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Effect of the pion and 6 optical potential on deep inelastic pion-nuclear reactions
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The effect of the pion and b, optical potentials on the propagation of the pion and delta in a semiclassical
transport model of pion-nuclear reactions is studied. It is shown that the reaction and true absorption cross
sections are increased to become closer to the measured cross sections. The derivative terms in the optical
potential are shown to be particularly important. However, the distribution of final products produced still
has some discrepancies compared to experixnent, indicating that the mechanism for the deposition of the
pion energy in the nucleus is not completely understood.

NUCLEAR BEACTIONS The effect of optical potential on mean free paths in
pion-nucleus reactions. Total reaction and absorption cross section calculated

for pions incident on ~2C.

X,' =op(r}.

Here p(r) is the total nuclear density and

(la)

where o„and (Y~ are the total pion-neutron and
pion-proton cross sections, and lV, Z, and A are
the neutron, proton, and nucleon numbers for the
target. In this paper we would like to explore the
effects of the optical model on the propagation of
the pion in the intranuclear cascade model. We
will do this by using the mean free path derived
for a pion influenced by an optical potential U. We
will also study true pion absorption by looking at
alternative delta absorption mechanisms.

In nuclear matter the wave function of the pion
g(r) satisfies the Klein-Gordon equation

The intranuclear cascade model'~ has been very
useful in calculating pion and nucleon spectra and
spallation cross sections for nucleon- and pion-
induced reactions. This model is a classical
transport model and therefore, in order to calcul-
ate these complicated reactions as accurately as
possible; it is necessary that the propagation of
the incoming particle through the nucleus be as
correct as possible. Recent calculations' of pion
total reaction cross section and true absorption
cross sections using the intranuclear cascade mo-
del have underestimated these cross sections, par-
ticularly below the pion (3-3) resonance energy.
The total reaction cross section depends impor-
tantly on the delta mean free path. In these cal-
culations' the effect of the pion optical potential
on the propagation of the pion has been ignored.
The average pion mean free path in these calcul-
ations is

where

k' =(Z —V,}'—p,
' (3)

U(r) = —bok p(r)+ b)v p(r i1+ ' p(r) vgb,

—4wBop (r}+Pauli
+ resonance-broadening effects .

Here bo and b& are related to the free s- and P-
wave pion-nucleon scattering amplitude in the
usual way, ~ and are evaluated at the pion labora-
tory momentum k. 80 is a parameter describing
s-wave true pion absorption8 and has the value
Bo ——0.168 (-1+i) fm . The quantity $ is the Lo-
rentz-Lorenz parameter and depends on the short-
range nucleon-nucleon correlations. Estimates
of ( range from 0 to 1.2. The long-range Pauli
correlation is included in a separate term, as is
the broadening~'0'" of the (3-3) resonance. Reso.-
nance broadening includes effects of true pion ab-
sorption and multiple reflections of the pion among
the nucleons of the nucleus.

In order to make use of these results in the in-
tranuclear cascade model, it is necessary to make
a semiclassical approximation to Eq. (2). This

and F. is the total incident pion energy, V, is the
pion-nuclear Coulomb energy, and p, is the pion
mass. The simple first-order optical potential in
which the free pion-nucleon scattering amplitude
is used is inadequate for describing pion-nucleus
interactions. This has been known both from pionic
atom studies and from attempts to fit elastic
pion-nucleus scattering experiments throughout
the region of the (3-3) resonance. '~ An expression
for the optical potential including the most impor-
tant corrections takes the form
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may be accomplished as follows. The form of the
Klein-Gordon equation is

-V t/i —V ' nV)t)+Pg=k t/j, (5)

where n(r) and P(r) will be specified for the speci-
fic models below. To identify the pion wave num-
ber, it is useful to make the transformation from

g to y, where

In this approximation, the probability that the pion
will be found at a distance x in the nucleus is
ls(r) I' wher«»m Eq (»)

g

)g(~))'=)C)'axpI-2 )mK(x, ),z')

1 d+ &Re 1+n(r) dz'

tt (r) =X(r)/[I + n(r)]' ". xn(x, y, z')l dz'

The equation for g takes the form

-v'q+ Cr(r)q =k'X,

where

We thus identify the pion mean free path ~ along
the direction k as

(12}

-( )
1 v'n (-,'n')' nk' p
2 1+n (1+n)2 1+n 1+n ' (8)

The potential in Eq. (7) is local and hence a semi-
classical description of X is possible. The local
wave number K(r) is given by

In this work we shall ignore the second term in
the denominator of Eq. (12) because it vanishes
along the circumference of the nucleus (z =0}and
should therefore have essentially no effect on the
total cross sections. The term, furthermore,
vanishes inside the nucleus, where p = constant.
In the limit of p small, that is,

K (r) =k —U(r) . & Iko+ b| I"I (13)

In uniform nuclear matter the derivative terms in
Eq. (8) drop out and the result for K, and hence
for the mean free path g, is the same as one would
obtain from a nuclear matter calculation through
the pion Green's function (see, for example, Ref.
11}. In the nuclear surface, there are additional
terms in Eq. (9) which arise from the nonlocal
character of the interaction in Eq. (5}. These gra-
dient terms are known to be important; they have
been discussed in Ref. 4 in the context of pionic
atom physics and in Ref. 12 in the context of pion
scattering.

In the semiclassical approximation, the wave
function X is given by

and constant as a function of position, the mean
free path X will become equal to Xo, which is de-
fined in Eq. (1).

In addition to specifying the dynamics of the
pion, we must also specify the dynamics of the
delta in the intranuclear cascade model. The delta
dynamics are closely related to the "true absorp-
tion" of the pion, which takes place in two steps.
In the first step a delta, 4, is formed in pion-nu-
cleon resonant scattering. The delta then propa-
gates as a particle and then decays,

(14a)

or collides with another nucleon and goes into two
nucleons, that is,

b+N-N, +N, . (14b)

(10)

and hence g(r), from Eq. (6), by

q(r)=C e p(ixt [K(x,y, z') -k]dz'-z ln[1+n(r)]
l

Pt

=C exp i K xyg' -k+ — ' . ' ' dz'i 8,'0. (x,y, z')
N~ +N2 4+N2 N~ +N2+ (15}

This we refer to as the delta absorption mechan-
ism; it leads to the absorption of the pion. In Ref.
1 this cross section was calculated in a one-pion
exchange model with a form factor with one range
parameter. This range parameter was determined
by fitting the pion production cross section for the
scattering of 1-GeV protons from a free proton at
rest, ' which is the inverse of the reaction given
in Eq. (14):

As can be seen by the dashed line in Fig. 1, this
choice underestimates the pion production at lower
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In this paper we shall examine the effect of the
various terms in Eqs. (4) and (8) in two models.
The first (Model I) follows closely the philosophy
of Ref. 5b in that the resonance-broadening term
is dropped in Eq. (4). We examine the sensitivity
of the results to $; the value $ =0 corresponds to
the first-order Kisslinger potential. We also eval-
uate this model assuming that the derivative terms
in Eq. (8) are dropped to show the importance of
these. In Model I we use the improved delta-nu-
cleon cross section discussed above in connection
with Fig. 1. Explicit forms for n and P in Model I
are

12—

~ =-b p(r}/1. 1+-'(4b ) p(r)),

P = —bok p(r} —4wBop (r) .
(16)

n + 7I.+

P + 7T

sr+

n+ m+

p+ 7T

Model II follows more closely the philosophy of
Ref. 7; that is, we keep the resonance-broadening
term and set $ =0. The values for a and P are

=-b,'p( ), P=-bob'p(r),

where b,
' is given by

E -E, +-,'(ir)
' E E+—', (i-I') —W(E)p(r)/p(0)

o~W
500 400 500 600 700 800 900 1000 1100 1200

T (Mev)

FIG. 1. The experimental and calculated pion produc-
tion cross section 0~ for protons with kinetic energy
T incident on a proton target. The circles are the mea-
sured experimental data taken from Ref. 13. ' The full
circles include p+p —d+ x', whereas the open c'ircles
do not. The dashed curve represents the calculation of
pion production from the model of Ref. 1. The solid
curve is a fit to the data by multiplying the results of the
dashed curve by a factor dependent on the kinetic en-
ergy T. True absorption in pion-induced reactions in
the resonance region depends on the pion production
cross section between the two vertical lines.

energies. In particular, for pions incident with
energies in the resonance region, the delta absorp-
tion cross section corresponds to pion production
for nucleons with incident kinetic energies ranging
from 400 to 500 MeV, as i.llustrated in Fig. 1. The
pion production in this energy range is badly un-
derestimated by the delta cross section of Ref. 1,
perhaps by as much as a factor of 3. For this
reason we have multiplied the delta cross section
of Ref. 1 by a factor which depends only on the in-
variant energy of the delta-nucleon system, i.e.,
on the kinetic energy of the incident nucleon beam
in the reaction of Eq. (15}, so as to fit the pion
production cross section for low incident nucleon
kinetic energies as well. This fit is given by the
solid line in Fig. 1.

where E is the pion laboratory kinetic energy, ER
and I' are the (3-3) resonance energy and width,
respectively, and where W(E) is the isobar-
spreading interaction taken from the fit of Hirata
et al."to elastic scattering from ' O. The W(E)
has a real and an imaginary part which depend
strongly on energy. We have parametrized the re-
sults of Ref. 7c and found the following represen-
tation of the spreading interaction:

W(E) = (98.5+14.4i) —(1.18+0.805i)E

+ (0.003 + 0.0023i)E',
50 ~ E —p ~ 300 MeV, F in MeV. (19)

19vp(0)
2Im W(E)p(r)

(2o)

The potential W(E) may be regarded as the single
particle potential experienced by the (3-3) reso-
nance. The real part of W(E) includes the effect
of the binding of the nucleons. The imaginary part
of W(E) arises from collision broadening (includ-
ing pion "multiple reflections" ) and from true ab-
sorption of the pion. We shall assume that all
resonance-broadening mechanisms ultimately lead
to the pion's being absorbed. This assumption is
the basis for our delta absorption mechanism in
Model II, which takes the delta mean free path
for absorption directly from the imaginary part of
Eq. (19). The relation between the A mean ab-
sorption free path and W(E) is
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In the intranuclear cascade model a microscopic
calculation of the pion propagation through the nu-
cleus is done using a Monte Carlo technique. The
Pauli principle is taken into account approximately
by allowing only those collisions in which a nucle-
on after a collision has a momentum greater than
the Fermi momentum. In any particular collision,
the probability P, (r) that a collision between the
pion and a nucleon of type i (neutron or proton)
takes place within a distance x from some point,
must be specified. This probability is taken to be

(31a}

0'; p.
p]=

500

400—
~gHPI ~

P, ( ) = (1 e-"»)p, ,

where the factor 1 —e "~"specifies the probability
that the pion will be scattered in the distance x and

P,. is the probability of interacting with i. The
quantity X is the'pion mean free path; it is the
sensitivity of the results of the intranuclear cas-
cade model to this quantity which we are examining
in this paper. Because the Pauli principle is taken
into account in the manner .stated above, we have
dropped the Pauli term in Eq. (4) to avoid possible
double counting. Thus, the X evaluated in Models
I and II contains no explicit Pauli suppression ef-
fect. The validity of this treatment deserves
further study. %e take

where p, is the partial density of nucleon species
i, where o, o„and p are defined below Eg. (1),
where o and X are evaluated at the pion laboratory
energy [see Eq. (3)], and where a, is evaluated at
the pion-nucleon center-of-mass energy. It would

be better to use P,. calculated in the medium rather
than free space cross sections; we have assumed
that the medium corrections are less important in
the ratio in Eq. (10b) than they are in the individ-
ual o, and o. Similar considerations apply to the
dynamics of the & and nucleon.

In Fig. 2 the total measured reaction cross sec-
tion' for negative pions incident on "C is com-
pared to the calculated values. The dashed line
corresponds to the calculation with no optical
model refinements, i.e., X given in Eq. (1). Note
that this calculation underestimates the cross
section for all but the highest energies, and:
appears to peak at too high an energy. The calcu-
lation in Model 1, ( =0, gives the solid curve.
Note that the magnitude of the reaction cross sec-
tion is now in much better agreement with the data
and that the peak has shifted to lower energies.
To see the importance of the derivative terms, we
have also made a calculation in which these are
not included (the dot-dash curve). These have
their largest effect on the reaction cross section
in the vicinity of the (3-3) resonance. The non-
derivative corrections to the optical potent'. al have
their largest effect at low energy and relatively
small effect at resonance.

In Fig. 3 we show the reaction cross section
again. The dashed curve is the same as in Fig. 2.
The solid curve is Model 1, g =1.2. The Lorentz-
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FIG. 2. The total reaction cross section az for nega-
tive pions incident on C as a function of the pion kine-
tic energy T~. The full circles with error flags are the
measured values from Ref. 14. The full triangle is a
measurement on C from Ref. 23. The dashed line is12

the calculation of Ref. 1, i.e., no optical model refine-
ments of the pion mean free path. The solid curve is the
calculation in Model I for (= 0. %hen the gradient terms
in Eq. (8) are dropped, the result is the dot-dashed
curve.
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FIG; 3. The total reaction cross section 0 z for nega-
tive pions incident on C as a function of the pion kine-
tic energy T . The data and dashed curve are the same
as in Fig. 2. The solid curve is Model I, (=1.2. The
dot-dashed curve is Model II.
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Lorenz effect is well known to weaken the optical
potential at high density and this is reflected in
the calculation. Note that the largest effect occurs
at low energy; this is to be expected, as the nu-
cleus is more transparent and the pion is more
able to be influenced by the high-density region of
the nucleus. The effect is rather dramatic, sub-
stantially underestimating the e„and shifting the
peak to higher energies in disagreement with the
data. Also shown in the figure is the calculation
of Model II. This result is surprisingly similar to
Model I, )=0. The reason is that at low energy
the shift of the resonance due to W(E) (upward)
results in a decreasing of the imaginary part of
the optical potential, which is compensated by a
broadening of the resonance. The largest effect
is found in the resonance region, and the effect is
to decrease the reaction cross section so that the
data are slightly underestimated.

All three optical potentials, Model I with g =0
and g = 1.2, and Model II with $ = 0, reproduce the
reaction cross section near the resonance, and are
an improvement over the intranuclear cascade
calculated without the optical potential. Also, all
three optical models give reasonable fit to the
elastic scattering since it is primarily diffractive
at that energy. As the energy is decreased, the
elastic scattering is reproduced better by Model I,
$ = 1.2, and Model IL Model II seems to better fit
the Binon data' through the resonance. However,
Model I with $ = 1.2 seems to fit the low-energy
reaction cross section. (We evaluated this point
by using the phase-shift analysis & in Ref. 23.
This point does not seem to be unambiguously de-
termined by the elastic scattering. }

%e have only crudely accounted for the finite
range of the pion-nucleon interaction in our calcu-
lation. In Ref. 15 it is shown that the finite range
may be approximately compensated by adjusting
the nuclear radius so that the new rms radius R'
is related to the actual nuclear rms radius A~ of
point nucleons by

+24 mb for B,„=1.34 fm
-10 mb for R,~ = 0.38 fm

(28)

The true absorption cross section calculated
with the model of Ref. 1 for positive pions incident
on "C as a function of pion energy is compared to
the measured cross sections" in Fig. 4. The solid
triangles are derived from measurements"" on
0 by multiplying the cross sections by a factor

(—,",)'"=0.8 to take into account the smaller size
of carbon. ' The dashed curve is the calculation
for the delta absorption cross section from Ref. 1
while the points are the measured cross sections.
In Ref. 1 these calculated cross sections were
compared to bubble-chamber measurements of the
pion absorption cross section. However, with
the exception of Bef. 18a, it is unclear to what
extent the production of w was accounted for in
these experiments. For this reason, and because
other pion absorption data is becoming available,
these data are omitted from Fig. 4. The calcu-
lated cross section underestimates the measured
cross section at low energies and overestimates
it at high energies.

~ ~

loo—

(24)

For the two extremes of B,„(1.34 vs 0.38 fm), we
get

I2 Q 2+g 2 (22)

R' =8~'+(0.8 fm)'. (23)

0.8 fm is the charge radius of the proton. A crude
estimate of the dependence of the error &0~ in a ~
on the radius of the pion-nucleon interaction is
given by"

where R,„is the: rms radius of the pion-nucleon
interaction. Estimates" of B,„vary from -1.36
fm in Ref. 16 to -0.38 fm in Bef. 17. In our work
we have used for B' the nuclear charge radius,
which differs from the radius for point nucleons by
approximately

00
l
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t I

loo l50
(Mey~

I

200

FIG. 4. The true pion absorption cross section 0&
for positive pions incident on C as a function of pion
kinetic energy 7 . The dashed line corresponds to the
delta absorption model of Ref. 1. Lhe solid line is
Model I, )=1.2, the dashed line is Model I, ]=0, and
the dot-dashed line is Model II. The solid circle is from
Ref. 18a, the solid triangles from Ref. 18b, and the
solid square from Ref. 18c.



EFFECT ON THE PION AND OPTICAL POTENTIAL ON. . . 1061

70—

50—

30—

b

00
I

50
I I

g0 f50
(Mev)

FIG. 5. The ratio of the true pion absorption cross
section for positive pions incident on C as a function

of pion kinetic energy T . The legend is the same as in

Fig. 4.

In Fig. 5 the calculated percentage for pion ab-
sorption is compared to the measured values and
these agree for the two lower energies, but over-
estimate at the'. high energy. However, the error
bars are very large on the experimental cross
sections. The dashed curve in Fig. 5 is calculated
in the same model as the dashed curve in Fig. 4.

Using the new delta absorption cross section of
Model I, we get a very substantial improvement
in the magnitude of the true pion absorption cross
section at low energies, as seen by the solid and
short dashed lines in Fig. 4. In these cases the
pion mean free path was calculated from Model I.
The short dashed curve corresponds to g = 0 and

the solid curve to (=1.2. Hence, by using adelta
absorption cross section which fits the pion pro-
duction cross section, we can nearly reproduce
the true pion absorption in finite nuclei for ener-
gies below the resonance. This also tells us that
the one-pion exchange model with a form factor is
inadequate for both pion production and pion ab-
sorption.

The magnitude of the cross section for the delta
absorption reaction, Eq. (14), is determined from
a measurement for pion production made in free
space. This scattering amplitude in the nucleus
could be altered just as the pion scattering ampli-
tude is changed inside the nucleus. For this rea-

TABLE I. 100-MeV ~' on 2~A1 differential proton
spectrum for E&& 60 MeV. The differential cross sec-
tion for producing protons with energy E& &60 MeV for
incident positive pions is tabulated for two angles, 8
= 45' and 94'. The entries in the table are the measured
values (H, ef. 19) (Exp), the calculated values from Ref.
1, and the calculated values with Model I for two values
of the Lorentz-Lorenz Ericson-Ericson parameter (.

Exp

—(mb/sr)
cf0'

dQ

Ref. 1 Model I ()=0) Model I ()=1.2)

39+.8 18+ 1
94' 17 ~ 2 14+1

30+ 2
23 k2

25 +2
20 +2

son, theoretical study of the & optical potential
should be pursued. The dot-dashed curves in Figs.
4 and 5 show the calculation of the absolute and
relative absorption cross sections in Model II. We

see a near agreement in both the magnitude of the
absorption cross section and the percentage ab-
sorption to total reaction cross section compared
to the measured values for low-energy incident
pions. However, a discrepancy remains for pions
with energy above 150 MeV. This may mean that
it is incorrect to identify the spreading interaction
8' entirely with true absorption, as we have done.

The bubble-chamber data is rather crude, but

there do exist other indirect measures of true pion
absorption. For exmmple, the measurement of the

high-energy proton spectra from pion-induced re-
actions provide a good measure of true pion ab-
sor'ption. " The energy dependence of the differen-
tial cross section is given quite well by the intra-
nuclear cascade model. ' However, the magnitudes
are underestimated at forward angles, especially
in the case of 100-MeV incident positive pions. In

Table I we show the experimental cross section
do/dA for 100-MeV incident m' on "Al, where

00 dG
d&/dQ= dE~ QdE '

8&-6O M~V p

and theoretical calculations of the same quanta, ty
at 45' and 94 . The calculation employed was
Model. I with the improved model of pion absorp-
tion. The column "Ref. 1" shows the previous dis-
crepancy at forward angles. Inclusion of the op-
tical potential improves the magnitude of the cross
section; the calculation is still mgre isotropic
than the experiment. However, the sum of the
measured cross sections at the two angles is
56 + 9 mb/sr, in good agreement with the calcul-
ated sum of 45-55 mb/sr. Perhaps the angular
distribution used for the delta absorption mechan-
ism is not cor. rect.

Although the inclusion of the pion optical poten-
tial and the larger delta-nucleon cross sectionhave
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and A~ is the mass of the measured spallation pro-
ducts. The solid circles are the measured cross
section and the. dashed l.ine indicates the trend of

I%0

I 20—

I t 1 I

220 MeV m+ ON s~Ni

I

improved the total pion reaction and absorption
cross section, the deposition of the energy in this
semiclassical model has some difficulties. Two
puzzles still remain. One of them is the nucleon
knockout cross sections. The intranuclear cascade
predicts approximately the correct nucleon knock-
out cross sections for heavy nuclei, through the
resonance region, but not for light nuclei. 0' '

This discrepancy remains, even with the improved
pion optical potential.

The other puzzle is with respect to the mass dis-
tribution of spallation products for pion-induced
reactions on nuclei. Recent measurements of
spallation products, 2 which combine prompt y-ray
and radioactivity measurements of the residual
nuclei, show that there are large cross sections
for producing products with four to six nucleons
removed from the target which the intranuclear
cascade cannot seem to predict. In Fig. 6 the
spallation cross section for 200-MeV m' incident
on Ni is shown as a function of M, where

the data. The triangles y.re the calculated cross
section for the same products as measured, and
the solid line indicates the trend. We exclude the
products with bA & 3 since there are more uncer-
tainties in these measured cross sections. Where-
as the measured spallation cross section goes
through a maximum for chA =4, the calculated
cross section monotonically decreases tending to-
wards the measured cross section for bA large.
This discrepancy could imply a more complicated
mechanism for the deposition of pion energy than
is now present in the intranuclear cascade model.

We have shown in this paper that when pion and
4 optical potentials are used which give reason-
able fits to the pion-nucleus elastic scattering,
and to nucleon-nucleon pion production data in the
case of, the delta, the intranuclear cascade model
gives total pion reaction and true absorption cross
sections in finite nuclei in much better agreement
with the measured values. One important result
of the cal.culations presented here is that the total
reaction cross section is sensitive to the higher-
order terms in the pion optical potential at low en-
ergy. This means, among other things, that more
reaction cross-section data, especially at the low-
er energies (below 120 Me&), is desirable and is
of fundamental importance in determining the re-
action dynamics. Also, better true pion absorption

I 00— 200—

80—
E

b 60—

Ih~
~ .~ II

k

40—

20—

0
0

I

12

FIG. 6. The spallation cross section 0 for 220-MeV
positive pions incident on ~2Ni as a function of the num-
ber of nucleons removed from the target AA. The solid
circles are the data taken from Ref. 22, and the dashed
line indicates the trend in the data. The open triangles
are the calculated cross sections for the same isotopes
measured and the solid line indicates the trend.

I
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I I I

0 50 IOO I50 250
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FIG. 7. The true pion absorption cross section 0.& for
positive pions incident on ~ C as a function of pion kinet-
ic energy T~. The dashed line corresponds to the delta
absorption model of Ref. 1. The solid line is Model I,
g = 1.2, the dotted line is Model I, $ = 0, and the dot-
dashed line is Model II. The solid circle is from Ref.
18a, the solid triangles from Ref. 18b, and the solid
squares from Ref. 18c and the recent data of Navon
et al. referred to in the text.
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data is needed through the resonance region. The
calculated absorption cross section, while agree-
ing with the measured values at and below the
resonance energy, does not fall as fast with ener-
gy as the measured absorption cross sections.
However, old bubble-chamber -measurements
give an absorption cross section of 203+20 mb at
195 MeV incident m'. Even though this may be a
crude measurement, it is a factor of 2 larger than
that implied by the trend in Fig. 4. It will be de-
sirable to determine these cross sections firmly.
A number of other puzzles remain. These suggest
that at least in certain reactions the dynamics are
more complicated than we have anticipated. The
intranuclear cascade model is flexible enough to
accommodate alternative reaction mechanisms
and therefore to serve as a means to further study
the underlying physics.

Note added. We have learned of recent measure-
ments of the true pion absorption cross section o„
for positive pions incident on ' | as a function of
incident pion energy by Navon, Ashery, Azuelos,
Pfeiffer, Walter, and Schleputz. These measure-
ments give a different impression of the experi-
mental trend than those of Ref. 18b. As seen in
Fig. 7, the data of Ref. 18b indicate a falloff of o~
over the resonance, whereas that of Navon et al.
show a peak near resonance. The most recent cal-
culations reproduce the average behavior in this
energy region. However, these calculations over-
estimate the absorption at 85 and 250 Mev. Hence,
these measured absorption cross sections are
more steeply peaked as a function of incident pion
energy compared to our most recent calculation.

We wish to thank G. Bertsch for discussions.
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