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Elastic and inelastic charge form factors for 3Li from electron scattering
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A harmonic oscillator hard core plus residual two-body potential has been used to obtain the independent-

particle shell-model wave functions for 3Li. These wave functions have been utilized to calculate the
theoretical elastic and inelastic electron scattering charge form factors. These are then compared with the
experimental data.

NUCLEAR REACTIONS Elastic and inelastic charge form factors for 3Li from
electron scattering using harmonic hard core plus residual two-body potential.

I. INTRODUCTION
oo P(r &r

There has been great improvement ih the accur-
acy of measurements for high-energy electron
scattering experiments; the analysis of these ex-
periments may provide very useful information on
the electromagnetic structure of nuclei. Among
the lightest nuclei, it is known that the,'Li nucleus
behaves anomalously as regards electron scatter-
ing. When applied to,'Li, the usual independent-
particle shell model (IPSM) does not fit the elastic
scattering data. ' '

It has been suggested" that the two-body inter-
actions among nucleons cannot be represented by
an average single body central potential, but in-
stead, one must somehow take into account a sub-
stantial residual two-body interaction. Most work-
ers have invoked a repulsive short-range correla-
tion between nucleons which give rise to Jastrow-
type correlation function. "

We have used a model that assumes that the
core nucleons move in a harmonic-oscillator well.
The valence nucleons are assumed to move in a
harmonic-oscillator well and they interact with
each other via a residual two-body potential. %'e

have assumed two cases of this residual interac-
tion potential. The resulting two-body inter action
is given by, in Case i, a harmonic-oscillator
hard-core potential,

where $=%, -P, and r, is the hard-core radius.
In Case 2, the resulti, ng two-body interaction

is given by a harmonic oscillator hard core and a
residual two-body potential that we have assumed
to be of the Gaussian form

where r is the relative coordinate between two nu-
cleons. In each case the interaction potential de-
pends upon r. Since this type of potential has no
effect upon the center-of-mass wave functions, we
use the harmonic-oscillator wave functions for the
center-of-mass wave functions. Vfe have calculat-
ed the relative radial wave functions for both cases
and therefore the wave function explicitly includes
the correlation introduced by the potential. Ne
have expressed the electron scattering nuclear
charge form factor in the relative and center-of-
mass formalism, then inserted the appropriate nu-
clear wave functions (expressed in terms of the
relative and center-of-mass coordinates) into the
respective form factor. The resulting integrals
over the relative coordinates and over the center-
of-mass coordinates can be evaluated to give the
form factors.

II. WAVE FUNCTIONS

%'e will calculate the ground state and excited
state (E = —2.18 MeV) wave functions for,'Li in I.-
S coupling.

A. Ground state of 3Li in I;S coupling

We assume that,'Li is in the (ls, &,)4(lp, &,
)' con-

figuration. The (ls, ~,) nucleons form an inert core
and the (1p, &2) nucleons are coupled together such
that the observed ground state total quantum
numbers are as follows:

where T is the total isospin given by T=t~+t& and
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1 1n.=0 l =1 s.=—,, t.=-;. (4)

The ground state wave function fol 3Ll ln L,+ coll-
pling is given by

core)GXl I 5! )) 5 J

where g„„is a product of the single nucleon states
of the 2(ls, i,) protons and the 2(ls, i,) neutrons; ri',

is the isospinor for T=O, T,=O; X, is the spin
wave function for S=1 and M, =M; and Ir(), l„n, l~;00)
is the radial eigenket corresponding to total orbit-
al angular momentum L=0, M =O.

If we assume that the two valence nucleons are
in a common harmonic-oscillator potential, we
are free to express the radial eigenfunction

I n i,n&l;; 00) either in terms of the individual par
ticle coordinates (P„and P,.) or in terms of the re-
lative and center-of-mass coordinates (f' and 0).'

For two particles moving in a central potential,
we may write the radial eigenkets corresponding
to the total orbital angular momentum g= ),+ )&, as

In, l„n,.l,.;xp,)= g (I m5, I;m;l&p)
m~+m~=

&

X

x Y,,„(r",.)Y,„.,(;„),
where p. is the magnetic quantum number corre-
sponding to the total orbital quantum number x,
(l„m„l~m, IX') are Clebsch-Gordan coefficients,
Y, (r) are spherical harmonics (r)=(g, (I)), and

u„, (r„) are solutions to the appropriate radial
equation that is written in terms of the individual
nucleon quantum numbers and coordinates.

%'e may now write the 1.% coupled two-nucleon
total angular momentum wave function using

(8)

((t)"')",= Q (x p. SM, I zM&x, 'In, t, n, t„xp) .

For the 6Li ground state (J =1, S=1, and X=O),

J is the total al~ular momentum given by J=L+S.
The valence nucleons (a proton and neutron) are

in the (1p, i,) orbit and each has individual quantum
numbers:

n, =0 1=1 s =-' t=—

this becomes

(4~')"=g,.„goy," Q (lm, 1m,
l
00)

m)+m .=o

x Y, ,(r",)Y,„(r,)
x [u„(r„)/r, ][ „(r,)/r, ]

(8)
which 'becomes

((I), '~=')u1=$„„goy,"(', [Y-»(r, )Y, ,(r&)+Y, ,(r~)Y»(r~)

—Y„(r,)Y„(r",)]$
x [u, (r )/r), ][u,(r&)/r&], (~)

where u„, are the oscillator wave functions.
Using the Talmiv-Moshinsky-Brodys, 9 transfor-

mation brackets, the,'Li ground state wave func-
tions in the center of mass and relative represen-
tation is given by

0 g iM g p u o(r) u 0(R) u 0(r) uo (R).'.=1~ «X1 r R r R

(10)'x Y„(r)Y«&(R),

where 1'=(P, —Y',) and R=—,'(9,+P,).

B. Excited state in L-S coupHng

z~ y 2 ~

(11)

(12)

These individual nucleon quantum numbers are
coupled to J'=3, L'=2=g', 5'=1, T'=0.

In I,+ coupling, the excited state (I =3) becomes

((,)Ru'=(,...ri', g (2q'1M/3M')
+ASS -Af

I

I ()()I l))tlgly5 2P )1 (13)

where p,
' is the magnetic quantum number corre-

sponding to L'=2.
In terms of the individual particle coordinates

'P, and 'P~ an/ their quantum numbers q', =~~ =0, and

),'=)&, we have

The 2.18 MeV excited state of,Li is again in the
(ls, i, )~ (1p, i,)' configuration. The 4 (1s,i,) nucleons
are again coupled to form an inert core (g„„
=f~ f~ g„g„). The two valence nucleons, (1p,~,)
proton and )1p, &,) neutron, have quantum numbers

(14)
P

(5i'=*'"=')",.',= Y (55 (M (5M') 1",
"'

(
'g '((m,' (m'(55') " ' " 1;;(5 )1', :(";))

&'+N»hf'
S m +m P

"
ra rj

Using the Moshinsgy-Talmi transformations the excited state (Z = -2.18 MeV) 1.& coupling wave func-
tion in relative and center-of-mass coordinates becomes

5m

(5
'="' ')"' =5 5' Q (55'(m'(5M) —

I

" Y,.(5)R.„,(R) — . I;„,(5)1'„,(R)) . (15)
+ S

00
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For both the ground state and the excited state
the actual form of the wave functions will depend
upon our choice of the interaction between the val-
ence nucleons because it is this choice that deter-
mines the type of radial functions u(r) that must
be used in Eqs. (6) and (13).

We will assume that the core nucleons move in
a harmonic well of frequency v„. The valence nu-
cleons, however, will be treated in more detail.

III. SPECIFICATION OF THE POTENTIALS

We consider two cases:
Case '1. We will assume that the valence nucle-

ons move in a harmonic well of frequency v, and
that they also interact with each other via a hard-
core potential, as given in Eq. (1). (Generally,
for elastic scattering a better fit is obtained by
choosing v»ev„.) The Schrodinger equation for
two nucleons moving in a common harmonic-oscil-
lator potential with a repulsive hard core has been
solved. " The center-of-mass motion gives the
usual harmonic-oscillator wave functions. The re-
lative motion gives hard-core wave functions
u"„c, (r) which are linear combinations of harmonic-
oscillator wave functions.

The harmonic-oscillator frequency" "for the
relative motion (v) is determined by equating the
expectation values of the kinetic and potential en-
ergies. For the center-of-mass frequency" (v«)
we have' v«=4v. We have picked the hard-core
radius y, =0.4 fm.

Case 2. W'e assume that the valence nucleons
move in a harmonic well of frequency v», but that
these valence nucleons interact with each other
via a hard-core potential plus a residual two-body
potential specified in Eq. (2). Once again the cen-
ter-of-mass wave functions are harmonic-oscilla-
tor wave functions.

We have used the variational principle to deter-
mine the values for the Gaussian parameters pp
and gp. Using the perturbed hard-core wave func-
tions we can calculate the correlation energy for
the ground and the excited (Z =-2.18 MeV} states
of 6Li using the effective Hamiltonian formalism. '

The correlation energies are defined as

W„.„„,= J (g,*)",V„(r)((,)",r'dr (16)

w.„„.„;— J (g.*)",'V „(r)(4,)u'r*dr,
0

where (g, )ou' and (g )", are the excited and ground
state wave functions for,'Li and V»(r}=Voe" "o

is the two-body interaction potential.
The excitation energy hW can be estimated from

the difference in the correlation energies of the

two states.

~ excited ~ ~'otlfld ' (18)

For v=0.2V fm ' and y, =0.4 fm we obtained the
best value for the excitation energy when we as-
sumed pp= —150 Me7 and y0=1.36 fm. We varied

0 between 1.3 and 1.4 fm, and Vp between —100
and -200 Me7 and found that the excitation energy
lies within 10% to 20% of the experimental value.

We have obtained analytic forms for the relative
radial wave functions corresponding to Case 2 us-
ing a perturbation method. " The perturbed hard-
core relative wave functions are of the form

u„', (r}=u„Hc(r}+Z,„u„s;,(r)

+K, „uAF, (r)+ ~ ~, (19)

where K,„are coefficients obtained from the per-
turbation method and the yg's are just successive
values of n. Including an additional term in the
wave function changed the coefficients of the
u„"f (r)'s very slightly; the coefficient of the pre-
ceding changed by about 5% and of others by a
much smaller amount. The additional term had
practically no effect on the result.

IV. ELASTIC SCATTERING OF ELECTRONS
FROM 3Li ASSUMING IPSM

It has been shown" that for shell-model calcula-
tions, the Born approximation is a very simple
and accurate way of treating the elastic scattering
of electrons from light nuclei. The shell-model
elastic form factor F~~u~ (q} in the Born approxima-
tion may be written as

j Z

F „(q)= —Q (0,*)",(r„.. . , r„)
)((y )u(r r )

&e'q '&dV, .~ ~ ctzd7z„. ~ ~ d7.„,
(20)

where tfr, is the ground state nuclear wave function
given by Eq. (9).

Since we found it convenient to calculate the
wave functions for,'Li in terms of the relative and
center-of-mass coordinates, we will now express
the elastic charge form factors in terms of the re-
lative and center-of-mass coordinates of the val-
ence nucleons. We assume that the core nucleons
are in a harmonic well of frequency v „.

The sum over the g protons consists of three
terms, two for the core protons and one for the
valence proton. For the first two terms we inte-
grate over all nucleons except the core proton
from which the scattering occurs, and in the third
term integrate over all the core nucleons. The
first two terms give equal contributions. Equation
(20) becomes
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F EI1(q)=
Z ) f *, (r,)('e'0'1', +

)f f(r2)['e'0'2dw2+ )//0~')y", ('
J (n l;n/l/, ' 00)e"'1(n l n/l/,

' 00) dr;dr/,

(21)

where f, and f, are the single particle wave functions for the two core protons (n=0, l =0 harmonic-oscil-
lator state).

Using the normality of the spinors and isospinors and rearranging Eq. (21}gives
12

F',u(q)= — Z, J
"- ' r,2dr, J e*&'1Yg0(r,)Y00(r,)d&,+Zp (n;l;n/l/, '00~ e'" '1)n, l;n/l/; 00)dr, d// .

0 1

(22)

Carrying out the integration in the first term, we have

FSM(q)=-Z, e' / ' »+~ (n;l;;n/l, .;00~e' ''
~n;l;n/1/, '00}dr,dr/, (23)

where Z, =2 and Zp= 1 and
~ n;l, n/l/,

' 00) is given by Eq. (6) and v„ is the frequency of the harmonic well of
the core nucleons.

We now writethe secondterm of the above equation in terms of relative (f) and center-of-mass (R) coor-
dinates using the well known transformation given by Eq. (10).

We have shown that the radial functions
~ n,.l, n/l/, 00) may be expressed in terms of f and R and corre-

sponding quantum numbers by using the Moshinsky- Talmi transformations. ' '
The integral in term 2 of Eq. (23) becomes, upon substitution of Eq. (10),

u00(r} u10( } u10(r} u00(r} "1 I iq. R -'0 /2

R
(24)

where the u„,'s represent the appropriate radial
solutions corresponding to the assumed potential
for the valence nucleons.

Case l. The valence nucleons move in a hard-
core harmonic-oscillator well of frequency v»,
where v»wv„.

We insert [into Eq. (23}]harmonic-oscillator
radial functions for the center-of-mass motion
and the hard-core harmonic-oscillator wave func-
tions usc(r) for the relative motion

2 2 4
TH"-= 1- y +-y

2
ey'/2v1P

SV1p 6V»

rc

[u (r)]
r (26)

THc r'e" '"1p "u,11" (r) u» (r).
(

&6v r&c

THc r e/ "1p " u00Hc(r} u10(r} ~

( )~d (26)
P»

C

uHc(r} 2

TAHc =e-/ 1p
" j 0(yr)r'dr

C

and y=q/2 and u„, (r) are the unperturbed hard-
core harmonic-oscillator wave functions that can

(29)

F'„(q)=—'e "1 +2 (T, —T —T" +T"c), (25)

be calculated in an analytic form.
The correction" for the motion of the center of

mass of the,'Li nucleus is made by multiplying by
terms of the form

e.y 2/tA v1 (30)

F, ,(q) =exp(-ap'q'/6},

where 12
'= (0.653 fm)' is the square of the radius

of the proton.
The corrected elastic charge form factor for

,'Li is given as

F (q) [ e-y /v1zeP/Av1v + 1(THc THc

THc +T Hc ) e'/ /A v1p] e 2'/ ap /2

(31)

(32)

We have evaluated Eq; (32) using the Univac
1110 computer to evaluate the numerical integrals.
The elastic form factor curve obtained (see Fig.
1) using the unperturbed hard core wave fun-ction

fuH/c(r)] with v»= 0.42 fm, v, = 0.54 fm 2, and r,
=0.4 fm fits the experimental data for low q. For
higher q, this curve has the proper shape. The
curve, however, has its diffraction minimum and
its maximum at too small a value of q.

Case 2. W'e again assume that the core nucleons
move in a harmonic-oscillator well of frequency

and the correction for the finite size of the proton"
(assuming a Gaussian charge distribution model)
by multiplying by
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xe ~ ~"~~e& ~"'~9]e '" y/', (33)

where the T, may be obtained from Eqs. (28) and

100—

v„. The valence nucleons move in a hard-core
harmonic-oscillator well of frequency v» and in-
teract with each other through a residual two-body
interaction which we take to be z Gaussian poten-
tial, Eq. (2).

A calculation similar to that for Case 1 gives
the elastic charge form factor

F E„(q)=[
—3e" '~ e& ""& + ,'(T, ——T,—T,+T~)

(29) by replacing the unperturbed hard c-ore wave
functions I"c(r) by the perturbed hard-core wave
functions u„', (x) which include the effect of the resi-
dual potential.

We have evaluated Eq. (33) using the perturbed
hard c-ore wave functions u„',(x) corresponding to
the following parameters (values of p, and r,
which gave the best results for the excitation en-
ergy):

Vp= 150 MeV Kp= 1o36 fm, y, =0.4 fm,

v=0.27 fm ~,

and we have let

v„=0.42 fm-' and ~„=2I =0.54 fm

The resulting curve F~E~(g) vs q (see Fig. 2) fits
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FIG. l. Elastic form factor squared versus momentum
transfer for the unperturbed hard-core wave function
with vfg+ vjp v(~=0.45, vg, = 2v=0.54; -~- vs
= 0.39 v~= 2v = 0.54.

q (fermi "j
FIG. 2. Elastic form factor squared versus momentum

transfer for the perturbed (V0 ———150 MeV Rp —1, 36 fm,
R,= 0.4 fm, and v= 0.27 fm" ) hard-core wave functions
with v&s~ v~i ~0=150~ vis=0 42, v&=2v=0. 54.
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the data for both small and large q (up to q= 3.2
fm ').

It is clear from Fig. 2 that we are able to fit
both the low momentum transfer and high momen-
tum transfer datais using the perturbed hard-core
wave functions and assuming that the valence and
core nucleons move in different harmonic wells
(v„g v»). We are able to predict the diffraction
minimum (q=2.6-2.9 fm ') and come very close
to fitting the maximum at q=(3.1-3.2 fm '}.

V. CALCULATION OF THE INELASTIC FORM FACTORS
IN THE RELATIVE AND CENTER-OF-MASS

REPRESENTATION

Studies on the structure of the,'Li nucleus have
shown that electron scattering data cannot be con-
sistently explained by the simple IPSM. When us-
ing the IPSM to explain the, Li electron scattering
data„one must pick a larger harmonic-oscillator
parameter than for the other 1p-shell nuclei. '
This large value does not, however, consistently
explain other experiments. It has been suggested
that for,'Li, the two-body interactions among the
nucleons cannot be represented by an average sin-
gle body central potential, but instead, one must
somehow take into account a substantial residual
two-body inter action.

For inelastic scattering, the form factor in the

Born approximation is given by"

)& (q)/'=2+ 1 g g )F""'(q)/',

where
2

purr'(q)- Q ...
I( (|(rs)rr'(q )ue&q r

1=1

&CtT.~~ ~ ~ dr d7' 1~ ~ ~ d7'

(35)

is the contribution due to scattering from the
ground state ((,)u~ having quantum numbers (J,M)
to the excited state ((,)~,

'
having quantum numbers

(Z', M'}, the sum over i is over the protons, and
the factor 1/(2J+1) averages over the initial
states.

To obtain the inelastic electron scattering form
factor, one must insert the ground and excited
state wave functions of the desired nucleus.
These wave functions must be evaluated for all
possible values of M (-8, -J+1, . . . , g), and M'
(-g', -g'+1, .. . ,g' —1,J'). The corresponding
contributions pu" (q) must then be inserted into
(34). Assuming that there is no scattering from
the core protons, integrating over the core nu-
cleons and using the orthonormality of the spinors
and isospinors gives

Eu"'(q)= — Q (2p, '1M,'~3M')6'u' ''"
~

(nr, t„n, t„2p,'~e"'r (n, l,n, l„00)d~„dr, .
& P'+O' "-N

8

We now express the radial eigenkets (~ n, l, n&l~; 00)) in terms of the relative and center-of-mass represen-
tation. Using the Talmi-Moshinsky transformations, and rewriting the exponential e ~ ~ in terms of rela-
tive (5} and center-of-mass (R) coordinates, after much algebra, the inelastic form factor contribution
p". "'(q} becomes

F' ""'(q)= — g . (2V.'1M,'~3M') g&"'-'& u
&+M NS

u (r) u (R)
( ) g) u (r) u (R)

"0 0 'V

,.;.(R -, ),) u„(r) u„(R) u„(r) u„(R) '

(R r 2)
Fc

where u„,(r) and u„~(R) are the relative and center-
of -mass radial functions.

Case 1. %e insert the relative hard-core wave
functions u„",c(r) and harmonic-oscillator wave func-
tions for the center-of-mass motion. The indivi-
dual form factor contributions [Pu" (q)] must be
calculated and substituted into Eq. (34). Integrat-
ing over g we obtain

~& (q)~'= — .(-Wpc+W" +W" —W" }', (33)--v

where

2
sc -4r ~' &( -y2)-,

3M10v, 3~10v ')
J(" ("'""')' r, &

*a
YQ

2
*o".'(r) u":(

(4o)
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2
vrrHC ~ f2 /2llt
vvg =~ 8

""Mgc(r) zzs„c(x)

r 22 Y

(41)

S'~ =e $2(prfy dr,
C

where v y v y vy~ and v, is the individual nucleon
harmonic-oscillator frequency.

Correcting for the motion of the center of mass
of the 3Li nucleus and for the finite proton sizes
gives

(42)

i& (q)|'= (- w"'+ w"'+ w"'- w"')7

10
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FIG. 3. Inelastic form factor squared versus momen-
tum transfer for harmonic-oscillator wave functions
(v&= 0.54 fm ) and unperturbed (v&=0.54 fm 2 and R~
= 0.4 fm) hard-core wave functions: - ———harmonic
oscillator v&= 0.54;:: unperturbed hard core v&=

0.54, Rc=0 4

&&ey ""ze my a& is

The integrals contained in Eqs. (39)-(42)were eval-
uated numerically on the ASU Univac 1110computer.
These results are shown in Fig. 3, iE„(q)i' vs q,
for a hard-core radius r,= 0.4 fm and for a har-
monic-oscillator frequency v, =2v= 0.54 fm '.
%hen compared with the inelastic form factor cal-
culated assuming just the harmonic oscillator
wave functions, the inelastic form factor assum-

ing a hard-core interaction between the valence
nucleons shows a slightly better fit for larger q.
However, for small q, the peak is still short of
the experimental points.

Case 2. The valence nucleons move in a hard-
core harmonic oscillator well of frequency v, plus
a residual two-body interaction assumed to be a
Qaussian.

Since the correlation between nucleons does not
affect the center-of-mass motion, we may insert
the harmonic-oscillator wave functions for the
center-of-mass motion, and the. perturbed hard-
core wave functions zz„', (y) for the relative motion
into Ezl. (3V). The corrected inelastic form factor
may be written as

[F,.„(q)]'=,[-w,'+ w,'+ w,'- w,']'

&(eymy~u, -mymp2/s (44)

where the W,. are obtained from Ezl. (28) by re-
placing ~ by ~.

We have evaluated Eq. (44) as a. function of q us-
ing the ASU Univac 1110 computer, and graphed
the results in Fig. 4 for the Vp= —150 MeV„+0
=1.36 fm, r,=0.4 fm, and v, =2v=0.54 fm 2.

The curve for the perturbed hard-core wave
functions has a shape which is consistent with the
experimental data. " For q between 2.0 and 2.5
fm ' the graph, assuming the perturbed hard-core
wave functions, fits the experimental data very
well. For even larger values of q (2.5 to 3.4 fm ')
the graph has a shape consistent with the experi-
mental results but is slightly above them. Com-
paring the curve obtained using the perturbed hard-
core wave functions and those using just harmonic-
oscillator wave functions, we conclude that for
small q, the perturbed wave functions have not
changed either the location of the maximum or the
actual magnitude of this maximum. For larger q,
the perturbed hard-core wave functions seem to
lower the form factor curve slightly making them
nearer the experimental data. Comparison of Fig.
3 and Fig. 4 reveals that there is little change
when the hard-core harmonic oscillator wave func-
tions are perturbed by the Qaussian residual po-
tential. The effects of correlation are primarily
due to the hard core.

For small values of the momentum transfer q,
the corrections due to the short-range correla-
tions are of little, if any, help. As q becomes
larger, these corrections become increasingly
important and in fact have lowered the theoretical
curve to be in fairly good agreement with the ex-
perimental data. These results were expected
since electron scattering is the result of the long-
range electromagnetic interaction. Perhaps to
improve the results for low momentum exchange,
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FIG. 4. Inelastic form factor squared versus momen-
tum transfer for harmonic-oscillator wave functions and
perturbed (Vo= -150 MeV, Ro-—1.36 fm, R,= 0.4 fm, and
v&=2P= 0.54 fm 2) hard-core wave functions:
harmonic oscillator v&-—0.54;:: perturbed Vp — 150,
R =1.36, R,=0.4, p&-—2~=0.54.

the residual potential should contain some type of
long-range inter action.

VI. CONCLUSION

We have used the Born approximation to predict
the elastic and inelastic electron scattering form

factors for 8Li. The result (Case 2, Fig. 2) for
the elastic scattering form factors is in good
agreement for both low and high momentum trans-
fer. The diffraction minimum is predicted near
q =2.8 fm ' and the maximum has the proper mag-
nitude.

The graph of our predicted inelastic form factor
(Case 2, Fig. 4) shows an improvement over that
calculated using the IPSM and Case 1, for high
momentum transfer. There was, however, no
improvement for small momentum exchange.
This was expected because of the long-range char-
acteristic of the electromagnetic interaction which
has not been included here.

Although the elastic and inelast ic form factor
curves were improved using the perturbed hard-
core wave functions there still remains some dis-
crepancies with the experimental data. Our re-
sults, however, indicate that it is necessary to in-
clude some type of long-range correlation between
the nucleons. It appears that the hard-core paten-
tial provides the dominant effect in the correla-
tions.

It may be emphasized that we have not chosen
the correlation in the relative wave function ar-
bitrarily and adjusted the parameters in it as was
done in the work of other authors. " Vfe have
solved for the correlated relative wave function
once the two-body potential has been fixed and
then predicted the nuclear form factors. In this
way, an arbitrariness which existed in the earlier
calculations of the form factors has been avoided.

This work is based on a thesis submitted (by
G. L. P.) in partial fulfillment of the requirements
for a Ph. D. degree at Arizona State University
1976.
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