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Equations-of-motion method and pairing correlations in doubly even nuclei

F. Andreozzi, A. Covello, and A. Porrino

(Received 6 July 1979)

An equations-of-motion method is presented for treating pairing correlations in doubly even nuclei. A
simple technique is developed to overcome the problem of the spurious states arising from the use of an
overcomplete set of basis vectors. The method yields very accurate ground-state energies, occupation
numbers, and two-particle transfer amplitudes, as evidenced by comparison with the exact results for the
case of the Ni isotopes.

NUCLEAR STRUCTURE Equations-of-motion method in pairing-for ce theory.

The equations-of-motion method has been ap-
plied to the pairing-force problem by many
authors. ' In particular, it has been shown" that
approximate solutions to the pairing Hamiltonian
can be found by a simple step-by-step procedure
which involves iteration only across even nuclei.
The main difficulty with this approach is the ex-
istence of spurious states arising from the vio-
lation of the exclusion principle. Such a problem
has been tackled by Mauger and Evans, 4 who have
developed a properly antisymmetrized theory.
The usefulness of their treatment, however, is
restricted to the lowest orders of approximation
where the matrices to be diagonalized can be
kept to manageable size. In this paper we report
on a new formulation of the theory which is much
simpler in application, as it allows a drastic re-
duction in the size of the matrices at any order
of approximation. The main feature in which our
approach differs from that of Mauger and Evans
is the use of an angular-momentum coupled rep-
resentation. This implies a different technique
for the elimination of the spurious states.

We start with the pairing Hamiltonian

II = ~«jNj -~ Gjj A, Ajjj'
where

Nj = ~ ajmaj~,

Aj = ~ ajmaj~ ~

m&0

of zero) is written as

(iV, P) = gc,»(N)a,"~N-2, y), (4)

[H, A,'] = 2e, A,' —g G...A.,', (0, —N, ), .(5)

where 0, =j+—,'. Taking matrix elements of (5),
one has

Xj By N =Eg N Xja~ N,
j'y'

with

M, „, „=[2&,+Z (N —2)]5,, 5

—G...O, [5 —2p, „,,(N —2)],
where

X,»(N) =(N, P~a,'~N 2, y), -
P, & z(N —2) = (N —2, y'

~ a, a& ~N —2, y) .
From the normalization condition (N, P~N, P) = 1 it
follows that

(8)

cjoy N Xjsy N = l.
jy

The coefficients c,s&(N) defined by (4) and the
amplitudes X,8&(N) are in turn related by

X,»(N) = Q cf » (N)d, y, y(N —2),
J''y'

where P and y specify the states containing N and
(Ã —2) particles, respectively.

The equations of motion for A, are

)i+m+t
d. ..,(N-2) =(N-2, y'~W, 'a,'~N-2, ~) (12)

The wave function for a system of an even num-
ber N of identical particles (we restrict our-
selves to states with individual level seniorities

are the elements of the metric matrix.
As is clear from Eqs. (f) and (ll), the calcula-

tion of the energies E& and two-particle transfer
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amplitudes for the N-particle system requires
the knowledge of the density matrix (9) and of the
metric matrix (12) for the (N —2)-particle sys-
tem. It is straightforward, however, to express
these matrices in terms of the c»(N —2) and
X,+(N —2). One finds

1
ass. (N) = —Q X,sy(N)c, s y(N)"2 y

+ X, ~y NP, yyN —2c;ByN, 13
~yy

d ~ s rsl (N) = g X& s (N)Xys& (N)
y

+I i[5 ss' 2Piss (N'))5ii' &
(14)

and hence the calculation can be carried out
through a step-by-step procedure starting from
N=O.

It is worth mentioning that the density matrix
P, ss (N) can also be calculated without using ex-
plicitly the coefficients c,s&(N) In.fact, taking
matrix elements of the commutators [N&, A J,] and

[H, N, ], respectively, one obtains

1 Y 1 1
P;ss (N)X~ sy(N)Xq s y(N) ~ P, y ~(N 2)X, sy(N)X~ sy (N)+ 2 X,'sy(N) (15a)

P~ss (N) =
[ ( ( I)

EG~~'[X~sy(N)X~'s y(N) -X~ s,(N)X~s, (N)]
1

(15b)

Clearly Eqs. (15) give all the quantities P; ss (N),
once the energies Es(N) and the amplitudes X;sz(N)
are known.

The use of a nonorthonormal and overcomplete
set of basis vectors A~t!N-2, y& in (4) gives rise
to spurious states. This problem is particularly
serious when approximations are made (i.e., when

one reduces the number of core states !N —2, y&),

since the good solutions may mix strongly with

the spurious ones. ' Ne have worked out a pro-
cedure which leads to the elimination of the
spurious states at any order of approximation.
Our point of departure consists in diagonalizing
the nxn (n is the number of v etcros A!~tN- ,2&y)

metric matrix (12). Since the set of basis vectors
is overcomplete, it follows that some eigenvalues
must vanish. This implies (we employ the ab-
breviation! jy& -=At!N —2, y&)

tions (16) enable one to determine the coefficients
of the expansion of the n, spurious vectors
!(jy),& in terms of the n, good vectors!(jy), &,

l(jy). &
= 2 &,&,(g,gl(jy). &.

(sA
(17)

Each of the n vectors !jy& may then be written as

j'y'

where the nxn matrix $ is defined by

(18)

if !jy& is nonspurious,

$&z,
.

z
——

I k, z, ~ if !j y& is spurious~ ~ ~

yJ y ( 2p

and !j'y'& nonspurious, (19)
~ 0 if both! jy&, !j'y'& are spurious.

2y

S~',) ~~ =0, i=1to~„
Assuming now that the pair of indices '(jy) refers
to nonspurious states, the eigenvalue problem (6)
can be reformulated as follows:

where the b,"y' are the coefficients of the de-
composition of the ith eigenvector of vanishing
norm on the overcomplete set! jy&, and n, is the
number of spurious states. Clearly the n, rela-

M)yg y X, gy N =EH NX)sy N,

where M is the n~&&n~ matrix

(20)

TABLE I. Values of the ground-state energy (in MeV) for the Ni isotopes.

2 (58Ni) 4(@Ni) 6('2Ni) 8{ Ni) 10("Ni)

Exact
Mauger and Evans
Present work

-1.49
-1.49
-1.49

-2.10
-2.07
-2.07

-1.75
-1.72

1073

-0.50
-0.45
-0.53

1.70
1.86
1.60
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TABLE II. Values of the occupation numbers p~ (N) for the Ni isotopes.

2 4 6 8 10
Exact P W. Exact P W. Exact P W. Exact P W. Exact P %.

0.343 0.343 0.629 0.596 0.764 0.729 0.859 0.812 0.934 0.876

0.082 0.082 0.198 0.213 0.404 0.413 0.631 0.632 0.856 0.833

0.036 0.036 0.081 0.090 0.153 0.169 0.252 0.278 0.408 0.466

0.007 0.007 0.013 0.016 0.021 0.027 0.027 0.040 0.031 . 0.057

theory, we calculate the ground-state energies,
occupation numbers and two-particle transfer
amplitudes for the even Ni isotopes in the case of
constant pairing force G» = G. The single-parti-
cle energies and the coupling strength G are the
same as those used in Ref. 6. In Tables I-III
we compare the results obtained from the first-
order theory with the exact ones; in Table I we
also give the energies obtained by Mauger and
Evans4 using their first-order theory.

We conclude with the following remarks.
(i} The numerical results obtained for the

first-order theory indicate that our equations-of-
motion formalism, with a proper treatment of
the spurious states, provides an effective way
of treating pairing correlations in a number con-
serving manner.

(ii} It is straightforward to carry the calcula-
tions to higher orders of approximation proceed-
ing along the same lines of the first-order theory.
An increase in the number of core basis states
is certainly required to obtain an adequate de-
scription of the excited states. The results of
higher-order calculations will appear in a future
paper. '

(iii) The amount of computational labor involved
in practical applications of the theory is very
limited. The matrices to, be diagonalized at each
step of the iteration procedure are of order std„
where St& is the number of core states (i.e., the
order of the theory) and nf is the number of single-

i9»f &
= [2ef +E&(N —2)]5ff 5&&

(21)

Clearly the matrix M is not symmetric. It can
be shown, ' however, that all eigenvalues E~ are
real. It should be noted that Eq. (21) gives only
rfr amplitudes Xfe&(N). The remaining (n n,)-
amplitudes can be obtained from the relation

Xlia i(N)= g $ ~ «n nX n8 Il(N)
y

rr ~rr
(22)

We come now to consider the first-order theory
in which the core states are restricted to one
state, the ground state ~N 2) (the q-uantum num-
bers y drop out in all of the above equations). In
this case no eigenvalue of the metric matrix is
exactly zero, but we can assume that Eq. (16) is
approximately valid for any eigenvector corres-
ponding to an eigenvalue ~&&1. It should be
mentioned that in the first-order theory the oc-
cupation numbers are best obtained by using Eqs.
(15) which reduce to the very simple formula (we
omit the index P)

p, (N) = pf(N 2)+-X,'(N)

I' I'
(23)

As an illustration and application of the above

2 6 8 10
Exact P.W. Exact P.W. Exact P.W. Exact P.W. Exact P.W.

3
2

5
2

2

1.171 1.171 1.283 1.246 1.061 0.995 0.891 0.800 0.709 0.649

0.857 0.857 1.279 1.348 1.706 1.827 1.835 1.946 1.673 1.730

0.189 0.189 0.279 0.288 0.373 0.383 0.460 0.458 0.551 0.558

0.413 0.413 0.578 0.589 0.711 0.723 0.810 0.799 0.862 0.829

TABLE III. Values of the two-particle transfer amplitudes X; (N) for the Ni isotopes.
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particle levels.
(iv) The present equations-of-motion treatment

can be applied at any order of approximation to
nonconstant pairing forces with no increase in
complexity. This is in contrast to what happens
in the BCS theory, where the energy gap 6 is no
longer a constant.

(v) The procedure for the elimination of the
spurious states described above may profitably
be extended to the more complicated case of the
spurious states arising in the equations-of-motion
treatment of neutron-proton pairing correlations. '
Work in this direction is in progress.
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