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A variety of mechanisms for deuteron production in relativistic nuclear collisions are considered. These

include the coalescence model, the sudden approximation model, and the static thermal model. A new

model based on time dependent perturbation theory is presented. A solution of the rate equations for a
hydrodynamically expanding fireball suggests that chemical equilibrium might be achieved in central

collisions. Emphasis is placed on the physical assumptions of the various models, their limitations, and their

subtly different predictions. Of some importance is the effect of impact parameter averaging which, when

written in terms of the usual power law relationship, introduces the necessity for measuring various two

particle correlation functions to check the self-consistency of these models.

NUCLEAR REACTIONS Relativistic heavy ions, models for deuteron production
p-n correlations.

I. INTRODUCTION

One of the more interesting aspects of relativis-
tic heavy ion collisions is the huge number of re-
action products which are observed. The list of
particles starts with photons, pions, kaons, and

protons, ranges through the light composite nu-
clei, and up to fragments as heavy as the beam
and target nuclei themselves. Surely this variety
of particles is a consequence of the variety of
types of events which occur. In a large impact
parameter peripheral type event the beam and
target nuclei just tickle each other leading to low
excitation energy and rapidity distributions cen-
tered on the beam and target rapidities. In a
small impact parameter central type event the
beam and target nuclei smash each other to pieces
leading to high excitation energy and a rapidity
distribution extending over the entire allowable
phase space.

The purpose of this paper is to investigate some
possible mechanisms for producing light nuclear
fragments, in particular, deuterons. Deuterons
were singled out for several reasons. As opposed
to alpha particles, for instance, it is unlikely
that knockout of preformed deuterons or deuteron
evaporation from a heavy target residue will
significantly contribute to the observed production
cross section. Thus the dynamics which are unique
to relativistic heavy ion collisions will be focused
on. Also, the computational effort for some of
the models to be discussed, and the applicability
of all of them, are optimized for the smallest
nuclear fragment.

We begin by reviewing, in Sec. II, the first
model historically to be used to describe deuteron
production in relativistic nuclear collisions, the

momentum space coalescence model. Two dy-
namical models which were invoked to account
for the coalescence phenomenon, the static
thermodynamic model and the sudden approxima-
tion model, are discussed in Secs. III and IV.
These are generalized to the relativistic domain
where it is shown that they differ from each other
and the coalescence model by powers of the rela-
tivistic dilation factor y. In Sec. V, we introduce
a new model based on time dependent perturbation
theory. . The formation probability in this model
depends on the interaction time as well as on the
volume of the producing system. Section VI con-
tains the results of a numerical solution of the
rate equation for deuteron formation in the con-
text of a hydrodynamically expanding fireball.
Clear experimental signatures of this mechanism
are predicted. We discuss the effects of impact
parameter averaging in Sec. VII and show how the
measurement of two particle correlations can un-
tangle them. Finally, Sec. VIII contains a sum-
mary of what we have learned so far. Present
experimental data is referenced throughout the
paper.

II. COALESCENCE MODEL

The coalescence model for relativistic nuclear
collisions" was developed from the physical in-
sight provided by proton-nucleus collisions. In
those reactions Butler and Pearson' suggested
that the deuteron production mechanism was the
binding of cascade nucleons in the presence of
the target nuclear optical potential. In their model
the momentum space density of produced deu-
terons with momentum per nucleon p is
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d'n„ 1 d'n~~
dP" P dp:]~ ~

where the momentum independent coefficient is
not important for our purposes but can be cal-
culated. A1.so, relativistic effects and differences
between proton and neutron densities have been
neglected. The important point about Eq. (1) is
the factor 1/P'. This arises because the nucleon
pair must transfer their excess energy momen-
tum to the nucleus via the static optical potential
before they can become a real deuteron in the
final state. In the bulk of relativistic heavy ion
collisions the projectile and target interact so
strongly and quickly that one can no longer speak
of a static nuclear optical potential. This pro-
duction mechanism can probably be ruled out.

Schwarzschild and Zupancic' then pointed out
that, independent of the detailed production
mechanism, the deuteron density d'n, /dp' should
be proportional to the square of the proton density
(d'n~/dP')~ The. coefficient may be momentum
dependent (perhaps only weakly so) and will de-
pend on details of the mechanism. This state-
ment of a "square law" behavior is just a re-
flection of the final state phase space assumed.
A pair of independent nucleons in the final state
somehow transfer energy momentum to the rest
of the system to form a deuteron. See Fig. (1).

The derivation of the coalescence model for
deuterons goes as follows. " Let yd'n„/dP' be
the relativistically invariant momentum space
density for nucleons before coalescence into
deuterons. %e assume that protons and neutrons
have equal densities but the formulas can be
generalized to include the nonequal cases. Con-
sider a sphere in momentum space centered at p
and with a radius Po The probability for finding
one primary nucleon in this sphere is

1 4m, d'nN
Po V dp3 7

where M is the mean nucleon multiplicity. The
purely statistical probability for finding two nu-

cleons in this sphere is

P„(2)=( )P'(1 —P)" '. .

If MI'«1 andM» 1 then the last factor is ap-
proximately one. Hence

d'n, 1 4m, ~ d'n„
dP' 23 'FdP'

If we also take into account spin and isospin then
the formula becomes

d'n„3 4m, )' d'n~& d'n„
y dp'

=
4 3 p"'iy dp'll y dp'

The unspecified parameter P, is a number to
be taken from fits of this formula to experi--
mental data. In principle P, could depend on p,
but then this simple momentum phase space model
would have no predictive power. Note that Eq. (5)
applies for a single impact parameter.

At this point one might ask what the mechanism
is that allows a pair of free nucleons to coalesce
into a deuteron. Mathematically this model says
that whenever a proton and a neutron are within

a momentum -Po of each other and in the correct
spin state then they will coalesce. P, is not pre-
dicted by the model, but assumed to be on the
order of the Fermi momentum of the deuteron.
Energy-momentum conservation during coales-
cence is not considered to be a problem because
the deuteron is so weakly bound. After all, in
the initial state of the heavy ion collision the
nucleons are off their mass shell by -S MeV,
there may be multiple two or three body collisions
in the intermediate state as well as virtual pions
to boost a final state deuteron on to its mass
shell.

An advantage of the momentum space coales-
cence model is its generality. It is pure phase
space and statistics and makes no assumptions
about the details of theproduction mechanism.
This is also a limitation since it cannot predict
how P, varies with projectile and target size,
beam energy, or even whether P, is really inde-
pendent of deuteron momentum.

X

FIG. 1. Schematic for the production of a deuteron in
the final state of a relativistic collision between two
heavy nuclei.

III. THERMODYNAMIC MODEL

The thermodynamic model' accounts for light
composite particle production by assuming that
the projectile and target nuclei or portions there-
of form an intermediate complex, or fireball, "
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in which thermal equilibrium, both kinetic and
chemical, takes place. Given the baryon number,
energy, charge, and density of the emitting sys-
tem when it decays, one can calculate the volume
V, temperature T, and neutron and proton chemi-
cal potentials p~ and p~. ' Alternatively, some of
these parameters may be extracted from the data.

The distribution of particles of type i in mo-
mentum space is

The errors do,not seem severe except near the
boundaries of phase space.

Finally one might say that the application of
thermodynamic formulas only require thai the
phase space for nucleons and deuterons be filled
statistically. The mechanism for filling it,
whether by two and three body collisions or by
more exobc mechanisms, is not important to
lowest order.

d'n, 2S,. +1 (P'+m, ')'" —V, &

(6)
IV. SUDDEN APPROXIMATION

where S; is the spin of the particle and a refers
to fermion/boson. If the density is low enough
so that the particles can be treated as nonde-
generate then we observe that

d'n, 8 (2m)' d'np d'n„
dp3 4 V dp' dp' '

where p is the momentum per nucleon. Writing
this in terms of Lorentz invariant densities we
have

d'n, ~ (2w)' 1 ( d'n,
&i

d'n„
dp' 4 V yE dp'i dp' ' (8)

Comparing this with the coalescence formula Eq.
(5) we identity

8 (2m)'
3 7 P V

0r
Thus p, is inversely proportional to the dimension
ot' the emitting system. Notice also that Egs. (8)
and (9) are not Lorentz invariant statements since
P, depends on y measured relative to the center of
mass of the emitting system. This can lead to
problems when comparing Eq. (8) with data which
covers a wide kinematic range since one does not
know a prio~ what the center of mass frame is
or if there may be more than one emitting sys-
tem. One may invoke geometrical assumptions
to determine center of mass frames, "'but then
one cannot focus on the thermodynamic assump-
tion alone. "

One may question the wisdom of applying in-
finite matter, noninteracting gas formulas for the
distribution of particles coming from a highly
time dependent, strongly interacting finite size
system. In response to this Mekjian' has esti-
mated the reaction rates for deuteron production.
It appears that they are larger than typical ex-
pansion rates by an order of magnitude so that
thermal equilibrium may be a goad first approxi-
mation for the more central collisions. This
point is discussed further in Sec. VI. Das Qupta"
has made some progress in estimating the errors.
involved when taking the infinite particle limit.

] f(kl xl+k2'x2) — ef(Kl R+k r)
L 3

where we use box normalization, and

(10)

Another model ' for light composite particle
production is based on the following intuitive pic-
ture. During the intermediate stages of the col-
lision the nuclear system will be at high density
and excitation energy and there is strong inter-
action among the nucleons. Since they are such
diffuse objects it probably does not make sense
to speak of deuterons existing at high density. As
the system expands and the density goes down,
proton-neutron correlations develop which even-
tually lead to some proton-neutron pairs binding
together to form deuterons. If this transition
from a high density phase containing no deuterons
to a low density phase containing some deuterons
is fast enough, then one is tempted to apply the
sudden approximation, of quantum mechanics.

The general many-body analysis of the problem
is very complicated and cannot be handled without
knowing the complete time development of the sys-
tem. However, we can obtain a fair approxima-
tion to what we think the real physics might be in
the following way. Consider the system as evolv-
ing from a high density phase described by the
many-particle Hamiltonian H; to a' low density
phase described by the many-particle Hamiltonian
Hf. The spectrum of II; consists of nucleons only,
whereas the spectrum of H~ consists of nucleons
and deuterons. The probability for a given proton-
neutron pair in the high density phase to bind into
a deuteron in the low density phase is given by the
overlap of the proton-neutron wave function with
the deuteron wave function. Both wave functions
are evaluated at the volume V for which the high
to low density phase transition is to occur. This
is left as a parameter to be adjusted to fit ex-
perimental data, but is estimated to be that vol-
ume for which the average density is equal to or.
somewhat less than normal nuclear density.

Let the initial proton and neutron state be de-
scribed by the plane wave
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sured in the rest frame of the emitting system.
Then
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Let the final deuteron state be described by an
internal wave function y. (r) and an overall plane
wave

," (0)=y,' (p), etc. , (19)

iK'Re~ =,(, e X(r) . (12)

It is convenient to work in the rest frame of the
deuteron, K = 0. Then the sudden approximation
says that

4s gtl—"„",'(0) = l&ilf&l' „„"l „"ddt d&.'.
2

Here p=——,'K is the momentum per nucleon. If we
take into account spin factors and evaluate the
integrals we find that

(13)

3 2v'
l(il f) l'= — 5(K ) d~'dr"e'"

4 I 6 i

xy *(r)y (r') .
We can change variables so that

dk~ dk2'=dK; dk .

(14)

(15)

Furthermore, we neglect the variation of the
nucleon densities over the range of integration of
k to obtain

d'n„(0) = 8
3 2m d n,

(0)
d n„( )

dp 4 L dp' dp'

x dK,.'5 K,. Ch'g~ "g4'

Now we multiply by (I /2m)' to convert box norma-
lization to continuum normalization (we had been
using a mixture of the two for convenience, i.e.,
the Dirac deltas). Then we multiply by I '/V„
because the proton-neutron to deuteron transition
is occurring only in the finite volume V, which
is measured in the deuteron rest frame. Note that
the sudden transition occurring in a finite volume
is crucial, otherwise, on taking the limit L -~
the number of deuterons would go to zero as a
consequence of energy conservation. A nucleon
pair cannot make a deuteron in free space.

So far our formula is

d n
(0) 83 (2~) d n (0)d n

(0)gp3 4 V~ dp dp

Let us write this in terms of quantities as mea-

(18)

x e ' X*(r)X(r') . (18)

Since X is normalized to unity we get

where V is the proper volume of the system. The
final formula is then

(21)

Comparing this with the coalescence formula Eq.
(5) we identify

(22)

As in Eg. (9) for the thermal model we see that
P, is inversely proportional to the dimension of
the emitting system as expected from phase
space. However, in the present model P, has the
inverse dependence on y compared to the thermal
model. In the nondegenerate domain these models
yield different predictions only because of rela-
tivistic effects.

i(k ~' x y+ k 2 x p) i(Kg ' R+ k ' r )L3~ I3
The final state wave function is taken as

(23)

1;K.R+y= ~,p~ e X(r). (24)

The notation is the same as before. We work in
the nonrelativistic limit for the moment and quote
the relativistic result at the end.

The transition probability ur(K)de to produce
a deuteron via the neutron-proton potential v(r) is

V. TIME DEPENDENT PERTURBATION THEORY

In this section we introduce a new model based
on time dependent perturbation theory. In con-
trast to earlier models this one assumes that
deuteron production is a small perturbation on
the system so that deuteron saturation is not
achieved. The number of deuterons increases
with increasing interaction time available for pro-
duction. Mathematically this model says that
energy conservation in the formation p+n- d is
not violated because of the uncertainty principle:
The interaction is turned on only for a finite time.
Physically we know that the rest of the system
is well able to absorb excess energy momentum
(see Sec. II).

Consider the quasi-initial neutron-proton state
to be described by the plane wave
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00 2

v(K)= J d)I'(t)H~e ' '~ P(K),
0

(25)

where P(t} describes the time dependence of the
interaction, p(K) is the density of final states,
cd;z is the energy difference, and

B„=(i(v[f& . (25)

P(t) =e--'/ . (27)

~

~

00

dtP(t)e ' '/'
0 (deaf'+7

' (28)

I et us also choose X(r) to have the Hulthhn form

X(r) =-(e-""—e-'"), (29)

In a more rigorous calculation we would use wave
packets to describe the nucleons, but such an
approach would imply that we know the detailed
time development of the system. To implement
what we think the real physics might be, we
simulate the fact that the nucleonic wave functions
overlap only for a finite time interval by the in-
troduction of the factor P(t). It is only within
this finite time interval that a given proton-neu-
tron pair are close enough together to interact.
Qualitatively this corrects the glaring deficiency
that plane waves overlap forever. ' Also, it is only
within this finite time interval that there are other
nucleons close enough to absorb excess energy
momentum, i.e., before the system blows apart.
For the moment let us parameterize P(t) by

q'/$' have been dropped, and spin has been ac-
counted for.

This result, Eq. (32), is very interesting be-
cause in principle it allows one to determine from
the data not only the volume of the interacting
nuclear complex but also an effective lifetime.
For currently available energies of 2 GeV/nu-
cleon or less any reasonable estimate of 7 gives
x «1. This is equivalent to letting g-~ or using
just the asymptotic exponential tail of the deu-
teron wave function. Comparing with the coales-
cence formula Eq. (5) we identify

4+p 3 —3 «(2B7)1/2 1/2(27t l3
(33)

where we have inserted the correct relativistic
factor. If we estimate & as the time it takes the
two nuclei to traverse each other in the nucleon-
nucleon center of mass then 7'-Rm/P, , where A
is a typical nuclear radius. For beam energies
between 250 and 2100 MeV/nucleon, (2Bv')' ' is
of order unity. Also, p, should decrease as
T„'~", which is a 14% decrease between the above
quoted energies. Although some older data' sug-
gest that sort of behavior, present experimental
errors are probably too large to draw any con-
clusions. At still higher energies there is a more
rapid beam energy dependence which unfortunately
cannot be tested at present accelerators.

One might wonder about the dependence of the
result on how the interactions are turned on and
off. If we choose

P(t}=~(7-t) (34)
where B = rl2/m is the deuteron binding energy:

(30)

)l= 45.7 MeV/c,

t= 376 MeV/c,

c'= q/2m .
The deuteron distribution for a given nucleus-
nucleus collision is then

and use just the asymptotic form of the deuteron
wave function, valid for lower energies, then
(2Br)' ' in Eq. (33) is replaced by (32B7/7))' '.
Thus the extraction of an interaction time from
the data will be slightly ambiguous in its nu-
merical value due to its imprecise definition in
this model.

VI. RATE EQUATIONS IN HYDRODYNAMIC FLOVf

00 2

x d,tI' t II- e
0

Working out the integrals we find

d'n, 3 (2v}' d'n, d'n„( ),/,
dp' 4 V dp3 dp3

Let us return now to the question of chemical
equilibrium for deuterons in central collisions.
Mekjian' has painted a scenario wherein the light
nuclear elements are built up in a series of multi-
body reactions during the expansion stage of a
fireball. For deuterons, typical reactions are

(32)

n+p+N d+pf,

d+Ã+p ~ g+d
~

++g+p+p Q+d.

(35)

where p=~K, x ='(m/7)'/'/g, terms of order One then has to solve a coupled set of rate equa-
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tions to determine the deuteron concentrations.
If we focus on the first reaction of Eq. (35) only,
which will be the most important reaction initial-
ly, then

pp p„—pd

N is the number of nucleons, and E„, is their
total excitation energy. The total thermal en-
ergy ls

lcm Etot
tot 1+ (t/t )2

and the total hydrodynamic flow energy is

(41)

x p~(v„,g(N+d- ~+P+(t)) . (36) t2
~Qow~tot ~tot tg +to

(42)

Here p~, p„, p„and p„are the proton, neutron,
nucleon, and deuteron densities. The (p„/p~ p„)
is the equilibrium ratio:

p pp ~ 4(mT (3"t)

The product ov„&, where v„~ is the relative velocity
of the nucleon and deuteron, is to be averaged
over the thermal distribution of relative veloci-
ties:

(vv„,) = (16/em)' T f'v)EE' 'e e(E) . (88)

p (t)=p (o)[I+(t/t. )'] '",
where the characteristic expansion time is

(39)

(4o)

All of these equations assume that kinetic thermal
quilibrium for the deuterons and nucleons is
achieved and that nonrelativistic, Boltzmann sta-
tistics are adequate.

A survey of available data' suggests that o(E)
= 100 mb for the energy ranges of interest to us.
Mekjian then estimates that the deuteron forma-
tion rate is an order of magnitude greater than
the expansion rate of a fireball. The purpose of
this section is to solve the rate equation for a, par-
ticular model of the fireball expansion to see if
indeed there is sufficient time to build the deu-
terons up to equilibrium concentration.

Bondorf, Garpman, and Zimhnyi "have pro-
posed a simple analytic hydrodynamic model for
expanding fireballs which will be sufficient for
our purpose. It is based on the expansion of a
piece of hot nuclear matter into the vacuum. At
time t=0 all of the energy is thermal. As the
system expands an increasing fraction of the total
energy is converted into collective hydrodynamic
flow. The equation of state assumed is that of a
monatomic ideal gas. We shall choose the initial
baryon density distribution as pe(t=0)8(R r), -
where the radius of the sphere R is determined
by the total number of nucleons in the system.
Then the system expands as a sphere of uniform
density. The density evolves as

p~(t) = p~(t) + 2p~(t), (44)

where pa(t) is given in Eq. (39). We are of course
neglecting the feedback of deuteron production on
the expansion of the fireball. The full rate equa-
tion we must solve is thus

3/a all

",', (()=",,(.';, ) (..(e)-~.,(e)(*-..())
x [pe(t) —2p~(t)]go — —, ,p~(t) .16 T(t) 3t

(45)

Here pi(t) and T(t) are determined by Eqs. (39)
and (43) and we take o, = 100 mb. The last term
in Eq. (45), which is not present in Eq. (36), is a
dilution term reflecting the fact that the deuteron
density will decrease due to expansion. This is
familiar from astrophysics. '4

We have solved Eq. (45) numerically for two
cases. In case A the system consists of 160 nu-
cleons initially (no deuterons) and has 37.5 MeV
of excitation per nucleon. In case B the system
consists of 20 nucleons initially (no deuterons)
and has 150 MeV of excitation per nucleon. We
start the expansion out at twice normal density
ln both cases. The t, for the two cases changes
by a factor of four.

The results are plotted in Figs. 2 and 3. We
define x„ to be the number of nucleons bound up

. in deuterons divided by the total baryon number
in the system. Thus 0&x„&1. The important
point to notice is that the deuterons build up to
their equilibrium value very quickly. If a central

Although the baryon density is uniform inside
the expanding fireball the temperature is not.
Since our only purpose here is to see how fast
deuterons can be chemically equilibrated, and
not to make detailed predictions, it is sufficient
to solve the rate equations using an average tem-
perature determined by the total thermal energy:

() 2Zg„1 1
3 X 1+(t/t, )'1 —p„(t)/p, (t)'

The nucleon, baryon, and deuteron densities are
related by
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pB (baryons/fm )
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37.5 MeV/nucleon excitation
e ull l60 nucleons

0.5
1

0.8 — Hydro/ q

0.6
~Hydro/nonequil, /

Static/equil

by the equation

3 4gx„=
6 T(t) pe(f)(I -x~)'.

Then notice that, from Eqs. (39) and (43),
3/2

&B(t)T(t) "= — (I xd-) PB(o) .
tot

(46)

(4V)

I i s & I i « I & t i I0
0 4 8 12 16

t(fm/c =33 ~ IO s)

FIG. 2. The fraction x& of nucleons which are bound in
a deuteron as a function of time and density, for case A.
The solid line is- a solution of the rate equation in a hy-
drodynamically expanding fireball.

pB (baryons/fm )

.25 .2 .15 . I .075
I I I I I

l50 MeV/nucjeon excitation
20 nucleons

/nonequil

Static/equil

0
0

I I

2 3
t (fm/c = 5.5&& IO s)

FIG. 3. The fraction x& of nucleons which are bound in
a deuteron as a function of time and density, for case B.
The solid line is a solution of the rate equation in a hy-
drodynamically expanding fireball.

collision of two heavy ions can be at all modeled
by hydrodynamics, then the deuterons can be ex-
pected to reach their equilibrium value. There
is one objection to this conclusion: Does it make
sense to speak of deuterons existing at normal
nuclear density and above& No allowance was
made for the extended size of the deuteron or nu-
cleon. However, even if deuterons did not begin
to be formed until nuclear matter densities were
reached during the expansion, the deuterons would
still have enough time to reach equilibrium in the
cases we have considered.

Also shown in the figures is the value of x„one
would obtain in the static thermodynamic model.
In that model all of the excitation energy goes into
thermal motion, none into hydrodynamic Qow.
The deuteron yield in the static thermal model
depends on the breakup density of the system
whereas in the hydrodynamic model it does not.
The reason is easy to see. From Eq. (45) the in-
stantaneous equilibrium value x„ is determined

T il slnhQ T
yg+ —

~

——cosho.Ej n E (48)

where N is the total number of particles, g (T) is
a normalization factor, ys = (I -p')'/', and
a = y+P/T. We choose a breakup density of one
half normal density. This choice does not affect
x„but it does determine the fraction of excitation
energy which ends up in hydrodynamic flow. The
momentum dependence of Po' can be read off Fig.
4. Notice that there is an order of magnitude in-

12 I I I I
'

I
'

I
'

I
'

I

AsymptoticN

10

8
C

v
FO

a
2

0 i I I i I I & I i I I s I I s

0 200 400 600 800 1000 1200 1400 1600 1800 2000
p(MeV/c/nucleon)

FIG. 4. Momentum dependence of the effective po in a
hydrodynamically expanding fireball, cases A and B.

Thus the instantaneous equilibrium value is in-
dependent of the breakup density. This is no ac-
cident of the particular expansion model we chose
or the uniform temperature approximation. In
true hydrodynamic Qow the entropy per cell in
phase space is constant. If the entropy is constant
then Pe(t)T(t) '/' is also constant and, since x,
depends only on that quantity, x„ is independent
of time.

Finally, one might like to know how much the
hydrodynamic model differs from the coalescence
form of Eq. (5) or, alternatively, the momentum
dependence of P,. Consistent with our uniform
temperature approximation we will assign a uni-
form radial flow velocity P to the system. " This
velocity is determined by the total hydrodynamic
flow energy, Eq. (42). It follows that the momen-
tum space density of particles with momentum P
and energy E is

d'n N
d .=

Z T exp[ ys(&I-T)]
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crease in that quantity as P increases from 0 to 2

GeV/c, at least for the examples chosen. This
qualitative behavior should be clearly seen in
centrally selected collisions of equal mass heavy
ions i.f the hydrodyna, mic models have any validity.

VII. IMPACT PARAMETER AVERAGING

d'o.
3 3

C( )
dPi dP,

P'~ =d'v
P n

dP g dP2

v fd'5 D(p, q, b)

[Jdab D~(p„b)] [jd'b D„(p„5)]

So far all of the discussion has been on deuteron
production for fixed impact parameter. Of course
central collisions are the most attractive to study
but most of the deuteron data available involves
impact parameter averaging. Now we shall in-
vestiga. te the consequences of impact parameter
averaging on the various models studied.

Consider the coalescence model result, Eq. (5),
with P, being independent of momentum and im-
pact parameter. Define the proton-neutron mo-
mentum spa, ce distribution as

d 'Pl

3dp 3 (pj j p» b) = D (P„p,&
b)

2
(49)

—",')p„b) a(p„b)=~„—' f d=p, 'BS„p„b)
(50)

For simplicity we shall work in the nonrelativistic
limit in this section. Generalization to the rela-
tivistic domain will be clear. The proton and neu-
tron distributions are

Here o is the total reaction cross section. Com-
bining Eqs. (53) and (54) we get

d ' — P' d d "[CP =0)+1]dP'
=

v dP' dP' (55)

Previous analyses of the data'" have been done
neglecting impact parameter averaging, i.e.,
setting C(p, q= 0) = 0 in Eq. (55). In general this
will not be correct. The presence of the correla-
tion could introduce "anomalous" momentum de-
pendence into the effective P,. The fact that q=0
in the correlation function is an artifact of the
approximations in the model. In practice C(p, q)
should be smeared over some finite range of q,
say Ill ~100 or 200 MeV/c.

Impact parameter averaging in a hydrodynamic
model such as described in Sec. VI is probably
not worthwhile since hydrodynamic effects would

be greatly smeared out. However, we can ask
what happens in the thermal, sudden approxima-
tion and perturbation-type models of the previous
sections. Those models all have the general
form

N~ and N„are the total number of protons and
neutrons. The coalescence formula, Eq. (5), be-
comes

d n„
(~ (Dp, q = o, b, (56)

,' (p, b) = vP, 'D (p, q = 0, b) .

The model actually assumes that

dB dip
Pi dP2 dPi dP

(52)

d3rL"'( b)dP'
=

dP' P

but this assumption is not essential for the pres-
ent purpose, and we can imagine a more general
model where Eq. (52) does not hold. Here we
have defined p= (p, +p&)/2 and q= p, —p, . Inte-
grating Eq. (51) over b we obtain

where k is independent of momentum and impact
parameter. The k in the perturbation model may
have a very weak dependence on b because the
interaction time will. The volume V(b) in general
will depend on b. The deuteron cross section is

dP

G" =k dpb
~

D =0 (57)

%e cannot pull -the same trick with the correlation
function C because of the volume. To make pro-
gress we do some shuffling. I et N(b) be the num-
ber of participant nucleons in the volume V(b).
This is essentially the multiplicity. Then Eq. (57)
can be written

= mpo3 d'b B p, g = 0, b . ," =kp d'b -D p, q=0, b . (58)

Now define a. neutron-proton correlation func-
tion C by

Here p is the brea, kup density of the system. De-
fine a new correlation function C' by
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where

(58)

d~bNb = Na (60)

is the total nucleon single particle cross section.
A measurement of C' requires not only proton-
neutron detection but also multiplicity determina-
tion event by event. In terms of C', Eq. (58) can
be written

d'o~ kP d'o~ d'o~ [C'( =0) 1]
Gp 0~ tfp dp

Again C'(p, q= 0) is to be understood as C'(p, q)
smeared over a range ~q~ & 100 or 200 MeV/c.
This formula should be compared with Eqs. (5)
and (55).

Reviewing the derivation of the influence of im-
pact parameter averaging on the deuteron spec-
tra, we notice that we could also have integrated
over any finite interval in b. If an experiment
had a trigger such that events with b &3 fm were
selected then the integration would only extend
up to 3 fm. It is possible that an anomalous mo-
mentum dependence introduced by C or C' would

help to discriminate among the models for deu-
teron production. At the very least they are
necessary if meaningful values for such param-
eters as p or P, are to be determined from the
data since the correlation functions could change
the absolute normalizations. Of course proton-
neutron correlations are hard to measure but
proton-proton correlations would probably suf-
fice.

(61)

VIII. SUMMARY AND CONCLUSION

In this paper we have tried to point out why the
production of light nuclei, in particular deuterons,
is an interesting aspect of relativistic nuclear
collisions. Since it is not likely that there are
many preformed deuterons to be knocked out, nor
likely that many deuterons will be evaporated
from a projectile or target residue, properties
more directly related to the nucleus-nucleus col-
lision dynamics will be focused on. The pro-
duction of deuterons from nucleons should not
greatly perturb the evolution of the collision but
rather should carry away some information about
the collision to the observer.

The coalescence model is a purely statistical
model which merely figures the probability for
finding a proton and neutron within a sphere of

radius Po ln momentum space. There is no ex-
plicit mechanism for turning them into a deu-
teron. However, it can be argued that statistical
(or phase space) considerations are sufficient
since it is easy to transfer a few MeV of energy
momentum to neighboring nucleons in a relativis-
tic nuclear collision. Unfortunately the precise
value of P, and its variation with beam, etc.,
cannot be understood. The coalescence model
yields essentially no new useful information about
the dynamics.

The static thermaal model assumes that thermal
equilibrium, both kinetic and chemical, is
achieved during the intermediate stage of the col™
lision. Although there is controversy about the
actual degree of thermalization, this model, to-
gether with some geometrical assumptions, - allows
one to calculate absolute differential cross sec-
ti.ons. Alternatively, fits to the data allow one to
extract effective temperatures and volumes for
the emitting systems.

The sudden approximation model assumes that
during the expansion of an intermediate complex
there is a fast transition from a strongly inter-
acting phase to a weakly interacting one. The
sudden approximation of quantum mechanics is
applied. The probability for deuteron formation
involves the overlap of wave functions before and
after the transition. The volume of the system
at the transition point is the interesting quantity
which is to be determined from the data.

The time dependent perturbation model assumes
that there is a finite time during which protons
and neutrons emerging from the system are al-
lowed to interact to form deuterons. Energy con-
servation is not violated due to the uncertainty
principle. Alternatively, the initial proton and
neutron may be thought of as being off the mass
shell. The process is definitely not of an equili-
brium character since the number of deuterons
formed increases with increasing interaction
time. Assuming the validity of this model a com-
parison with experiment should allow a deter-
mination of both an interaction volume and an in-
teraction time.

A solution of the rate equation for deuteron
abundance in a hydrodynamically expanding fire-
ball suggests that chemical equilibrium can be
reached in the more central collisions of heavy
nuclei. This conclusion depends to some extent
on the approximate validity of kinetic equilibrium.
Deuterons should provide a good experimental
test of the validity of hydrodynamics in central
collisions, since the ratio (yd'u„/dp')/(yd'n~/dP')'
is much more strongly momentum dependent than
the other models considered.

The effect of impact parameter averaging was
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considered and it was shown that the usual power
law relationship between the deuteron and the
nucleon spectra was modified by a correlation
function. For the coalescence model, the correla-
tion function C(p, q) between proton and neutron
as customarily defined was the correct one. For
the other models (except hydrodynamics), the
proper correlation function C'(p, q) involved the
measurement of the associated multiplicity of high
energy particles. In either case only the knowledge
of the correlations for low relative momenta is
necessary. Comparisons of the various models
with the data including correlations (not yet avail-
able) should provide important self-consistency
tests. Measurement of proton-proton correla-
tions, with perhaps some correction for identical
particle and Coulomb effects, would probably suf-
fice.

Although all of the models considered exhibit
the power law relationship between deuterons and
nucleons, which is just a reflection of the final
state phase space, no pair of models have ab-
solutely identical predictions. Hopefully a com-
prehensive experimental program involving good
statistics, correlations, and multiplicity selec-
tions for a broad range of projectile, target, and
beam energy combinations will be able to pin
down the dominant mechanism for deuteron pro-

duction and hence shed more light on the col-
lision dynamics. It is also possible that in the
real world several mechanisms are at work
simultaneously.

At the conclusion of this work a paper by
Remler and Sathe" was brought to my attention.
They show how to incorporate deuteron produc-
tion in the context of intranuclear cascade models.
The interested reader is referred to their paper.
One aspect of their work deserves comment here,
however. It has been suggested' that if a third
body N is necessary for deuteron formation in a
nonequilibrium theory, then the deuteron spectra
should be proportional to the cube of the proton
spectra, not the square. The work of Remler
and Sathe shows that this is not necessarily the
case.
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