
PHYSICAL RK VIE% C VOLUME 21, %UMBER 4 APRIL 1980

Barrier to complete fusion for He and 'H and that for evaporation from Hg
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A reference set of transmission coefficients for 'H and 'He reactions is obtained by systematic fits to data
for fusion cross sections. Comparisons to other sets, obtained from elastic scattering data, show some
significant differences. A comparison is made of calculated to measured. evaporation spectra for 'He from

Hg (E~ = 98 MeV, l,„,= 45). There appears to be a significant reduction in the barrier to evaporation for
this excited nucleus.

NUCLEAR REACTIONS Fusion cross sections for iH- and 4He-induced reac-
tions are systematized to provide reference values for transmission coefficients.
Evaporation spectrum analysis made for 4He from ~94Hg (8*=98 MeV, E„&t=45).

I. INTRODUCTION

Through the years a reasonable body of quanti-
tative experimental data has appeared on capture' '
and evaporation reactions' "for 'H and 'He. The
close relationship of emission processes to cap-
ture processes is embodied in the principle of de-
tailed balance on which nuclear evaporation theory
rests. "" The rate of evaporation is expressed in
terms of level densities of emitting and residual
nuclei and the inverse reaction (or partial wave)
cross section. As these inverse (or capture)cross
sections cannot be measured for target nuclei in
excited states one usually begins an evaporation
analysis with estimates obtained from interactions
between ground-state nuclei. "" The sources of
data for these estimates are of two types: (a)
elastic scattering and (b) reaction cross sections.
From such data one obtains parameters for an
optical potential which are systematized in some
way for general application.

By its very nature an important part of nuclear
evaporation processes favors emission energies
near and even below the coulomb barrier. "" In
this energy region the capture cross sections and
transmission coefficients are rapidly varying
functions of energy and E. Therefore, the calibra-
tion of parameters of the model potential is quite
important. " The purpose of this paper is to reex-
amine the' logical and data bases for these calibra-
tions. Most commonly one has used optical-model
parameters obtained from comparisons to elastic
scattering data. In recent years it has been gen-
'erally accepted that the elastic scattering is only
sensitive to the real potential at distances well be-
yond the s -wave barrier distance. "'" On the

contrary, fusion cross sections at low energy are
especially sensitive to the height of the s-wave
barrier and its penetrability. We propose
that calibrations of transmission coefficients for
capture processes should emphasize their direct
relationship to fusion cross sections. We have
searched the literature for relevant cross section
data and we propose simple parametrizations that
can be easily generalized.

H. LOGIC AND TECHNIQUES

A. General background

In recent studies, Vaz et al. have examined the
relationship between the optical model and cross
sections for elastic scattering, complete fusion,
and all reactive collisions. "" For the system
'O+'"Pb there is an abundance of high-quality

data for each of these processes. "" Even though
data of comparable extent are not available for H

or He induced reactions, we can probably expect
that many aspects are similar. What are the gen-
eral features that concern us most? (i) Optical-
model parametrizations that account for elastic
scattering at high energies usually do not work
well at low energies for either complete fusion or
elastic scattering. ' "~' (ii) Very good fits to
elastic scattering require an energy dependent
parametrization" "'~ that requires a large data
base to establish. (iii) A more simple energy in-
dependent potential parametrization can account
for cross sections for fusion, all reactions, and
for the quarter-point angles in elastic scatter-
ing. The systematics of these energy indepen-
dent parameters are much more easily established
than those based on elastic scattering alone.
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F~ =E~+S„+&„, (2)

J„=J +l.

Excitation energies of A and 8 are denoted by E,
spins by J; kinetic energy, separation energy, and
orbital angular momentum of the v, 8 exit channel
are labeled by &„,S„, and lb. The inverse partial
wave cross sections for 8 (excited to Ee, Z~) in

Kq. (1) a.re given by

o, (e,) =(2l +1)mK'T, (c„)s.„,
with their sum over I the cross section for forma-
tion of the A nucleus (excited to E„, J„)at equitib
~bourn" "

o(&„)= g o, (a„) = g (2l +1)vX'T, (e„).
l=o

As we cannot, in general, measure cross sec-
tions involving excited nuclei, we must try to sys-
tematize those for ground-state nuclei which must
then be considered only as reference values. If
these reference values of T, (&„)lead to a good de-
scription of measured evaporation spectra, then we
can conclude that the effective potentials for the ex-
cited nuclei are undistinguishable for the exit chan-
nels B(Es, 4 ~ ~ ~ ) + v(1) and for our reference set.
As excitation energy E~ and spin J~ are increased
one does expect nuclear deformations" or expan-
sions"~" to occur to some extent, and the detailed
form of the evaporation spectra may provide an
understanding of these effects. ~' ~ ~'

%hat is the most appropriate way to develop a
parametrization to describe the needed reference
set of transmission coefficients'P Most commonly
in the past ari opti. cal potential parametrization
has been obtained from elastic scattering data,
often obtained at energies well above the barrier.
Parameters obtained at high energy have been
shown to be unsatisfactory at near-barrier ener-
gies."" Barnett and Lilley have made a careful
study of both scattering and reaction (or fusion)
cross sections at near-barrier energies. ' They
show that potential parametrizations from scat-
tering data alone give a poor description of the

These observations have caused us to rethink the
logic and parametrization procedure for optical
potentials to be used in evaporation calculations.
Consider the equilibrium evaporation of a spinless
particle v from an emitting nucleus A to final nuc-
leus 9' ":

A(E„,J„)-B(Ee,/e ' )+&(&„ t) ~

Energy and angular momentum conservation are
given by

reaction data at low energies. This is partly due
to the different inherent sensitivities of reaction
and scattering cross sections" (at fixed energy).
It could also be due to the presence of inelastic or
other soft reactive collisions that blur the bound-
ary between scattering and the fusing collisions
that we seek. Scattering data are of great value
in setting constraints on the complete optical po-
tential, but in general their power is focused on
distances beyond that where the fusion decision is
made. '"~' Therefore, the measured cross sec-
tions for complete fusion seem to us to be the best

. source of data for construction of a reference set
of T, values. "-"

There is, however, some ambiguity concerning
the definition of complete fusion. Typically for
heavy ion induced reactions one approximates the
fusion cross section as that for fission plus that
for forward-peaked residual nuclei. " For H and
He induced reactions the evaporation residues have
so far only been measured via radiations from the
product nuclei. Products are then selected as
predominantly from the compound nucleus me-
chanisms. Fission is important for near-barrier
energies only for actinide targets, and for U and

Np this is the dominant decay mode for the fused
compound nuclex. ' ~ '~'

The major features of the excitation functions
for fusion are the rapid rise with energy near the
barrier follow'ed by a tendency to level off at high-
er energies. For near-barrier energies, data
have been reported for fusion of ~He with Co,'
Dy ' Pb, ' Bi,"U, ' and Np ' and for 'H with Cd, '
La, and U. For energies comfortably above the
barrier a number of "total reaction cross sec-
tions" have been reported. " For intermediate
and heavy nuclei (A. & 2V) these measurements can
be taken as a close upper limit to the complete
fusion cross section, '2 " 2nd thus can set limits
on the fusion radii.

B. Equations and parameters

Vaz et al. have discussed the relationships be-
tween reaction and fusion cross sections and the
optj.cal potential. They have also tested the
applicability of certain simple approximate calcu-
lations. For H and He induced reactions the range
of / values is rather small, and the Wong formula-
tion" can be taken as a good approximation. The
cross section (o =—o,&

for this study) is given in
terms of three parameters, Eo Suo and Ro

o(E) =(ft,'/2)(e~, /E) ln(1+exp [2~(E -E,)/a~, ]).

These parameters are related to an inverted para-
bolic barrier for s waves as shown in Fig. 1. Var-
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transmission coefficients they used are labeled
QM IV. ' For He+"'In it is clear that the HW

parameter set has significantly larger effective
barriers [T, (&) curves shifted to higher energies]
than the QM IV& set used in the Galin analysis. 4' It
follows that this HW reference set of T, values
will give many fewer low energy evaporated 4He

particles than given by the Galin calculations. 4'

As the Galin analysis did fit the experimental data
we would expect a misfit for the HW set, similar
to that shown in Figs. 8 and 9 for "~Hg. This ex-
pectation should nevertheless be tested by direct
calculations.

IV. SUMMARY

It is reemphasized that fusion reactions are the
inverse of evaporative decay. "" Hence, the view
is taken that transmission coefficients for evapo-
ration calculations are more appropriately related
to fusion cross sections than to elastic scattering.
From the available experimental data for fusion
we obtain a systematic set of effective barrier pa-
rameters for 'H and He reactions. We propose
this parameter set only as a source of reference
value's of transmission coefficients. Comparisons
of measured evaporation spectra to those calcu-
lated with these reference values of T, can give
insight into the changes in effective barriers be-
tween ground-state nuclei and excited nuclei. "
Such a comparison for '"Hg (E~ =98 MeV, l„«
=45) implies a significant barrier reduction for
this excited nucleus.
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APPENDIX

Following the procedure of Refs. 20 and 22,
Delagrange, Vaz, and Alexander ' have modified
the proximity potential to fit fusion and elastic
scattering cross sections for several systems in-
cluding He +'"Pb. They have used the optical-
model code A-THRKK of Auerbach. The empiri-
cal s-wave barrier they obtain is W.25 MeV lower
than that obtained from the fit by Eq. (6). For
E„&17MeV their fit is only slightly better than

that from Eq. (6), but for o,&
~ 1 mb or E„s17

MeV their calculated excitation function for fusion
becomes noticably steeper. This is due to the
significantly greater thickness of the nuclear plus
Coulomb potential compared to the parabobc sim-
ulation. In addition, and for the same reason, the
shapes of the T, (e) curves from this model are
slightly steeper than those from Eq. (7) (shown in
Fig. 6).

What would be the result of these differences for
evaporation calculations as shown, for example,
in Figs. 8 and 9? For evaporation essentially un-
constrained by angular momentum [as for this
case of "'Hg (Refs. 38 and 39)], only the inverse
cross section for all partial waves is important.
For 'He+'"Pb we have said that the fits to g,&

are
equivalent for 8 ~ 17 MeV. For ",,Hg presumably
this equivalency would hold to (78/82) 17 MeV or
to =16 MeV. In Fig. 8 we see that at =16 MeV the
calculated 4He evaporation spectrum would be re-
duced to &0.01 of the peak value. Hence, for this
case the difference should be negligible.

What would be the effect on the calculated l dis-
tribution for the evaporated 4He? The more real-
istic potential is more difficult to penetrate than is
the parabola, and therefore gives steeper curves
for T, (&). (Compared to the parabolic simulation
these curves cross for l =0 at T,~=0.03 and for
l =10 at T, „=0.006.) Hence, the I distribution
for evaporated 4He will be driven closer to the
sharp-cutoff distribution. This is exactly the op-
posite to the curves shown in Fig. 7 for QM I and
II compared to the HW curve from Eq. (7). Pre-
sumably this is due to a stronger imaginary poten-
tial in the surface for QM I and II. This is a very
common result for two and four parameter optical-
model fits to elastic scattering alone. The thrust
of this paper is that the most reasonable calibra-
tion of the inverse cross sections is that which is
derived from fusion cross sections. Furthermore,
even the simple Hill-Wheeler formula [Eq. (7)] can
give empirical fits to these fusion excitation func-
tions over the energy region of most interest for
evaporation calculations. More realistic poten-
tials, if ProPexly Paxametrized, may provide a
more satisfactory l distribution for the evaporated
particles which could be important near the yrast
line. However, it may well be that most high-spin
compound nuclei are so heavily deformed that the
estimation of these shape changes is more impor-
tant than refinement of the form of the angle-inde-
pendent potential for ground-state nuclei. Figures
7-11 make this point more clear.
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