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Time-dependent Hartree-Fock dynamics and phase transition in Lipkin-Meshkov-G/ick mode]
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The time-dependent Hartree-Pock solutions of the two-level Lipkin-Meshkov-Glick model are studied by
transforming the time-dependent Hartree-Fock equations into Hamilton s canonical form and analyzing the
qualitative structure of the Hartree-Fock energy surface in the phase space. It is shown that as the
interaction strength increases these time-dependent Hartree-Fock solutions undergo a qualitative change
associated with the ground state phase transition previously studied in terms. of coherent states. For two-
body interactions stronger than the critical value, two types of time-dependent Hartree-Fock solutions (the
"librations" and "rotations" in Hamilton's mechanics) exist simultaneously, while for weaker interactions
only the rotations persist. It is also shown that the coherent states with the maximum total pseudospin
value are determinants, so that time-dependent Hartree-Fock analysis is equivalent to the coherent state
method.

NUCLEAR STRUCTURE Lipkin-Meshkov-Glick model, TDHF, transforma-
tion of TDHF equations to Hamilton's canonical form, coherent states, ground

state phase transition.

I. INTRODUCTION system, which is defined by the Hamiltonian

The two-level model of Lipkin, Meshkov, and
Glick' (LMG) provides a simple but interesting
prototype of the many-body problem. The original
authors' utilized it to test various approximation
techniques. More recently, Kr ieger' has pre-
sented numerical solutions for the time-dependent
Hartree-Fock (TDHF) approximation in this model
for a few selected values of the interaction
strength. From an altogether different viewpoint,
Gilmore and Feng have applied group theoretical
coherent state methods to an analysis of its ther-
modynamical properties and have studied the
"ground state phase transition" which occurs at a
certain critical value of the interaction strength.

The present work provides a qualitative analysis
of the self-consistent time-dependent Hartree-
Fock solutions for the LMG model. %e show that
the coherent state with the maximum total pseudo-
spin value in this model (and for certain general-
izations of this model) are in fact single determi-
nants, so that TDHF studies describe precisely
the same physics as the coherent state methods.
%e show also that every TDHF solution so con-
structed is periodic in time and belongs to one of
two qualitatively distinct classes. Finally, it is
shown that at the precise value of the interaction
strength at which the ground state phase transition
occurs, a qualitative alteration occurs in the spec-
trum of the TDHF solutions.
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we seek TDHF solutions of the form

ie(t)&=I 'ct(t)io&,

where
~

0& denotes the vacuum and

c~(t) =cos at +e '~'" sin at8(t) . 8t
2 &, -~ 2 &+~'

I

(2a)

dt4t H —i —4 t =0,

These wave functions depend on time through two
real parameters 8(t) and Q(t) This para. metriza-
tion gives a one-to-one correspondence between
c~t and (8, P) in the intervals 0 & 8 & v and 0 & / &2m.

Note that the state
~

4 & in (2a), with c~ defined by
(2b), is not the most general determinantal form.
One could allow the parameters 8 and P to assume
distinct values for each single-particle label k and

~

C & would still be a determinant. For simplicity,
we restrict ourselves here to the special situation
defined by Eqs. (2a) and (2b).'

The TDHF equations of motion are implied by the
variational principle (in units, S =1),

II. TDHF EQUATIONS

A. Parametric TDHF equation for the LMG model

For the LMG model' of an interacting N-parti. cle

in the manifold of single determinantal wave func-
tions C.' ' For the LMG model, this implies the
following two simultaneous equations' for the pa-
rameters 8(t) and &f&(t)
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8 = —ex sin8 sin2$,

=a (1 —y cos8 cos2$},

(4a)

(4b)

(H) =(C(8, y)IHie(8, y))

cos8+—sin'8cos2$
~
.Ng

2 2 )
' (5)

In fact, when expressed in terms of &H&, Egs. (4)
can be written as

N . t '8(H)
8 = ——sin8 [2 j 8(f)

(x . ,)
'a(ir)

(6a)

(6b)

which are parametric equations for the equi-en-
ergy contours of QI).

where X =(N —1)V/&. Since Eqs. (4) are invariant
under the transformation (8, Q, g) -(8', Q', y')
=(8, Q+m/2, -X), we can restrict our discussions
to positive y values (i.e. , to attractive interactions
V&0), without loss of generality.

Since TDHF conserves the average energy, ' any
solution of (4) must lie on an equi-energy contour
of the energy surface,

tories are the equi-energy contour lines of X.
Note that X contains a term linear in the momen-
tum and a variable inertia (defined by the coeffi-
cient of p') which can become negative. This dif-
fers from the form of Hamiltonian familiar from
the motion of point particles in classical mechan-
ics, which is quadratic in the momentum and has
a positive definite inertia.

III. TDHF SOLUTIONS AND GROUND STATE

PHASE TRANSITION

A. Energy surface

Since the TDHF solutions are determined by the
properties of the energy surface X(q, p), we turn
here to the study of the qualitative structure of
this energy surface.

First, we note that X(q, p) is periodic in q with
period v. Therefore, in the region —N/2 «p
& N/2 and 0 & q & 2m, where a, ll distinct system
points are included, the energy surface consists
of two identical parts which join one another on the
line, q=w.

Next, we consider the stationary points of X,
which are given as functions of the interaction
strength y, as

B. TDHF equations in Hamilton's canonical form

q =Q+a'/4,
N

p =-—cos8.
2

The additive constant v/4 is introduced in (Va) for
convenience in displaying the energy surface in
this (q, P) (phase) space. Equations (6) then take
the canonical form

(Va)

(Vb)

Equations (6) can be transformed into Hamilton's
canonical form by introducing a coordinate q and
its conjugate momentum p, as follows:

(q.„,P.„)= [( —.'), -N/2Xl,

(q.„,p.„)=t.("-:},N/2Xj,

(qc„,Pc„)=(q,„+q., -N/2),

(q~„,pp ) =(q,„+q., N/2),

where

q. =-.' cos '(I/X),

n is any integer, and

m =-,'(4n —I + I)

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

defines two indices for each n value, which cor-
respond in (10c), (10d) with the (+/-) signs, re-
spectively. For }t&1, (q„,p„) and (qs, ps ) are
minimum and maximum points of X, respectively,
lying inside the physical region, while (qc, pc )
and (qD, P~ ) are saddle 'points, lying on the
boundaries of this region. Therefore, in this case
(g &1), the energy surface has two minima, two
maxima, and eight saddle points in the portion of
the physical region defined by 0 & q & 2m (see Fig.
1).

The structure of the energy surface changes
qualitatively when g passes through the critical
value, X, =1. Consider the minimum A. , and its
adjacent saddle points C, and C, in Fig. 1 for
y & l. As can be seen from (10), all these three
points move towards (q, p) = (v/4, -N/2) as X de-
creases towards X =1. When X decreases to less

sx(q, p)q= (8a)

sx(q, p)
ep

(8b)

with the Hamiltonian X given as a function of q and
P by the Hartree-Fock energy (5):

(9}X (N
x(q, p)=-N) =~ p- —

I

—p') ~~»s . -
Ni4

From (Vb) and the fact that 8 is real, the physical
region in the phase space is defined by —N/2 &p
& N/2 and all q.

The TDHF solutions are now represented by
trajectories in this physical region of the phase
space, and follow the classical trajectories as-
sociated with the Hamiltonian X. These trajec-
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ENERG& SURFACE IN I MG MODE
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C. TDHF librations and rotations

The qualitative change in the structure of the
energy surface gives rise to a qualitative change

. in the TDHF trajectories. Consider first the sit-
uation X &1 where we have two minima, two max-
ima, and eight saddle points in the region -N/2
&p &N/2 and 0 & q & 2v (Fig. 1). The energy sur-
face for such a situation has. three types of equi-
energy contour curves exhibited in Fig. 1, and
hence three types of TDHF trajectories, as fol-
lows: (a) closed loops, (b) open curves, and (c)
limiting curves (dashed lines) which separate the
first two types of curves and which can be re-
garded as their common limiting curve.

Except for the limiting curves' and for loops of
zero length (which are just the minimum and max-
imum points), none of the equi-energy curves pass
through any of the stationary points (10). This
implies that j and P can never become zero simul-
taneously on these curves. Consequently, the
time &I; needed to traverse any finite segment of
these curves, given by the following integral over
the arc length E,

~ ~

l& dl

(q2 +p2)1/2
0

(16)

is finite.
On the other hand, q and P go to zero at the sad-

dle points through which the limiting curves will
pass. In fact, the lowest order terms in the Tay-
lor expansion of the energy surface around any
saddle point (q,P) [which can be any point given in
(10c) and (10d)] are quadratic in q-q and p-p. It
follows from this fact and Hamilton's equations (8)
that the integrand in Eq. (16) is proportional to l ',
in the neighborhood of a saddle point. This im-
plies a logarithmic divergence at the saddle points
for the integral (16). Therefore, the time needed
to arrive at any saddle point along a limiting tra-
jectory is infinite.

Thus, for closed loop trajectories (excluding the
limiting trajectories) both q and P repeat their
values after a specific finite interval of time, and
hence they are periodic with a finite period. The
motion corresponding to such a closed trajectory
is referred to as "libration" in Hamilton's me-
chanics. ' Since 4(t) depends on t only through P
and q, 4(t) is also periodic and has the same pe-
riod as that of p and q. Moreover, because X(q,p)
is identical in the regions 0 & q & r and r & q & 2m,
we always have two libration trajectories with
identical shape, period, and energy. However,
the librational states associated with these tra-

tionary Hartree-Fock state is related to the ground
.state phase transition discussed in Ref. 3.

N/2

ENERGY SURFACE IN LMG MODEL

N=8, X=0.25

-N/2
0

I
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q
FIG. 2. Contour map of the energy surface X(q,p) for

N=S and X=0.25. The contour passing through (q,p)
= (0, 0) has zero energy. The upper and lower boundary
line p =+ N/2 are contours of energy +Ns/2 (=+4&),
respectively. Successive contours differ in energy by
6 ~

jectories differ by the sign in the last term of (2b)
and are, therefore, linearly independent of one
another. We conclude that the TDHF librations in
the LMQ model are doubly degenerate.

The open curves represent another kind of per-
iodic trajectory called "rotation" in Hamilton's
mechanics. ' Here q increases indefinitely, while

p repeats itself after a finite period of time. Fur-
thermore, 4(q, p) =-4(q+2n', p), and hence the cor-
responding wave function C (t) is periodic. " And,
since there is only one trajectory corresponding to
each energy, the rotational states are nondegener-
ate in the LMQ model.

Therefore, for X&1 the LMQ model. simultane-
ously supports two types of TDHF solutions: the
nondegenerate rotations and the doubly degenerate
librations.

The situation for X & 1 is quite different. As al-
ready pointed out in Sec. IIIA, all the stationary
points have moved out of the physical region of
the phase space. Therefore, there are no closed
loop equi-energy contours and hence no closed
loop TDHF trajectories (see Fig. 2). We are thus
left with only one type of TDHF trajectory, name-
ly, the nondegenerate rotational trajectory.

The transition between these two distinct re-
gions of X occurs at X, =1, i.e. , at the ground state
phase transition. Therefore, we conclude that the
TDHF solutions themselves undergo a qualitative
change in association with the ground state phase
transition. In one region (0 & y &1), the LMG mod-
el gives rise to only one type of TDHF solutions,
the. nondegenerate rotations, while in the other
region (X &1), it allows the coexistence of two

types of TDHF solutions, the nondegenerate rota-
tions and the doubly degenerate librations.
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IV. CONCLUSIONS

By studying the structure of the TDHF energy
surface, we have investigated the qualitative be-
havior of the whole family of TDHF solutions in
the LMG model. The TDHF equations of motion
are transformed into Hamilton's canonical form.
The TDHF solutions are then represented by clas-
sical trajectories in a two-dimensional phase
space, which trajectories are also the equi-energy
contour curves of the TDHF energy surface in this
phase space.

The TDHF solutions divide into two distinct
qualitative types: (a) those represented by closed
loop trajectories (librations), which are doubly
degenerate, and (b) those represented by open, but
periodic trajectories (rotations), which are non-
degenerate.

The minimum of the energy surface becomes un-
stable at the critical interaction strength Xp

which we define as a ground state phase transi-
tion. It is shown that when X is greater than the
critical value X, =1, both the librational and rota-
tional TDHF solutions exist simultaneously, and
that when X is smaller than Xo= 1 only the rotation-
al solutions prevail.

Note added. The use of the Lipkin-Meshkov-
Glick (LMG) model to illustrate the behavior of
systems undergoing a ground state phase transi-
tion does not originate in the present work. Be-
sides Refs. 1 to 3, Refs. 11 through 17 and refer-
ences cited therein should be consulted in order to
properly trace the ramification and the evolution
of this approach.

The authors gratefully acknowledge valuable
discussions with Dr. R. Gilmore and Dr. D. H.
Feng. This work was supported by the U. S. De-
partment of Energy.

APPENDIX: EQUIVALENCE OF TDHF STATES

AND COHERENT STATES

In this appendix, we show that the TDHF deter-
minant defined in (2) is identical to the coherent

states with total pseudospin O'=N/2. This equiva-
lence follows from (a) Thouless's theorem, "and
(b) the fact that J, and J' in (13) are one-body op-
erators, and (c) that the extremal state in the
J =K/2 subspace is a Slater determinant. For
Thouless's theorem" states that any state defined
as an exponential function of one-body operators
acting on a Slater determinant is also a Slater de-
terminant.

One can also prove this equivalence explicitly by
expanding the exponential function in

~ „)defined by
(12) and collecting real and imaginary parts In.

this way, one can show that the coherent state
~o~) is identical to the determinant ~C) in (2) at
each value of the angles 0 =(8, P), i.e. ,

(Ala)

with

8
q(0) =-e'

2 (A lb)

in, Eq. (12). Because of this equivalence the dy-
namical evolution of the TDHF state is identical
with that of the coherent state which satisfied the
same variational principle (3).

Note that this equivalence of the coherent state
approach and TDHF can be generalized to other
models once the conditions for the Thouless the-
orem are satisfied. Infact, in an extensionof the
LMG model to multilevel models, Gilmore and Feng"
have defined the coherent states in exactly the
same form as (12) except that each term in the
exponent in (12) is replaced by a sum of one-body
shift-up or shift-down operator s corresponding to
different pairs of levels. Therefore, also in these
multilevel models, the time evolution of these co-
herent states which are generated from the ex-
tremal state chosen to be unperturbated ground
state are identical to the TDHF solutions.
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