches to the nuclear heavy-ion problem. The entries Yes or No indicate whether
each of the theoretical approaches specifically incorporates the given property mechanistically into its description. The
Table shows that the single-determinantal theory succeeds exceptionally well in incorporating all of these qualitative
features into its very succinct single-determinantal assumption. This table is discussed more extensively in Ref. 18.
Other references relevant to the theories mentioned are as follows: for A Befs. 1-11, for B Refs. 60 and 61, for C
Refs. 62 and 63, and for D Ref. 47.

'5'heory

Phys ical property

A. Time-dependent
s ingle-determinantal

theory
B. Na vier-Stokes

hydrodynamics
C. Fokker-Planck D. Wall formula for
transport theory one-body dissipation

1. Small Fermi
(A, &g)

2. Finite-A
(generalized shells)

3. Liquid
(self-bound)

4. BCS paired

5. Global, mass-dynamical

6. Non-equilibr ium
dissipative

Yes

Yes

Yes (TDHFB)

Yes

Yes (?)

No

No

Yes

No

No

No

No

No

No

Yes

No

No

No

No

Yes
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principle from which it flows is unsupported by
any concavity theorem, ' "which provides a qual-
itative guarantee that the restricted minimiza-
tion of the variational integral actually optimizes
the quality of the solution.

(iii) The postbreakup determinant, 4 (t)
(t»0), is too simple to describe the many chan-
nels of the exact outgoing state, and to date lacks
even a specific proposal for an exhaustive physical
interpretation.

Some previous effort has been directed at the
propagation approximation (ii) of TDHF in the
form of studies of the deviation of the exact
solution from the TDHF determinant (assumed
exact initially) as time progresses, "'"'0 and
of the time evolution of average values of certain
operators under TDHF."

IV. POST-BREAKUP SPURIOUS CROSS CHANNEL
CORRELATIONS

Here we focus upon the third approximate as-
pect of TDHF and upon a remedy for the specific
incommensurability between the single TDHF
determinant and the outgoing multichannel state
of the true Schrodinger system. In particular,
we argue that, after the collision and breakup
into two spatially separate densities, the TDHF
wave function involves spurious cross channel
correlations, because it attempts to describe a
"coherent superposition of outgoing channels. "
The available reaction channels correspond to
different pairs of nuclei and a range of possible'
excited states for each pair, which, if they were
allowed to propagate independently, mould surely
be found at large distances to be separating with a
variety of relative velocities. But in TDHF only
one mean relative velocity (that prescribed by
the relative velocity of the separating potential
wells) enters, even though the wave function must
purport to describe all channels.

We show now that the single-determinantal
limitation of the Hartree-Pock description and the
consequent calculation of the single self-con-
sistent potential by means of a single determinant,
result, for a multichannel situation, in contribu-
tions to the potential energy which do not occur
in the asymptotic channels of the exact linear
Schrodinger theory and which, therefore, we
label "spurious. ""'"These spurious interactions
exert a distorting influence on the physical content
of the final stage of the description —a stage
which ought to be very simple since it need de-
scribe merely the translation in space of the
well-separated fragments mhich have been formed
from the reaction process.

To elaborate, imagine 4(t) of the time-depen-
dent Hartree-Pock description to be expanded in

a complete set of exact channel wave function 4&
for the Schrodinger problem:

4(t} Q cf@j(t) for t )& 0 (5)

(Never mind there the complication that the co-
efficients ct certainly-depend on time. '0} In
particular, if the reaction were initiated as
"0+"0, then one label f should denote, e.g., the
"Si+4He channel. Then consider the (direct
term of the) Hartree-Fock potential

V„(r)=fV(r-r, )r, (r, )d'r, . (())

= Iu)o-ol'I'HF

+ I u's( -H, I
(l'8'F "'

+~H)'
'

&+ ' ' '
~

Here V» denotes the one-body potential, which
would result from averaging the two-body inter-
actions over the exact wave function describing
two "0nuclei, well separated in space. Similar-
ly, the V„"„"'is the one-body potential obtained
from the exact wave function, describing He and
"Si, moving apart each in some particular ex-
cited state. Other terms occur for every possible
pair of excited states in every possible pair of
fragments. E(luation (t) demonstrates the fact
that the Ilartree-Fock potential, even in the
asymptotic region, is (or ought to be) a mixture
ofpotentials for the several channels it attempts
to describe. It cannot, 'therefore, be the Hartree-
Fock self-consistent potential for any single
channel.

A very similar argument shows that only those
selected channels which happen to have the same
mean relative velocity as the separation velocity
of the two parts of the Hartree-Fock potential can
have even a possibility of adequate description
by the conventional TDHF. The Hartree-Pock
propagation preserves the average total energy,
the average total momentum, and the total nucleon
number; thus, the expectation values,

h=&C iaaf,.i~&,
A

&p&=&~I g p lc»,
A

Jdr(dl))(r-r&)ld')
&=z

(10)

are constants in time. (See the Appendix. ) For the
late stages of a TDHF process when 4 is nonzero
only in two well-separated finite volumes, the
expression (8) separates into the sum,

E=E, +E2 =Tj.+Ej*. +T2+E2*

where T, and T, represent the translational kinetic
energy of the two separate fragments, given in
terms of their mean velocities v, and v, by
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1 1 ~ 2
T~ —a MA~v1 P T2 —$3ki2v2 j (12}

and E,* and E2* describe their respective internal
energies. M is the nucleonic mass. But mo-
mentum and nucleon conservation prescribe one
kinetic energy in terms of the other:

We first make a simple renotation of the time-
dependent Hartree-Fock solutions of (15}evolved
from the initial state i by the Hartree-Fock propa-
gation forward in time. Let

C(t)=c'. (t)=Uj (t tj)@j(tj) (t-tj) (18)

T, = (A, /A, )T, .
.Therefore, energy conservation together with
(13) implies that, asymptotically, the total in-
ternal excitation energy

E*= E~*+E2* = E—(Tj + T2),

(13)

(14)

be the familiar TDHF solution, where the propa-
gator U, represents the (nonlinear) Hartree-
Fock process of propagating the wave function
4; forward in time from the initial time t& to the
later time t. Analogously, we define the wave
function

4~~ ~(t) =Uf (t, tf)jtjf(tf) (t tf)

V. THE TIME-DEPENDENT-S-MATRIX HARTREE-FOCK
DESCRIPTION OF MANY-PARTICLE REACTIONS

A. SingleMeterminantal axiom

We consider a theory in which every allowable
wave function is a single determinant whose evo-
lution in time obeys the fundamental axiom of
the TDHF method,

Axiom I: 3C[C (t)]4 (t) = ikC (t) . (15)

is fixed uniquely by the asymptotic values of one
fragment mass, and one fragment velocity, A,
and v, . Thus we conclude that only those channels
whose excitation energy happens to conform with
the asymptotic separation velocity and mass
split of the late-time TDHF wave function C can
have significant nonzero amplitudes in the con-
ventional TDHF description. Obviously no such
restriction applies to final channels of the exact
Schrodinger theory, each of which asymptotically
is described by its own "channel Hamiltonian" to
an arbitrarily good approximation.

We conclude from the existence of these spurious
cross channel correlations in the late stages of a
multichannel process as described by TDHF, that
the TDHF description, as conventionally applied,
enhances certain channel amplitudes for physically
irrelevant reasons and, therefore, is not able to
describe the self-consistent propagation in time
of any one of several outgoing open channels in
the final stages of a reaction process. Only in the
trivial case of a collision involving one single
outgoing channel can the outgoing TDHF state
provide the best single-determinantal description
of that particular pair of separating fragments.

From these considerations we are led to propose
the following heuristic reformulation of the con-
ventional TDHF description —the TD-8 -HF de-
scription —which obviates these spurious cross
channel correlative effects in the final stages of
the reaction. In the process, we identify and
discuss two basic axioms from which the theory
logically flows.

to be the wave function obtained via the TDHF
process by stepping backwards in time from t&

to t beginning with @f0(tf).

B. The (time4ependent) 8 matrix

We then construct the following analog of the
scattering matrix"'":

Sfj(t) =(4'f '(t)l 4 I'(t)&.

Were the wave functions 4& and 4~ to be re-(-) (+)

placed by the exact solutions, C~ and 4&, to{-) (+)

the Schrodinger equation, this integral would
yield the S-matrix element, ""

~f;=(@f I+; ),

(18}

(19)

which gives the amplitude for the wave packet
evolved from the initial state i to be found at time
t in the state q f(t} which evolves in time into the
asymptotic channel state defined by the simple
late-time boundary conditions f. In the exact
theory, since the solutions are evolved in time by
the exact Hamiltonian H, it is guaranteed that
Sfj in (19) is a constant independent of time.

Unfortunately, the TDHF S-matrix analog of
(18}is surely not a time-independent quantity,
since its time derivative, given by Eq. (3),

S =dSfj/dt = (i/k)(Cf (t) I
R (4f) -8C(4j)I O'I (t))

(20)

is not identically equal to zero. Although in some
special cases, Sf, may be small or zero (e.g. ,
when f=i), there appears no way to guarantee
this in general.

Indeed, Eq. (20) must be expected frequently
to be at.least as large as typical matrix elements
of the two-body force such as occur, e.g., in
nuclear pairing theory. These have magnitude
-20/A= 0.1 MeV, and would imply for S a value
-10"/sec.

Furthermore, one must anticipate that in the
highly excited states to be treated in TDHF theory,
scatterings may occur between single-particle
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states l.ocalized in some nuclear subvolume,
leading to a reduction of the volume-proportional
denominator A, in the two-body matrix element,
and a corresponding increase in 8, perhaps to.a
value as large as 10"/sec.

It follows that S(t) may vary significantly during
the interaction interval T;„f of a nuclear heavy-
ion reaction, "10 "&T;„,& 10 "/sec. Thus, one
is precluded from attaching to the TDHF S of (18)
any general interpretation by direct analogy with the
Schrodinger S matrix (19}. One might at this
stage despair that any semblance of the Schro-
dinger reaction theory structure can survive the
single-determinantal approximation; at the very
least, one is forced to consider drastic mea-
sures to save some plausible interpretability for
the theory.

C. Time-averaged

We adopt an optimistic point of view and assume
that even if the 8 matrix at no particular instant
of time describes the whole reaction process,
nevertheless some appropriate time average of I
during the interaction interval might still offer
physical content. We therefore interpret Sy;(t)

to be the instantaneous amplitude that the TDHF
"state" 4; (t} is found at time to be the TDHF
state 4y (t), which will evolve under TDHF to
tke ftfsal state 4y at t =t&, ruitkout post-breakup
spurious cross channel correlations zenith other
channels. The total (relative) amplitude that the
asymptotic channel state f is realized is taken to
be the integral of this amplitude over some in-
terval to be specified more precisely below. Then
we propose that

describes, for properly chosen values of T„T„
the (relative} amplitude that the TDHF state i,
which evolves from C & at t =t& &&0, will be found
in the state C.& at t =t&&&0.

We note that such an averaging process leads
for an 8-matrix element which is constant over
the averaging interval. to an 8-matrix element
of precisely the same value. In particular, if 4,
and 4& were to be exact solutions of the Schrodin-
ger equation, then Sz,. would reduce to the exact
S-matrix amplitude (19). Note also that after
(T„T,) have been specified as below, Sy,. depends
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SCHEMATIC BEHAVIOR OF
TDHF SOLUTIONS IN Tl
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~~

Matrix Element J'&(

0 Interotlon Region: Two Colliding Nuclei form a Single Composite System
r

—(time, t}=
I

T2

4lf has Multi-Channel
Spurious Cross Correlations

Neither 4f nor 4i
has Spurious Cross
Channel Correlations

4; has Multi channel
(+)

Spurious Gross Correlations

FIG. 1. This figure exhibits schematically the time evolution of two conventional initial-value TDHF solutions. 4';
is initiated at an early time t& and propagated forward in time; @& is initiated at a late time t& and propagated backwards
in time. Their spatial overlap yields the matrix element 3 (g) of Eq. (18). The figure exhibits the fact that only during
the interval (T~, T2) are these functions both free of post-breakup spurious cross channel correlations. Distances are
scaled against Re, the chosen (large) standard distance at which, by convention, all reactions are initialized.
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not upon t& and t,. separately, but only upon their
difference, t&

—f» (See also Sec. VIE below. )

D. Specification of limits T&, T2 in g-matrix integration

Regarding the choice of the limits in integral
(21}, we adopt a mechanistic view of the TD-8-HF
theory: that it is designed to eliminate from the
physical implications of the theory any influence
of Hartree-Fock wave functions which involve spuri-
ous cross channel correlations in the post-breakup
region. Infact, both C", and 4&

' involve suchspuri-
ousity at very late and very early times, respectively.
(See Fig. 1.) Thus, the earliest limiting time
T, is given by the time at which 4 ~ in its
backward evolution in time redisintegrates into
two fragments. Likewise, the latest limiting
time T, is given by the time at which 4 ~

re-
disintegrates. Then at no time during the whole
interval over which b is calculated is either wave
function subject to errors induced by post-breakup
spurious cross channel correlations.

E. Axiomatizing the statistical interpretation of 4

Although E»I. (21) arose pragmatically from the
effort to extract a physically meaningful reaction
amplitude, it can be premised more fundamentall. y
on the general requirement. that if a determinant
4 is to be properly considered as a quantum prob-
ability amplitude, then the statistical interpreta-
tion""" of the quantum theory must be applicable
to it. Thus we postul. ate Axiom II: The spatial.
integral,

(4'yl 4';) =»»g»,

defines the amplitude that 4; be found in the state
C&. Then the»luantity g in (21) is the average
of the amplitude that 4; be found to be. 4» during
the interval (T„T,) when neither C» nor C~ suf-
fers spurious cross channel correlations.

We note that if the statistical interpretation of
4q had to be rejected, then the operational impli. -
cations of calling 4 a "quantum wave function"
would have been nullified. It would then follow
that TDHF was in fact not at all a»luantal (in the
Schrodinger sense) theory of probability amPli-
tudes, but (at best) some classical theory of
probabilities cast in the familiar, but misleading,
Schrodinger -like form.

Since our analysis is designed to define the
broadest possible scope for the single-deter-
minantal TDHF simplification of the Schro-
dinger theory, we here (and elsewhere in this
work} assume that the theory is a»luantai theory
until the contrary is established. Therefore we
proceed assuming a plausible quantal interpreta-
tion, and trace out the theoretical consequences.
Then consistency will require that Axiom II be

invoked for any pair of wave functions which occur
in the theory. Indeed, we shall see that such a
consistent application of this axiom to the asymp-
totic reaction "channels" compels (in Sec. VI)
qualitative implications for the physical content
of the theory, and most especially the general
conclusion that in the single-determinantal reac-
tion theory only time-averaged amplitudes are
susceptible to physical interpretation analogous
to that of the exact Schrodinger amplitudes.

F. Unitarity and conservation of probability

In the Schrodinger theory, the S matrix is
unitary, and'time independent, and therefore
the total normalization (i.e., the summed prob-
ability that the system is found in some state)
remains constant in time. But under Axiom I,
the TDHF determinants propagate in time each
under its- own separate time-dependent Hartree-
Fock "Hamiltonian. " As a result, Kz; in (21) is
not unitary, and conservation of probability does
not follow automatically.

We impose the conservation of probability by
renormalizing S~~ into

P'

gy» =~a»& QtiA'&~»
f

for each initial channel and interpreting S~; as the
operational analog of the unitary S matrix in the
TD-S-HF theory. E»luation (23}completes the
required reformulation of the time-dependent re-
action theory within the Hartree-Pock framework.

(23)

G. Approximate wave functions at late times; cross sections

The TD-8-HF method can be resummarized by
statement that the Schrodinger wave function is
approximated at early (precollision) times by

@=4»(t)

and at late (postcollision) times by

(24)

@= Q syph(t}.
f

(25)

E»luations (24} and (25} constitute a complete
and unambiguous specification of the reaction
process initiated in channel (i): the probability
that one measures the system to have the prop-
erties of channel (f) at times long after the
collision is given by

~ ((f))=l~, I'. (26)

Because of the fact that nuclear reaction experi-
ments are conducted with nearly continuous beams
of particles rather than with isolated single par-
-ticles, such as this theory describes, their re-
sults are customarily expressed in terms of dif-
ferential cross sections, rather than as prob-
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abilities (26}. To relate S~~ to a cross section we
must assume that the initial particles are de-
livered towards the target at a constant density
per unit area and per unit time and calculate the
arrival rate of particles (f) at some distant
macroscopic counter intercepting a solid angle
dQ at angle 0 with respect to the beam. Thus
both initial and final impact parameters become
unspecified and one must average the probabilities
over initial impact parameters and sum them over
final parameters to obtain the differential cross
section. The result is

dA, =b, db, dQ, . (28}

In Eq. (27), (i) and (f) constitute the complete
set of labels [cf.{iIand {fj of Sec. VI, Eq. (30)]
for the respective channels, except only for the
impact parameters, which are well defined, for
fixed (vq', vq' ), by Rz/(R~~. Also, the cross
section (27) is written as the microscopic dif-
ferential cross section in which each of the com-
plete set of channel parameters P~~~ in (f) is pre'-
sumed to have been measured. In practice, most
of these parameters will also be summed and/or
integrated over to correspond to the less than
total measurement of final state characteristics
of most experiments.

H. Generality of 5 prescription
A

Note that the prescription (21) for Kz, might be
applied independent of the particul. ars of the time
evolution operations U ' in Eqs. (16) and (17). It
presents therefore a generally applicable alter-
native to the use of the initial-value solution 4q
in Eq. (16), alone, not just for the Hartree-Fock
problem, but for any approximate description
of the time evolution. of a reaction process by
means of a wave function to which the statistical
interpretation of quantum mechanics, Eq. (22), is
expected to apply. In Sec. VIII below we suggest
that Axiom II, Eq. (22}, is plausibly necessary
for interpreting any alleged wave function physi-
cal.ly. For without some such assumption, one
is in difficulty to argue that the quantities 4 are
Schrodinger "wave functions" in any operational
sense.

{27}

where the element of surface area dA., lies in the
plane perpendicular to their mean relative chan-
nel velocity v~R" and is given in terms of the
channel impact parameter b, and its azimuthal
angle Q, as follows:

I. Summary of TD4-HF

Vfe note the following features of TD-8-HF:
(1) The once-only calculation of the late-time

values of 4I' (i}, the multi-outgoing channel TDHF
wave function of the conventional TDHF, is aug-
mented by one additional calculation (backwards
in.time) of 4Il l(t) for each final channel

(2) A time average of the overlap

(4& [4 ) =S&,(t} (29}

yields the (unnormalized) Sz„and normalization
yields 8«, the S-matrix analog.

(3) By the choice of the averaging interval, no
post-breakup sPurious cross channel correlations
enter into S~q from either 4& or 4~. Separated
configurations are propagated only by single chan-
nel self-consistent Hartree-Fock Hamiltonians.

J. Qualitative features of TD+HF: Focus on definition
of channels

It is remarkable that this reformulation of the
TDHF description for multichannel processes is
able still to conform to the requirement that each
wave function at each moment be described as a
single determinant, evolving self-consistently by
TDHF, and that at the same time it can obviate
the post-breakup spurious cross channel. correla-
tions within a single-determinantal description
of a multichannel physical situation —the ravages
of which appear inescapable in the straightfor-
ward time integration of the TDHF equation from
the initial incoming state to a post-breakup time.
Since here a calculation backwards in time is
used to propagate each of the final configurations
through the asymptotic region backwards into the
interaction region by means of a single channel.
determinant, such spurious cross channel corre-
lations never enter in the description of well-
separated fragments.

In addition, the new theory exhibits a structure
symmetric in time, which corresponds well with
the 8-matrix formulation of the exact scattering
theory and provides a framework which requires
for both initial and final states precise labels
which are appropriate for the elementary objects
which the scattering process describes. In con-
trast, the conventional initial-value TDHF
method, in which only the {nearly unique) initial
state needs to be constructed, allows one to
overlook the need for a precise specification of
labels required to characterize the asymptotic
states.

We turn in Sec. VI to a consideration of what
these channel labels should comprise, and ob-
tain therefrom a statement of what a channel in
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the TD-8-HF description is to specify. The
sought-after result is a clear and concise def-
inition of the Physical mnge of TD-8-HF. The
answer is that the TD-8-HF theory describes the
reactions of TDHF droplets; the mathematical
substance of that answer lies in the (well-defined}
mathematical properties of such 'TDHF droplets.
We find, however, one still open qualitative
dichotomy in the theory —whether the TDHF
droplets are classical or quantized —which the
system itself must resolve according to the still
unknown properties of its periodic solutions. The
technical implications of that resolution are dis-
cussed further in Sec. VII.

VI. IMPLICATIONS OF 5-MATRIX STRUCTURE FOR
TIME-DEPENDENT HARTREE-POCK REACTION THEORY

By its very structure, the 8-matrix reformula-
tion of the time-dependent Hartree-Pock theory
forces the notion of reaction channels into a
position of special prominence. In this section
we consider what choices for these channels might
be appropriate. %'e require that an acceptable
choice should be mathematically consistent, and
physically specific within the limits of the approx-
imation, and unambiguous in both respects.

A. Initialization and asymptoticity requirements for
asymptotic channels

Thus the channel labels must be sufficient (A)
to initialize the Hartree-Pock propagation towards
the collision, and ( to characterize an exhaus-
tive set of measurements upon the far separated
fragments, the results of which must be inde-
pendent of the distance of the (distant) measuring
apparatus from the collision volume. We refer
to condition (A} as the "initialization" requirement
and (8) as the "asymptoticity" requirement.

In Schrodinger theory, condition (A) is guaran-
teed by the mathematical structure of the equa-
tion and the sufficiency of the initial wave function
to determine a unique solution. " Condition (B),
on the other hand, is fulfilled because there ex-
ists a time-independent asymptotic Hamiltonian
describing a complete set of eigenstates for every
possible set of fragments, and because the
linearity of the equation allows the superposition
of these channel eigenstates to specify any exact
solution in terms of unique, asymptotically time-
independent amplitudes, each directly related to
a specific reaction channel. Conversely, it
allows any exact solution to be (uniquely) de-
composed into a linear combination of such
asymptotic channel eigenstates.

B. Nonlinearity of TDHF precludes linear combination of
solutions

In contrast, for the single-determinantal
Hartree-Fock theory, the dynamical evolution is
described not by a linear time-independent
Hamiltonian but by the nonlinear time-dependent
Hartree-Fock Hamiltonian. Thus, a sum of
solutions is generally not itself a solution. Nor
is there any guarantee that the Hamiltonian mill
become time independent, even at. asymptotically
great separations. Thus one lacks here the very
basis for selecting physical asymptotic channel
solutions which makes this choice so natural and
obvious in the Schrodinger theory. Also lacking
is the possibility of combining such solutions to
build the full time-dependent solution, for such
a sum can here not be guaranteed to be itself a
solution nor, even, a single determinant.

C. No automatic choice of channels

Within the TDHF framework, therefore, the
choice of channel characteristics is in no way
an automatic process. Indeed, we utilize it as
the means for testing the very consistency of the
Hartree-Pock axiom with the physical require-
ments for a reaction theory. We therefore set
out purposely to find channel. labels which honor
initializability and which at the same time guaran-
tee asymptoticity for the theory.

To this purpose we should have liked to require
that an acceptable channel label f specify

(i) completely, two weil-separated subdeter-
minants (which ther'efore guarantee an integral
number of nucleons" in each fragment) at some
(arbitrary) large standard separation distance R,
at the time ty,

(ii) the subdeterminants so specified translate
in time and space under TDHF propagation soithout
change of their internal properties.

Such conditions would define asymptotic states
adequate to initialize [in accordance with (A)]
specific solutions of TDHF for separate frag-
ments. Moreover, by condition (ii) these frag-
ments propagate towards or away from one
another without change, thereby honoring the
asymptoticity requirement (8) of a reaction
theory.

D. Periodic solutions meet weak asymptoticity condition

Condition (ii} is surely satisfied by the trans-
lating stationary solutions of the TDHF problem
for the isolated droplets. For if the wave func-
tion is stationary, then certainly all the proper-
ties it describes remain constant in time. But a
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less stringent interpretation of requirement (ii)
allows also translating, periodically oscillating
solutions as adequate channel functions for the
separate TDHF droplets. Then all the properties
of the droplet state, defined as time averages
over the period of the drop, would propagate un-
changed, in a weaker, but perhaps adequate,
analogy with the eigenvalues of the channel eigen-
functions of the exact Schrodinger theory, whose
instantaneous constant values are, of course,
equal to their time-averaged values.

Pending further development of our knowledge
of the periodic and stationary states of the TDHF
problem, we adopt this more inclusive choice and
consider the "periodic" solutions" of the isolated
TDHF droplet (including the stationary states,
which we consider to be periodic with period zero)
as the appropriate states from which to construct
the asymptotic channel wave functions of the
TDHF theory.

E. Time averaging again enters naturally with periodic
solutions

We note that once again, from considerations
apparently independent of those which required
the time averaging of S~q(t), we are lead also to
time averaging as a natural process for interpret-
ing the single-determinantal theory. In Sec. VII,
we shall see that in stiLL a third aspect of the
problem, the time-averaged interpretation may
restore to the theory an adequate practical fac-.
simile of the channel orthogonality property
which, although automatic in the exact linear
theory, is missing from the single-determinantal
theory. Thus one can reasonably begin to enter-
tain the suspicion that the time-averaged inter-
pretation is not merely a convenient device, but
perhaps a fundamental feature of the physical
content of TDHF. Specifically, we show that time
averaging allows the restoration of a form of
orthogonality essential to the physical interpreta-
tion (22}, and al. leviates thereby some of the
mathematical awkwardness which follows from
the state-dependent nonlinearity of X„„.Although
it does not thereby retrieve the Fourier transform
as a guaranteed mechanism for transforming from
the time-dependent description to the description
in terms of stationary (and orthogonal) eigen-
states, it at least allows the consistent formula-
tion of a single-determinantal theory which is
structurally analogous to the time-dependent
Schrodinger theory.

F. Specific labeling of initializable, asymptotic channels

We thus arrive at the fol.lowing prescription for
a suitable TD-8-HF reaction channel: A channel

G. Center of mass frame and orbital angular momentum

We work always in the center of mass frame
so that v ' and v ' are related by the zero-
momentum condition

g(j.) v(x) +g(2) v(2) —
Py vy + y vy (31a)

and therefore together involve only one indepen-
dent three-vector, say, vf' . The separation
vector R& and their relative velocity defines
their relative angular momentum L&. R& is re-
lated to the initial positions R&' and R&' of the
fragments by

R( ) R(2) f s (31b)

and by the center of mass condition,

+ R~(2)

Also, the orbital angular momentum L& is given
explicitly by

Z, ~«&(1+A&»/A&»)(g~~ x v&»)

(31c)

(32)

H. Determinant as product of subdeterminants

The initializing wave function for this set of
labels is constructed at time t =t~ as a single
(A, +Am) x (A, +A.,) determinant formed by anti-

is prescribed by these labels sufficient to initiate
a time-dependent Hartree-Fock solution which
propagates in time at. Large separation so as to
describe (a) the translation of a well-defined
target and a well-defined projectile towards one
another (e.g., in the center of mass frame) and
(b) periodic (including the stationary states" of
period zero} oscillations of the internal wave
functions of the fragments, whose time-averaged
expectation values define the physical content of
the channel states.

Then the following labels suffice to define the
channel (f):
ff)=((Ay", ~f s f ')&(Ay"~~~"', vf )i f/I fix f).

(30)

This set of labels specifies two well-separated
determinants. The first determinant
(A '

A.
' v ' }describes A ' nucleons (N '

neutrons and Z~' protons) in a periodic TDHF
state, AP (characterized perhaps by several
real numbers), 'translating with velocity vq~'~,

likewise, for the set (Ay', Xq', v&' } We a.ssume
that all TDHF calculations are initiated at the
same large standard separation distance

~ Rq[

R,. The label R~/[ Rq) then defines the initial
spatial locations of the two fragments, and t~

denotes the time at which the calculation is
initiated.
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symmetrizing the product of an (A., xA, }deter-
minant describing the isolated A.,-particle
Hartree-Pock system located at time t =t~, at
R~' in the center of mass system and translating
with velocity v&', and an analogous (A~ XA, )
determinant centered at time t =t& at R~' in the
center of mass system and translating at velocity
v(2) .
vy

C~(x, t~)

=8[4~(x~ —Ry ~ vy ~ fg)42(x2-Ry ~ Yy ~ fy}] .
(33)

Here 8 denotes the antisymmetrizer, x =(x„x,)
symbolizes all of the A., +A., nucleonic coordinates,
and the center of mass condition (31c) relates
R( ) and R(»

I. Translating, vibrating single-particle states

The subdeterminant C, is constructed by
selecting the determinantal. wave function for the
desired initial instant of the periodic motion
(labeled by d'~, and then centering it at RP, and
altering it so that it will transl. ate with velocity
v&' by the following replacement for each single-
particle state:

gg(xyy ff j Af )~Qg(xyp ff j Af p Rf y vf )(j.) - « . (x) (x) «(x)

=u, (x, R~g", —t~; A~"~) exp[i(M v~"~ ~ x,/if)]

(j, k = 1, 2, . . . ,4,) . (34)

In a like manner is C, constructed.

J. Time4ependent asymptotic states

The time evolution of the wave function C& in
the asymptotic region is described by the TDHF
equation (3}. Because of the Gallilean invariance

. of the two-body interaction, the translating time-
dependent single-particle functions (34) are given
very simply in the asymptotic region in terms of
the phase quasiperiodic single-particle functions, "
u&(x~;f; A~'~}, as follows:

Qg[xgq f~ Af y Rf p vf ](x) (x) «(z)

Qj[xg Bf Vf (f tf) f Xf ]
x exp(i[(M v ' ~ x~)/5- tM(vz' )'/2R]]

(j =1, 2, . . . ,A }.(35)

Here x& are the coordinates of the kth particle,
u&(x~, f; & ' ) is given explicitly by the form

uq(x~, t; d' }=Pq(x~, f; A,
' ) exp (i(Ei„' )t/RA, ]-,

(36)

where P& is periodic in time with period 2w/&u„',

and (E~~") is the energy of the A, particle system
vibrating in the periodic state A&", with its center
of mass at rest. An equal share of the time-
dependent phase associated with the translation
of fragment (1) has been arbitrarily assigned in

(35}to each of the single-particle states partici-
pating in the periodic vibration A&' . This is of
no physical import since only the total time-de-
pendent phase of the full determinant is of physical
significance. '0" The single-particle wave func-
tion (36) and the determinant constructed by
antisymmetrizing the product of A. ' such functions
are both "phase quasiperiodic" functions, com-
prising a product of a time-dependent, space-
independent phase factor of one period and a
space-dependent factor of a different period.

In this way the labels (f) given by (30}suffice
to initialize the calculation for channel f, and to
specify the explicit time-dependence of the func-
tion in the asymptotic region. For the special
case where the separated nuclei are in their
stationary Hartree-Fock ground states, these
labels (except for f&, discussed below) comprise
precisely the information commonly used to
initiate a conventional TDHF calculation. "

K. Starting time an appropriate channel label for localized
packet theory

The label. t& sets the clock for the starting point.
of the C~ calculation. It serves the essential role
of distinguishing among final states which have
identical. ly structured fragments moving over
identical final spatial trajectories, but which
arrive at the separation R, at different times.
When only one 4, is involved (as in conventional
TDHF) the value of f at the starting point is ir-
relevant. When two or more wave functions
4;, Cq are involved, as in (18), the difference
between their starting times is essential to the
unambiguous definition of 8«. The difference
of the channel starting time labels tz-t& specifies
this characteristic difference. If by convention
C~ is always initiated at t=0, then t& for the final
channel suffices to fix this property.

Aithpugh the occurrence of a channel label like
t~ would seem natural enough for a discussion of
the arrival of classical particles, it is not famil-
iar from Schrodinger scattering theory. It occurs
here because the TDHF theory necessarily~
describes packets localized in all three spatial
dimensions, whereas Schrodinger theory is usual-
ly formulated in terms of incoming stationary
plane waves of infinite extent. Thus one need not
be surprised that the labels here for the asymp-
totic trajectories of fully localized packets re-
semble the labels for a classical orbit theory.
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L. TDHF droplets as objects of TD+HF theory

In the TD-S-HF description, the set of all the
translating, periodically vibrating, A, -particle
subdeterminantal solutions, encompassed by the
labels (Apl'l, Aql'', vga'~) in (30) comprises a dy-
namical subsystem of its own, which we label
the A, -particle TDHF droplet. The physical
properties of an isolated TDHF droplet are com-
pletely prescribed by its time-dependent wave
function, which in turn is specified for all time by
any given initial-value determinant and its sub-
sequent time-evolution under the time-dependent
Hartree-Fock equation. %e assume that these
physical properties can be exhaustively charac-
terized in terms of its periodic solutions (includ-
ing the stationary solutions of period zero); that
is, me assume that these states, or some subset
of them, form a complete set.

Thus we come to the following succinct state-
ment of our results so far: The 8-matrix re-
structuring of the TDHF theory of reactions
prescribes the physical range of the theory as
encompassing the collisions of these mathemat-
ically well-defined TDHF droplets.

VII. PROPERTIES OF TDHF DROPLETS AND THE
TD-S-HF CHANNELS

Ne have arrived at a point where the physical
possibilities of the TD-8-HF reaction theory are
found to be constrained by the properties of TDHF
droplets, and most especially of their periodic
excitation spectrum.

A. TDHF droplets are oversimplified as nuclear models

In the first place we note that the TDHF droplet
is essentially a simpler object than the nucleus.
For it is completely described at time by a single-
determinantal wave function which conveys'6 pre-
cisely the same physical information as the
single-particle density matrix (a function in 6
space dimensions, e.g. , for any number A of
spinless identical Fermions), whereas the exact
Schrodinger solution specifies completely the
exact A-particle density matrix (a function in
6A. space dimensions for A spin1, ess identical
Fermions}. More briefly stated, the determinant
omits all the spatial correlations (except those
due to antisymmetrization) contained in the exact
description: the two particle density matrix is a
(antisymmetrized) product of one particle density
matrices. It follows that the spectrum of ex-
cited states of the TDHF droplet must differ
from that of the actual nucleus. And the physics
of their energetic collisions must also be dif-
ferent in so far as it is influenced by two-particle

correlations.
One thus infers that attention should be focused

upon the differences between the spectra of
TDHF droplets and those of nuclei as the appro-
priate basis for learning specifically how the
determinantal approximation should be expected
to fall short of the exact Schrodinger description.
This problem will be addressed elsewhere in
more detail.

B. Channel orthogonality and the statistical axiom

At a deeper level. , we are forced by the very
structure of the present theory to raise here a
far move awkward question, whether there can
consistently exist any channels mhich will display
asymptoti:city, even on the time average, under
the basic statistical interpretation, Eq. (18), of
the physical content of a wave amplitude' ?

So far we have succeeded in providing for
the initialization of the calculation of final state
amplitudes 4~ and in guaranteeing that any one
specific channel wave function preserves un-
changed the (time-averaged} physical information
about the internal state of the outgoing drop as
it propagates away from the collision. But con-
sistent application of the statistical interpreta-
tion requires us to inquire also about the over-
laps among different channel wave functions in the
asymptotic region. For if two channel wave func-
tions (f) and (f'}exhibit a finite overlap, then
application of the statistical interpretation to them
requires that the finite overlap amplitude, 6&z. be
interpreted as indicating a certain probability that
the final. state (fj will be measured as (f'j. Thus,
nonorthogonality of the asymptotic channel states
implies under the statistical interpretation tran-
sitions, or at least, admixtures among the various
channel amplitudes, even in the asymptotic region.

Except on a time-averaged basis, such overlaps
will generally be nonzero, since the periodic
single-determinantal solutions exhibit in no way
the general orthogonality property which adheres
to the eigenfunctions of the linear Schrodinger
theory. (Note that even the zero-period stationary
Hartree-Fock states will in general not be mutual-
ly orthogonal. )

t

C. Time-averaged asymptotic channel orthogonality

But the process of time averaging is able under
certain circumstances to restore a kind of mutu@1
"orthogonality" among the reaction channels, as
we now discuss. The orthogonality is defined in
terms of the fol.lowing time-averaged overlap
between channel amplitudes:

t+t

gg. =lim — (C~ (f')~Cg, (f'))dt' (t&r). (37)
f'~Op 27
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Here lim, „ implies that 7 in practice is to be
much larger than any of the periods in (fj, (f 'j,
and in fact large enough so that the integral re-
sults in a constant time-averaged value for 6ff.."
Al.so, t must be large enough to allow the asymp-
totic properties of the wave functi. ons to be fully
realized over the whole time-averaging interval.
In particular, at the earliest time t' =t —r in (3V}
the fragments in each channel must be well
separated.

D. Implications of channel nonorthogonality

Only if 8q~. vanishes for all channels (fj O(f'j,
can we realize a theory in which the probability
of each of the possible final internal states of the
droplet is well defined by a given reaction ampli-
tude. Otherwise the theory describes reaction
amplitudes each of which describes not the proba-
bility amplitude for one final state, but instead
amplitudes for some set of nonorthogonal final
states. Then every reaction amplitude contrib-
utes to every nonorthogonal final state, and the
theory collapses to a description of some time-
dependent distribution of internal final channel
states defined, not only by the reaction dynamics,
but also by the mutual nonorthogonalities among
the asymptotic channel states. We elaborate the
physical interpretation of this solution further in

Secs. VIIH through VII L below, discussing first
the mathematical circumstances of the channel
overlaps.

K. Conditions for orthogonality

We shall demonstrate that the properties « the
overlaps 6ff. depend essentially upon the nature
of the periodic TDHF solutions. To see this, we
consider the expression (37}more explicitly,
using the expressions (35) for the translating,
periodic solutions.

Then we can see at once that for two channels

jfj and(f'j labeled as in (30}, the asymptotic
overlap 8~~. in (3V) will surely vanish (for the
reason given in parenthesis) unless each and
every one of the following conditions' is
fulfilled:

(a) Az' =A&", and A. ' =A. ' (otherwise at
least one single-particle wave function in ffj is
spatially orthogonal to one in (f 'j);

(b) v" =v ' and v ' =v .) (otherwise the over-
laps can remain finite at most for a brief finite
interval, and must therefore average to zero over
the extended interval, 2T};

(c) tz =tq. (otherwise the localized wave packets
would never occupy the same spatial location'8 at
any given time);

(d) L& =L&. (otherwise the wave packets in f,

f' would asymptotically have distinct impact pa-
rameters, and a vanishing spatial overlap"
integral);

(e) the droplet excitation energies, Ep), Ez~'»,

Ef', Ef', corresponding to periodic TDHF so-
lutions are discrete and nondegenerate. (This
condition is discussed in some detail below. )

We summarize the honoring of the conditions
(a) through (d) by starting that the two channels

(fj, (f'j "have the same trajectory, " emphasizing
thereby that only condition (e) involves the internal
periodic states of the channel fragments. Thus
conditions (a)-(d) are to be considered kinematical
while condition (e) alone involves the internal
dynamics of the systems.

= g U,(x~:)(I}exp(iqu&~' f) (q integral), (38)

where the fundamental frequency

(1) 2 /T(1) (39)

is defined by the period Tf' of the vibration Af' .
Then the full time-dependence of the integrand
of 8&& in (3V) is obtained from (38) and (36):

8qq. = lim P (27)'
J dt'1(S&, S&.)

V'~oo $', $ t~v

x exp(i [(Ez —Ez)/R

+~a ]f'j.
Here Ez (or Eq.) is the total energy of channel

f [or (f')],
A(1)~~v(1)2/2++(2)~~v(2)2/2

@() @() g().+ f + f + f

&ff. is given by

Lekff z S f I Qjf z +Sf z 4gf z ~Sf Q))f ~Sf Qjf
(1) (1) (2) (2) (1) ( j.) (2) (2)

(40)

(41)

(42}

Here Sq = (Sq', Sq' ), and S~. = (S)', S~. ) are pairs
of integral sums of integers q, and f(S&,S&.) is a
sum of spatial integrals, constant in time. Thus
the time integration in 6ff. reduces it to the form

8ff lim g (27) 'I(Sf Sf }2e"&&'(sinZjf T)/Zff ~,
&~~ Sg, Sf r

(43)

F. Analysis of time-averaged channel orthogonality

Indeed, condition (e) is also the pivotal condi-
tion for establishing or disestablishing the time-
averaged channel orthogonality. Since u((x&, t; X&(') }
in (34) is periodic, its time dependence can be
expressed in the form

Qg(xg) t1 A.y )
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where

off ='(~' —'i }/"+'ff ) (44)

and like &ff., is a function of Sf, .Sf..
We next show that 8ff. is, for discrete vibra-

tional energies, Ef', Ef', a singular function
of(f), (f') equal to one for (f)=(f'), zero other-
wise.

Consider first the case{f) =[f'). Then in the
definition (3V) of 8ff. one can employ the normal-
ization condition on the wave functions,

(@'f(f')I +f(f')& =1

to obtain immediately
t+1'

8ff =lim(2T) df'=1.
T~oo ' tag

(45)

(46)

This result can also be obtained by manipula-
tion of (43). Then, since for(f) =(f')

zff Op

one finds

lim rzff =0,

(4')

(48)

and (43) reduces again to the normalization
integral

8ff = QI(Sf, Sf) =1.
Sf

(48)

For M'( f'), 8ff. is already known by Sec.
VIIE to vanish when the trajectories differ. For
channels (f}'ff') with the same trajectory one
finds (according to the discussion of Sec. VIIG,
below) that

zff. 0, (50)

if the energy spectrum of the periodic vibrations
is discrete. Therefore, in this case one obtains
instead of (48}, the result

lim 7zff. =~ (51)

and (43) reduces to the value zero, as follows:

8ff. =lim g (2T) I(Sf~Sft)2e
T~OO

Sf»sf I

X(SltlZ fftT)/Z ff~ (52a)

g I(Sf,Sf )e"ff'lim((sine ff T)/z ff,T)
Sf, Sf i

(52b)

(53)

Equation (53) estabUshes the time-averaged
"orthogonality" of pairs of channels with zff 9 O.

G. Discrete energy spectrum is crucial to orthogonality

We now show that the condition (50) is equivalent
for channels with the same trajectory [conditions
(a)-(d) of Sec. VIIE, above] (apart from accidental
degeneracies, to be defined more precisely below}
with the condition that the internal channel ener-
gies be discrete.

Consider the quantity ~ff. defined in Eq. (42).
For summands in (43) for which ~ff. vanishes,
zff vanishes off definedby(44}canvanishif
and only if"

~{1)+ E(2) @{1)+ @(2) (54)

[When the trajectories f, f'are the same, the
kinetic energies in (41) cancel in (44), leaving
here only the internal energies. ] If the vibrational
energy spectrum is descrete then (54) can be
honored only if two unrelated discrete real num-
bers happen to be equal. But if the spectrum is
continuous, then equality will always prevail for
some properly chosen vibrations ~f and ~f..

Equalities between unrelated discretely valued
real numbers, such as required by Eq. (54) and
Eq. (55) below, comprise a subset of measure
zero of the set of pairs of real numbers. We
therefore refer to such equalities as "accidental
degeneracies, " and assume in this treatment of
the theory that they do not occur. When they oc-
cur, they shall require special treatment not
considered here.

Thus it follows that if the spectrum of periodic
vibrations is discrete (54) cannot in general be
satisfied, and condition (50) prevails.

If for some summand(s) of (43) ~ff. does not
vanish then zff. can vanish if and only if

E(1)+ @(2) @(1) @(2) S (1)I~(l)+S (2)@~(2)f + f f' f' = f ~f + f ~f
-Sf& Ncofl -Sf& A(c)f& o

(1) (1) (2) (2)

(55)

But since Sf.and Sf. are integers, and since the
frequencies cdf and ef. comprise a discrete set
fixed by the periodic solutions for the &DHF
droplet, the right-hand side of Eq. (55) can assume
only numerical values from a discrete set. But
the left-hand side, Qf +Qf g f gf can
exhibit a discrete or a continuous set of values,
depending upon whether the periodic vibrational
energies of the TDHF droplets exhibit a discrete
or a continuous spectrum.

For a discrete periodic energy spectrum, the
left-hand side can have only a discrete set of
values. Then (55) can again be satisfied only by
an equality between two unrelated discrete num-
bers, i.e., by an accidental degeneracy of the
type assumed here not to occur. But if the energy
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spectrum of periodic states is continuous, ' "the
left-hand side may exhibit a continuous range of
values, and a proper se', ection of the pairs of
droplet vibrations can always be made so that
(55} is satisfied.

Thus we conclude that, apart from accidental
numerical degeneracies, the quantity z&&. can
vanish for different channels of the same tra-
jectory if and only if the vibrational energy spec-
trum is continuous. 'There follows the resuLt
stated in Sec. VII F that asymptotic channel wave
functions will, or will not, display the (time-
averaged} orthogonality property (53), according
to whether the energy spectrum of the periodic
TDHF droplet vibrations is discrete or is con-
tinuous.

H. Statistical interpretation applied to classical TDHF droplets

If it is generally possible to meet condition (55),
as when the periodic spectrum is continuous, we
conclude that it is imPossible to guarantee the
mutual orthogonality (53) of different asymptotic
channel functions with the same trajectory, even
on the time average.

Such is the situation which prevail. s if one con-
siders the small amplitude harmonic TDHF vibra-
tions to be characteristic" periodic solutions of
TDHF. For they allow any vibrational energy to
be specified (by simple adjustment of the ampli-
tude of vibration) for any one of the discrete
infinity of "normal mode" vibrations, guaranteeing
thereby that (55} is satisfied for a discrete infinity
of channel pairs for every possible trajectory,
We refer to such TDHF droplets, whose periodic
vibrations occur at continuous values of the energy
as "classical" TDHF droplets.

In the case of such cl.assical. TDHF droplets,
the consistent application of the statistical inter-
pretation requires us to interpret, our channel
states, even at large separations, as continuing
to make transitions among themselves. Then we
conclude that the reaction amplitudes of the
theory, describe not just the dynamical effects
of the interaction in exciting specific excited states
of the TDHF droplet, but also a postreaction
equilibrization process inherent in the droplet
itself which continues to occur even after the
interaction has ended, and in which each droplet
continues, even in the asymptotic region, to
share its internal energy among its energy-
degenerate periodic vibrations. Such a process
might ultimately lead either to some specific
"equilibrium" or thermalized distribution among
the vibrations, or it might lead to a droplet
roaming endlessly in time through the avail. able
phase space.

The physical implication for the TD-8-HF
reaction theory description of these classical.
TDHF droplets is qual. itative: As a matter of
principle, no measurable result can be consistent-
ly predicted from the theory which is independent
of the (distant) position of the measurement
apparatus, except those which involve constants
of the motion in the asymptotic trajectories,
such as

(a} the mass of each fragment Ai'l, A.~'~;

(b) the asympto tic center of mass momentum
of each of the two fragments A. ' v '~ A ' v ' .

(c) the orbital angular momentum i. of Eq. (32);
(d) the average vibrational energy of each

fragment/ E ' E '
(e} other constants of the TDHF solution of the

separate fragments, such as the one-body opera-
tors which commute with the exact Hamiltonian
(as discussed in the Appendix).

In particular, no more specific information about
the internal states of the emerging droplets can
be specified as an asymptotically time-independent
property of the reaction process.

Then the TD-8-HF reaction theory is reduced
to a "trajectory theory" since its own internal
structure mould preclude consistent prediction
of physical measurements other than the tra-
jectory characteristics, (a}, (b), (c), (d), and
(e). In particular, no characteristics unique to
a specific periodic final excited state couLd be
predicted. This is in sharp contrast to the quantal
Schrodinger theory which allows in principle an
exhaustive set of quantum numbers to be measured
for each final channel eigenstate.

I. Classical TDHF droplets are intrinsically dissipative

This property, we summarize by the statement
that the classical TDHF droplets are "intrinsically
dissipative. " As a direct consequence of the fact
that they exhibit a continuous energy spectrum
for their periodic motions, they exhibit at every
energy at least a discrete infinity of degenerate
states, which states in general are not orthogonal,
and therefore cannot escape, under consistent
application of the statistical interpretation, the
implication of perpetual intertransitions. Thus
at e~ery energy the physical properties they pre-
dict would be properties not of any specific peri-
odic solution, but rather of the whole set of
periodic solutions not asymptotically orthogonal
to it. For this reason as outgoing reaction frag-
ments they are capable of propagating asymp-
totical. ly without change onl.y those results of the
reaction process associated with quantities
conserved in the asymptotic region: their mass,
momentum, angul. ar momentum, energy, etc.
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J. Classical droplets allow only trajectory theories

In short, we conclude that classical TDHF
droplets allow' an asymptotic colIision theory
which describes only some "equilibrized" distri-
bution of (or worse, some chaotically wandering)
internal states. Then the specific content of the
theory lies solely in the distribution of the out-
going trajectories which the TDHF process gen-
erates from each given incoming trajectory.
Such a limited theory would seem to fall far short
of the expectations originally entertained for the
single-determinantal approximation, in that nearly
all of the structure for final states which its
explicit many-body treatment promised is re-
duced, in the end, only to statements about the
kinematical features of the separating droplets
and their relative motion. Thus, the many-body
dynamics which seemed to justify the complica-
tions of the calculations is dessicated into a re-
sult hardly commensurable" with the elaborate
machinery which generated it. One should note
that, so far, no numerical TDHF experiment has
been specifical. ly interpreted for implications other
than those relating to the trajectories.

K. Classical TDHF droplets qualitatively resemble viscous
classical liquid drops

We note that the properties of classical TDHF
droplets, devastating as they may be to the hope
for a Schrodinger-type structure in the TDHF
reaction theory, are not qualitatively alien to
classical. physics. Indeed water droplets emerg-
ing from a collision will yield to measurement
results which surely vary with time after the
collision ': their own internal. viscosity con-
tinually redistributes their energy irreversibly
into the droplet's microscopic degrees of freedom
until thermal equil. ibrium is attained. Thus at
very great distances, water droplets also retain
only that memory of the collision process which
is characterized by constants of the asymptotic
motion. Thus collisions of classical droplets
surely lack the asymptoticity property which we
have required (in Sec. VIA) of the TD-8-HF
theory. Then if TDHF droplets were found always
to be cl.assical, and no consistent requantization
axiom can be found applicable (see Sec. VII N,
below), then one would be forced to conclude
that the single-deter minantal assumption does
necessarily convert the Schrodinger reaction
theory into a classical theory, and indeed a
classical theory of intrinsically dissipative
droplets. Such a clear and specific qualitative
conclusion is therefore a prospective reward of
careful study of the nature of the periodic TDHF
solutions.

L. Classical TDHF droplets not suitable for TD-$-HF
description

In spite of the channel nonorthogonal. ity, one
might suggest that the TD-8-HF theory of clas-
sical droplets ought to be applied, and its pre-
dictions about physical operators interpreted as
average characteristics of the whole distribution
of final channels. An analogous view has in fact
been adopted to resolve the interpretational
dilemma of the l.ate-time solutions to the conven-
tional initial-value TDHF theory.

Unfortunately, the TD-8-HF theory is too rigid
axiomatically to encompass such an interpreta-
tion. For consistency with its statistical inter-
pretation (Axiom II of Sec. VE}would require it
to be recast to describe among the channels.
transition amplitudes analogous to those described
by S~, (t} in Eg. (18}, but now occurring even at
asymptotically late times when the fragments are
already well separated, and to describe the sub-
sequent time evolution of the resulting states
according to (the TDHF} Axiom I. Such an alter-
ation might in fact be possible. But, the same
consistent application of the statistical interpre-
tation requires also a recasting of the backward
time-evolution process of the solutions Cz (f)
for final state channels with excited internal
states of the droplets at t =t&. There the physical
consequences are more immediately evident:
the TDHF droplets must, by the time they collide,
have been allowed to evolve arbitrarily far from
the specified initial state, presumably into a
state bearing no specific relationship to the initial
state, except for its constants of the motion. Thus
the physical content of the initializability property
(Sec. VIA) of the channel states, as well as that
of the asymptoticity property, must be altered
by the reinterpretation which channel nonortho-
gonality requires. The resulting theory mould

be, again, a trajectory theory only, but one to
which the whole TD-8-HF machinery remains
irrelevantly appendaged.

We conclude-therefore that the TD-8-HF theory
as structured here under Axioms I and II offers
no promising framework for describing proper-
ties of the reactions of classical TDHF droplets
beyond their trajectory characteristics. For
such cases a more appropriate theory would be
specifically tailored to describe not initial and
final states, but initial and final equilibrium dis-
tributions not necessarily in one-to-one corre-
spondence with asymptotic single-determinantal.
wave functions. The possibility exists that such
a simplified theory would be extracted from the
TD-S-HF framework by invoking a suitable
average over asymptotic channels to restr ict the
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range of the theory only to the trajectory proper-
ties, and by replacing the specific initialization
process of TDHF by some suitable averaging.

M. Quantized TDHF droplets exhibit structure fully
analogous to exact theory

We now consider the case when the TDHF
periodic vibrational energy spectrum is discrete, ""
so that the crucial energy equality (55), can not
generally be satisfied. For such "quantized"
TDHF droplets TD-8-HF theory obtains immedi-
ate applicability, since thorn the asymptotic chan-
nel overlap 8~q. (37) vanishes identically for
every pair of channels. " Then the use of Axiom
II for the channel wave functions 4 ~f~ is fully con-
sistent with the statement that the squared 8-
matrix element,

I~&;I'=f &(i) (55)

is to be interpreted as the probability that for a
reaction initiated in channel (i}time-averaged
measurements in the asymptotic region yield the
properties of channel (f}.

In this case, the TD-8-HF theory describes
transitions into a set of cha,nnels, separatel. y
characterized, for each given trajectory, by
every distinct periodic solution of target and/or
projectil. e. Such a description is fully analogous
structurally to the exact Schrodinger theory; the
periodic solutions of TDHF here play the role of
the channel eigenstates of the Schrodinger theory.

We have already noted in Sec. VGH that a dis-
crete periodic spectrum is not the natural. extra-
polation of the wet. l-known small amplitude ap-
proximate solutions of TDHF, which are harmonic
for a continuous range of small amplitudes and
energies, ' However, the existence of these ap-
proximate harmonic solutions does not preclude
the possibility that the periodic states are dis-
crete, since the small a,mplitude solutions are
approximate solutions, which may in fact not
satisfy rigorously the periodicity requirement
for a function of period T

P(t + T) = g(t) (all. t) .
Indeed, it might turn out that only at certain

discrete amplitudes, do these small amplitude
solutions satisfy (57) exactly. Then a discrete
spectrum of truly periodic states would be em-
bedded in the continuous family of small ampl. i-
tude approximately harmonic TDHF solutions,
without contradiction.

Clearly, some rigorous results about the
periodic TDHF solutions are an urgent pre-
requisite for assessing the physical possibilities
of the single-determinantal theory.

N. Requantization of classical droplets: A possible future
approach

Vfe have concluded in the previous discussion
that a classical TDHF droplet, whose periodic
spectrum is continuous in energy, is an intrin-
sical. ly dissipative object, not amenable to de-
scription by the TD-8-HF method. Perhaps, as
we suggested in Sec. VIII above, some modified
theory could be extracted from TD-8-HF to de-
scribe such classical. objects.

On the other hand, we surely must expect that
for energies of the order of Ie, where T =2m/&o

is the period of a normal. mode of the classical
TDHF droplet, the energy ought on general
physical. grounds, to be quantized. In such a
realm, we might then be forced to question the
relevance of such a classical TDHF theory to the
solutions of the underlying exact Schrodinger
problem.

One might in fact be led to consider "re-
quantizing" the TDHF theory of the classical
dropl. et by adding to the theory an additional
axiom which requires that for specifying asymp-
totic states, only those self-consistent vibrations
of the TDHF system are to be allowed which have
certain specific, discrete amplitudes. Then the
energies allowed for such vibrating requantized
TDHF droplets would also be rendered discrete. ""

Such a restriction, which limits channels to
such requantized TDHF droplet states would
qualitatively alter the results obtained for clas-
sical TDHF droplets in Sec. VII H- VII L, into the
structure which pr evails when the periodic solutions
are of themselves discrete with "quantized" en-
ergies. For in this case, the asymptotic channels
are defined by the labels of Eq. (30), but now
subject to the additional condition that only those
certain discrete values of the vibrational ampli-
tudes are now allowed, corresponding to dis-
crete energies E '~, E ' for the droplets. Then
the time-averaged overlap, 8~~. of (37) will.
again be guaranteed to vanish by the effect of the
discrete energy spectrum requirement (55), and
consequently the spontaneous transitions among
channels implied by Axiom II will vanish on the
time average.

For such requantized droplets, the TD-8-HF
method leads consistently to a theoretical de-
scription in which transitions occur during the
collision interval to final states which propagate
unchanged to large distances. Therefore, the
theory once again exhibits a structure fully anal-
ogous with the exact Schrodinger quantum scat-
tering theory.

Thus, if further study of the mathematics of
the TDHF equations were to reveal that each
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family of periodic solutions exists for a contin-
uous range of energies and amplitudes, then the
merit of such a requantization axiom, as a means
to restore to the single-determinantal. theory the
maximal. structure of the exact theory, ought to be
considered.

Needless to say, a basic question concerning
such a requantization axiom would be its mutual
consistency with the TDHF evolution Axiom I and
with the statistical interpretafion Axiom II of the
present theory. We have at present no comment
on that question.

Thus, at present, the requantization of the
TDHF droplets is merely a possible future escape
from fhe serious restriction the theory must
suffer if the TDHF droplets, by virtue of their
own periodic spectrum, do prove to be classical.
The question whether they are or are not classical
of and by themselves remains, of course, the
question of the highest priority. '

VIII. THE STATISTICAL INTERPRETATION IN m4-HF

At the center of the TD-8-HF restructuring
of conventional. TDHF reaction, fheory lies the
assumption Axiom II that the statistical. interpre-
tation must be appl. ied to the amplitudes (18)
between solutions propagated from acceptable
asymptotic channel stafes. %e discuss first of
all. the reasons why some form of statistical
interpretation seems necessary. Later me con-
sider from a structural. viewpoint the sources of
the difficulties which lead us to restrict the
single-determinantal soluf ions considered accept-
able in the TD-8-HF theory, and fhereby the
range of application of the statisfical assumption.

The heretofore generally accepfed alternative
to the application of the statistical interpretation
Axiom II among the many mave funcfions which
satisfy TDHF Axiom I, is to rule out the question.
This alternative is implicitly embodied in the
closed ' conventional initial value formulation
which allows, in the description of a dynamical
system specified by initial conditions (i}, only
the calculation of the single solution 4;(f). Then
only time-dependent expectation values defined
by 4~(t) are given physical significance, and
expansions in ferms of other functions within
the theory do not arise.

%e have already outlined in Sec. IV some
mechanistic reasons mhy the conventional initial-
value formulation promises fo be inadequate for
reaction processes. Besides these mechanistic
considerations, a one-wave-function theory in
which only expectation values ean be computed
is structurally but a pale replica of the many-
body quantum scattering theory which TDHF

= g«y '(f)l~&&&+&ICI (f)&
f

(58)

(59)

as the amplitude that the state 4 (t) would be
found to be 4~ (f) at time t.

Thus a very persuasive support for assuming
the statistical inferpretation arises from the
implications which must follom if it were not true
for TDHF wave functions. For fhen no basis
whatsoever mould remain for considering any
TDHF solution to be an approximate Schrodinger
soave fimction, or even for comparing a TDHF

attempts, at substanfial practical cost, to model.
The very fact that in its restructured TD-8-HF
form the single-determinantal. theory, can en-
compass quantum transition amplitudes among a
wide variety of wave functions while still de-
scribing each channel self-consistently, stil. l
remaining entirely within the single-determinant-
al framework, and still admitting the statistical
interprefation as a basis to construcf. and analyze
reaction amplitudes among the mave amplitudes
of the theory, is in itself a remarkable circum-
stance, which at leasf. recommends caution against
premature acceptance of too narrow limits for
the single-determinantal theory.

Finally, the stafistical inferpretation seems
especially appropriate for dealing with a quantity
naturally expected by ifs source and substance
to be a Schrodinger amplitude (albeit an approx-
imate one}, that its operation in some form or
another appears to be intrinsically cogent. Any
reasonable method for adding it, therefore, to
a model mhich excludes it would deserve fair
consideration.

Beyond the single-determinantal. realm, me
note that there does exist for every physical
system a complete set of sfationary eigenstates
of the exact Hamiltonian, in terms of mhich any
approximate wave function may be expanded.
Even more, one would normally expecf. such an
expansion to be an essential fool in the process of
comparing some approximate wave function with
the exact solufion mhich it is supposed to approx-
imafe. Therefore, to exclude such an expansion,
and the consequent statistical interpretation of
its various amplitude coefficients, would neces-
sarily preclude a comparison with the exact
description one attempts by approximate methods
to mimic. But to allo~ any such an expansion is
to assume at least some form of statistical. in-
terpretation. For then the expansion of both 4's
in (18) yields, for a set of exact eigenstates 4;:

si((t) =(4y (t) l 4 (i)&



1370 GRIFFIN, jLICHTNKR, AND 0%OR ZKCKA 21

solution with a Schrodinger solution. Then the
TDHF method itself would have become de facto
a theory for the square root of some classical
probability function, but merely expressed still
in the (now misleading) symbols and formalism
of Schrodinger theory. In short, to deny the
statistical assumption would seem to eviscerate
the central quantum content of the single-deter-
minantal method, and to reduce it at best to a
probabilistic trajectory theory for some sort of
classical dropl. et.

Then what of the fact that within TD-8-HF
framework only certain continuum solutions,
selected on physical grounds by their asymptotic
behavior, are available for applying the statistical
interpretations We view this circumstance as an
inevitable result of the single-determinantal as-
sumption of the TDHF method. For that assump-
tion leads to a time-evolution operator X[4 ]
which is state dependent, and thence to a non-
linear dynamical law for the time evolution.

This nonlinearity has the practical consequence
that the orthogonalizability of a linearly indepen-
dent set of wave functions, guaranteed for linear
theories by the possibility of carrying out a
Schmidt process of linear recombination, can
here not be assumed. It follows that the existence
of a complete orthogonal. set of solutl. ons, to
which the application of the statistical interpre-
tation could be most naturally applied, can also
not be assumed. Moreover, practical experi-
ence allows no hope that somehow orthogonality
might prevail even if unguaranteed.

'The TD-8-HF theory circumvents this difficulty
(cf. Sec. VI) by selecting among all possible as-
ymptotic solutions those which describe physically
acceptable reaction channels (involving periodic
internal states of the TDHF droplets) and defining
only those solutions which evolve from or into
such asymptotic solutions to be acceptable con-
tinuum solutions of the TD-8-HF theory.

Thus we deal here with a theory which combines
fundamental qualitative elements of the exact
Schrodinger theory (the statistical interpretation,
the availability of a complete set of solutions, and
its orthogonalizability as assured by the Schmidt
application of the superposition principle) not
independently, but interdependently, in such a
way as to circumvent the difficulties following
from the nonlinearity of the single-determinantal
model problem. The process of combination con-
sists of selecting the solutions to be included in
the theory in such a way as to guarantee then the
indispensable properties for a reaction theory of
the Schrodinger structure, invoking the statistical
interpretation among all of these selected solu-
tions, and restricting the physical interpretation

of the theory to time-averaged quantities.
The result is a model theory for time-dependent

processes which has been constructed completely
upon time-dependent solutions and their proper-
ties, with no reference to the complete orthogon-
alizable set of stationary solutions which is so
useful and convenient in exact theories. Still,
within the limitations which flow from its non-
linearity (which after all, is the price of the
physical simplification of the exact many-body
theory}, the statistical interpretation is allowed
its maximal range of operation and a sufficient
range to retain for the model the capacity to ex-
hibit the qualitative structure of the exact theory.

IX. POSSIBLE GENERAL APPLICABILITY TO
NONLINEAR APPROXIMATE REACTION THEORIES

Besides the Hartree-Fock system, one might
expect that other nonlinear approximations to the
Schrodinger equation couM arise. It is therefore
worthwhile to emphasize that the present re-
structuring of the TDHF reaction theory from an
initial. -value problem into a theory describing
transitions from initial to final states depends
essentially upon the periodicity and the transla-
tional properties of the solutions of bound isolated
subsystems, and is entirely independent of the
specific characterization of TDHF, viz. , the
single-determinantal approximation.

It follows then that the present approach might
prove applicable to a broad class of nonlinear
approximate initial-value problems which purport
to provide by a Schrodinger amplitude an approx-
imate description of a reaction process. The
foll.owing sequence of steps outl. ines such a pos-
sible extension:

(a) Assume that the nonlinear dynamicai law
propagates every wave function in the theory in
time.

(b} Define asymptotic channel wave states in
terms of the periodic solutions of the chosen dy-
namical 1.aw, thereby guaranteeing the asymp-
toticity and initializability requirements for
reactions.

(c) Requantize, if necessary and possible, to
guarantee time-averaged asymptotic channel
orthogonality among the retained set.""

(d) Specify the acceptable continuum solutions
of the theory to comprise only those which evolve
from or into such asymptotic channel wave func-
tions.

(e} Assume that the statistical interpretation
applies for all amplitudes (18}between the ac-
ceptable states of the theory.

(f} Define the physical predictions of the theory
in terms of the time averages of physical opera-
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tors in the asymptotic channel states.
Such a procedure might suffice to define a time-

averaged reaction theory for any nonlinear model
of the time-dependent Schrodinger theory which
exhibits periodic bound-sfate solutions and suit-
able translational behavior for its isolated
droplets.

Its essential element is the assertion of the
analogy between (perhaps selected) periodic
bound-state solutions of the model problem and
the stationary eigensolutions of the exact Schro-
dinger theory. As we see in the singl. e-determin-
antal example, such an assertion can, at the
price of the time averaging of all physical pre-
dictions, resolve the most difficult consequences
of the nonlinearity in such a way as fo preserve
all the qualitative physical elements of the
quantum reaction theory, and to lead therefore to
a model theory whose structure is a faithful
image of that of the exact theory.

X. SUMMARY AND CONCLUSIONS

The conventional TDHF initial-value problem
has been restructured within the self-consisfent
single-determinantal subspace, fo provide time-
averaged transition amplitudes from initial to
final asymptotic channels. The mathematical
objects which such a theory can describe are
well defined by the labels which physically ap-
propriate channels can and must have. We have
called them TDHF droplets. They may ultimately
emerge as classical or quantized, depending upon
the (still unknown} mathematical structure of the
periodic TDHF solutions. For the classical
droplets, an asympfotic reaction theory describes
(at most) the equiiibrized inte'mal state of any
reaction product and the tx'ajectory of its center
of mass. For quantized TDHF droplets, reaction
channels occur corresponding to each of the dis-
crete periodic internal states of a reaction pro-
duct. Then the structure of the TD-8-HF theory
is fully analogous to that of the exact Schrodinger
reaction theory, with the periodic TDHF solutions
filling the role played by the channel eigenstates
in the exact theory. The possibility exists that a
suitable requantization axiom could consistently
resfore this structure, even for classical TDHF
droplets.

It is argued that were statistical interpretation
of 4 central to the present theory to be shown to
be erroneous or irrelevant, the TDHF amplitude
could no longer properly be considered a quantum
amplitude. It is suggesfed also fhat the entire
analysis is sfructurally applicable to ariy non-
linear approximant to the Schrodinger initial.
value problem in the continuum.

Vfe conclude that the TD-8-HF restructuring of

the conventional TDHF theory offers a method for
the calculation of the quantum probability for a
particular final state channel to be found in a re-
acfion, while still remaining within the space of
single-determinantal wave functions, each of
which evolves in time by self-consistent TDHF.
At the same time, the restructured TD-8-HF
theory completely eliminates the unspecified
measure of physical nonsense introduced by the
post-breakup spurious cross channel correlations
into the late-time description of the conventional.
initial-wave TDHF method.

In addition, the physical range of the single-
determinantal approach has been clearly defined
to be fhe physics of the TDHF droplets. It
foll.ows that the limits of relevance of TDHF
numerical experiments to nuclear (or atomic)
reaction processes can be illuminated by theo-
retical studies of the distinefions befween TDHF
droplets and realistic nuclei (or atoms).

Note added in proof. Subsequently, Kan et al."
recognized the gauge invariance of these periodic
states as a natural requirement which leads to a
discrete spectrum of "TDHF eigenstates. " The
consequences for the TD-8-HF reaction theory
follow the discussion of Sec. VIIIM and are out-
lined in Ref. 91.
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APPENDIX, : CONSERVATION OF ENERGY

In this Appendix we consider several aspects
of the conservation of energy for sysfems de-
scribed by single-def erminantal wave functions.
We recapitulate the (average} conservation of
energy in the conventional TDHF theory. For
TD-8-HF we note that the average energy is con-
stant for each asympfotic channel state of TD-8-
HF not only as it propagates in time, but also,
by virtue of the time-averaged orthogonality of
the different channels, under the stafistical
interpretation of these states as (potentially)
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able to transform among themselves. Finally,
we consider the very special case of two de-
terminantal eigensolutions of the exact Hamil-
tonian and show without reference to their spatial
orthogonality that their overlap, averaged over a
time interval &T, is zero unless their energies
are approximately (i.e., within -5/&T) equal.

Thus although no theorem has been found guar-
anteeing the vanishing of matrix elements 8&;

between. states of different energy, there exists
one example where

aPPmri

mat energy conserva-
tion prevails for an analogous amplitude, in ac-
cord with the usual time-energy uncertainty
principle, offering promise of future generaliza-
tion of such an approximate energy conservation
to al. l. K-matrix elements.

Conservation of energy in the TDHF theory

It is an immediate property of any exact solu-
tion %(t) of the time-dependent Schrodinger
equation that the expectation value of the energy
is constant in time:

d&+I nfl +&/dt =&=&+I ffI +&+&@Itf I +& (A1)

=(ta)-'&c, l[a,a]l e,&
=- 0. (A5)

This follows from the one-body structure of the
Har tree-Fock Hamiltonian X. It has nonzero
matrix elements only between the solution 4&

and (besides « itself) its one-particle, one-hole
excitations. Moreover, the latter are identical
with the corresponding matrix elements of H.
That is,

(~"I&l x.& =(~;Ital X'. &5. +E .5..
defines air the matrix elements of X from Cq to
the (complete) set of intermediate state deter-
minants, where X„'is the &h n-particle n-hole
state with respect to the determinant 4~ =Xo.
From (A6) and (A4), the result (A5) follows
immediately.

Other constants of the motion in TDHF

Similarly if 6 is the one-body operator for any
physical observable which is an exact constant of the

=(tt )-~(pl[a, a]l e&
-=o. (A2)

Likewise for any solution 4, (t) of the time-
dependent Hartree-Fock equation (3), the time
derivative of the energy expectation value is
given by

d&«lfflc;&/«=E=&c;Iffl4»+&+;Ifflc;& (A3)

=(tA) (eel[a, x]l 4;&, (A4)

and as we see below, the right-hand side vanishes
identically:

motion (i.e., commutes with H}, its expectation
value will also be constant in the TDHF approx-
imation, since its time derivative

d(c;I 8I4,&/dt =8 =(ih) '(«I [8,3c]Ic;& (A7)

reduces, by (A5) and the one-body and Hermitian
properties of 6, to the identity,

8 =(ta)-'&e, l[e,a]l «& -=o. (A8)

Energy conservation during the collision interval

With regard to the propagation of the TD-8-HF
states during the collision interval, consider the
K-matrix defined by Eq. (21}:

+ A.T/2

Ftq =(4T) ' (4y(t )I «(t'}&dt',
-~rj2—

(A10)

where we have written &T =T, —T„and centered
the time interval at t' = 0.

Unfortunately, no model problem is available
for which (A10) could be explicitly analyzed.

Energy conservation in TD+HF: Asymptotic

In Sec. VIIE we analyzed the orthogonality
properties of asymptotic reaction channels built
on periodic TDHF droplet states and found that
for a discrete energy spectrum the channel states
would be orthogonal unless Eq. (55) were
honored:

E(i) @(2) S(j.)@ (j.) g(2)@ (2)f + f + f CtPf + f Q)f

@(1)+ @(2)+$(1)@~(1)+g(2)g~(2) (A9)

Here Ef' is the energy of fragment number 1
in its periodic state of channel (f), the frequency

is the fundamental frequency of the periodic
state (equal to its period divided by 2v), and Stt'

is a function which takes on integral values only.
Apart from an accidental degeneracy between

one energy and the sum of another energy plus
one of its integral. overtones, Eq. (A9) is satisfied
only if the total energy in channel (f] is identical
with the total energy in channel (f '). But when

(A9) is not satisfied, zest. of (44) cannot vanish and
the channel orthogonality property (53}follows.
Thus, we see that the time-averaged overlap is
zero between asymptotic states of different ener-
gy. It follows that energy is conserved during
the asymptotic channel propagation of the TD-8-
HF states, as interpreted under Axiom II of
Sec. VE.

This energy conservation is, of course, a con-
servation on the time average as the discussion
of Sec. VII E leading to Eq. (A9) above clearly
indicates and, indeed, as are all the asymptotic
implications of the TD-8-HF method for channels
involving droplet vibrations with finite period.
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Therefore we turn to an amplitude analogous to
(A10}, but involving bound states, and consider
the case where some time-independent determin-
ants 4~ and 4» happen to be eigenstates of the
exact Hamiltonian, ~ H. That is,

ae, =E,e, (g=t,f). (A11)

Then the time-dependent solutions are given by

4, =4,[exp(-iEgt/ft)] g =i,f, (A12)

and (Szi(' reduces to the form

Ey-Ei ~ (S/2&T). . (A14)

[ Kq; J

' = ((4q( 4 ~) [ '((N/aT&E)2 sin'(&Tb E/25))

(A13)

where &E=E~ —Ei. The .second factor in (A13}
approaches the value 1 or 0 for &T- ~, depending
on whether &E=O, or not. For finite &T it is
nearly equal to 1 when EE« b T/2h and small
when &E&&AT/25. Thus one concludes that Sz,
honors in this case an apron oxidate energy con-
servation laze in that it describes transitions
from state t to state f of substantial probability
only when their energies obey the inequality

For the more general case when 4& and 4» are
not eigenstates of H the functions will have the
form

C~ = [exp(-iE~t/ft)]4~(t), (A15)

where C~ is here also time dependent. Then the
spatial overlap factor cannot be extracted from
the time integral and the approximate energy
conservation relation (A14) is not immediately
implied.

Still. , the energy phase factor in (A15) and the
time dependence of 4~(t) are not closely correlated
physically, since the time dependence of 4,(t)
reflects the complicated interaction dynamics
among the A.-interacting nucleons. Therefore, one
might seek an energy conservation law of a
statistical nature, under which the Kz, overlaps,
although not guaranteed always to be zero between
states of different energy, might nevertheless
reflect the impact of the factor exp[i(E&- E&)t'/ft]
by exhibiting small values between states of en-
ergies whose difference substantially exceeds
the limit ft/AT.

Clearly, a numerical experiment to study the
energy conservation in a fully time-dependent
example would be most illuminating.
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ture to conclude that because the determinants are
always spatially localized the description is neces-
sarily a classical one: wave packets, even when lo-
calized can adequately describe such interference
phenomena as distinguish the quantal wave mechani-
cal Schrodinger theory from the classical mechanics.
In addition to its time-dependent phase relative to
other wave functions, as discussed in Ref. 31.

~YThe fact that these are asymptotic states allows this
limit to honor consistency: R~ must be chosen large
enough to guarantee the desired degree of accuracy.

'"We treat all packet widths ca& as negligible in the pre-
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sent discussion, a simplification which must finally
be more carefully reviewed. Thus, any implications
which depend essentially upon differences in t& less
than or comparable to ur&/(v& ~, or upon differences in

~ L&~ less than or comparable tom&AJ vP~, must be
reinvestigated for the effects of packet width and struc-
ture.

~SRecall that conditions (a) through (d) of Sec. VIIE are
assumed here to be already satisfied, They imply
that the translation kinetic energy is identical in chan-
nels (f} and {f'). For this rea.son these energies
have already been canceled from the right and left
sides of Eqs. (54) and (55).
K. K. Kan has exhibited certain periodic TDHF
solutions for a specific model problem. In that
ease, the gauge invariant periodic solutions have a
discrete and not a continuous-energy spectrum sug-
gesting that the continuous-energy vibrational spec-
trum need not be characteristic of TDHF periodic
solutions. On the other hand, Kan's model exhibits
strong "accidental degeneracy" in the present ter-
minology so that its orthogonality properties require
further study. See also Befs. 89 and 90.
See, for example, Befs. 82-83 regarding experimental
studies of classical droplet collisions, their theoreti-
cal description (Ref. 84), and their possible analogies
with nuclear heavy-ion reactions (Befs. 84-85).
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