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We develop a unified nuclear potential for the description of large-scale nuclear collective motion and find
that it satisfactorily reproduces experimental data for heavy-ion elastic scattering, fusion, fission, and
ground-state masses, Obtained by generalizing the modified liquid-drop model so that two semi-infinite slabs
of constant-density nuclear matter have minimum energy at zero separation, this potential is given in terms
of a double volume integral of a Yukawa-plus-exponential folding function. For heavy nuclear systems the
resulting heavy-ion interaction potential is similar to the proximity potential of Swiatecki and co-workers,
However, for light nuclear systems our potential lies slightly below the proximity potential at all nuclear
separations. For heavy nuclei fission barriers calculated with our Yukawa-plus-exponential model are similar
to those calculated with the liquid-drop niodel. However, for light nuclei the finite range of the nuclear force
and the diffuse nuclear surface lower the fission barriers relative to those calculated with the liquid-drop
model. Use of a Wigner term proportional to tiV —ZpA in the nuclear mass formula resolves the major
part of the anomaly between nuclear radii derived from elastic electron scattering on the one hand and from
ground-state masses and fission-barrier heights on the other.

NUCLEAR REACTIONS He+ C, ' O+ Si, Kr+ Pb; calculated heavy-ion
interaction potential. '60+ 8Si, E= 37.7, 81.0, 215.2 MeV; calculated elastic-
scattering angular distribution. 3 S+ 7Al, 3 Cl'- Ni, ~O+ ~ 8Pb; calculated
compound-nucleus cross section. Calculated fission-barrier heights and
ground-state masses for nuclei throughout Periodic Table. Nuclear potential
energy of deformation, liquid-drop model, droplet model, modified liquid-drop
model, Yukawa-plus-exponential model, proximity potential, Woods-Saxon po-
tential, double-foMing potential, optical model, ingoing-wave boundary condi-

tion, single-particle corrections, Strutinsky's method.

I. INTROBUCTION

For the description of large-scale nuclear col-
lective motion, we may use either a microscopic
approach or a macroscopic-microscopic approach.
Within the former approach, substantial progress
has been made recently in terms of the time-de-
pendent mean-field (Hartree-Pock) approxima-
tion." However, even though possibly important
effects such as collisions between particles are
neglected, ' ' this method still requires a. large
amount of computing time to obtain predictions
for specific cases.

In the latter approach, where smooth trends are
obta, ined from a macroscopic model and local
fluctuations are obtained from a microscopic mod-
el, ' ' the focus from the outset is on those col-
lective degrees of freedom that are most relevant
to the process under consideration. A complete
dynamical theory requires the nuclear potential
energy of deformation, the collective kinetic en-

ergy, and the dissipation function that specifies
the conversion of collective energy into single-
particle excitation energy. The major effort in
this approach ha, s been directed to calculating the
local fluctuations in the potential energy by use of
Strutinsky's method. ' ' However, the smooth
trends in the potential energy are equally im-
portant, and it is with this aspect of the problem
that we are concerned here.

The smooth part of the nuclear potential energy
of deformation is often calculated by means of
the liquid-drop model' or the droplet model, ""
which are expansions of the nuclear energy in
powers of A '~' and t(N —Z)/A]'. However, all
such expansions break down for two nearly touch-
ing nuclei and for shapes with small necks. In
these cases the finite range of the nuclear force
and the diffuse nuclear surface lead to a reduction
in energy that must be taken into account.

One way to incorporate the finite range of the
nuclear force and the diffuse nuclear surface is
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by means of, a statisti. cal calculation, such as
with the Thomas-Fermi method '" or the en-
ergy-density formalism. "" By means of rela-
tively simple statistical methods and, phenomeno-
logical nucleon-nucleon potentials or energy-
density functionals, a large number of average
nuclear properties can be reproduced. However,
for very deformed shapes a large amount of com-
puting time is required.

A much simpler way is to calculate the smooth
part of the nuclear energy by means of a double
volume integral of a Yukawa function, " in analogy
with the calculation of the Coulomb energy by
means of a double volume integral of the Coulomb
interaction. This method has been used extensive-
ly, ' "but suffers from two related major de-
ficiencies: First, the range a = 1.4 fm of the Yu-
kama function that is required to reproduce heavy-
ion interaction-barrier heights is so large that
the tail of the interaction potential extends to much

larger distances than that determined from heavy-
ion elastic scattering. "'" Second, for two semL-
infinite slabs of nuclear matter the resulting in-
teraction potential does not have a minimum value
when the slabs are in contact, as is required for a
saturating nuclear system.

These two deficiencies can both be corrected
by use of a folding function that contains tzvo Yu-
kawa functions. "'"'" This introduces two ad-
ditional parameters: another strength and another
range. One of these parameters is eliminated by
imposing the saturation condition, and the other
is eliminated by taking the limit as the ranges of
the two Yukawa functions approach each other,
as is required by heavy-ion elastic-scattering
data. The resulting folding function is the dif-
ference between an exponential and a Yukawa func-
tion, containing a single strength and a single
range.

In Sec. II we derive a general expression for
this Yukawa-plus-exponential potential, as well
as specialized expressions for several geometrical
shapes of interest. The form used for the nuclear
mass formula is also given in this section. Hav-

ing determined the constants of the Yukawa-plus-
exponential potential in Sec. III, we apply it to
heavy-ion elastic scattering and fusion in Sec.
IV, to fission in Sec. V, and to ground-state
masses and deformations in Sec. VI. Finally,
some limitations of our potential are discussed
in Sec. VII.

II. YUKAWA-PLUS-EXPONENTIAL POTENTIAL

In the original single- Yukawa modified liquid-
drop model, the generalized nuclear surface en-
ergy is given by

2 r
E„= E„(a, c,) +

3
—' c,A. ,

where
- Q/0

Bm'X0'as & 0
with

o=r-r .

0 0

where A is the nuclear mass number. The quan-
tity a is the range of the Yukawa folding function;
in the limit a-0, Eq. (l) yields exactly the sur-
face energy of the liquid-drop model. The de-
pendence of the effective surface-energy constant
c, upon the relative neutron-proton excess

is taken to be

, c= a, (1 ((,I '), -
where a, is the surface-energy constant and K,
is the surface-asymmetry constant. The last
term in Eq. (l) cancels the volume-energy term
that is present in the double volume integral of
the Yukawa function.

When specialized to two semi-infinite slabs of
nuclear matter, Eq. (2) yields for the nuclear
interaction energy per unit area

2m+0

where s is the distance between their inner sur-
faces. This result violates the requirement that
for a saturating nuclear system the interaction
energy per unit area be a minimum at s =-O.

This saturation condition can be satisfied by
use of a folding function that is the difference
between two Yukawa functions, for which the in-
teraction energy per unit area for two semi-in-
finite distributions becomes

S„(s)= 8r(a„c...s) —b r (a„c... s) .

Imposing the saturation condition

db'„(s)
s=o

gives the relationship

(4)

S) Sp

The double integration is over the volume of the
nuclear configuration, whose magnitude is held
fixed at —', mA0' as the nucleus deforms. The equiva-
lent-sharp-surface radius B0 of the spherical nu-
cleus is related to the nuclear-radius constant
X0 by
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Furthermore, the effective surface-energy con-
stant is given by

CS CS ~S1 2

Solving these two equations yields

a 1
CQ1- a~

Q2
CS = CS

Q —a,1

The generalized nuclear surface energy then be-
comes

E„=E„(a,, c, ) —Er (a, , c,,j
a, f.'. „(a„(;,) a,E:„(c—i, , c,}

01 —Qg

By varying the ranges a, and Q, to reproduce
the values of heavy-ion elastic-scattering po-
tentials at the radii where they are determined
experimentally, we find that the two ranges need
to be approximately equal. The limit of Eq. (5)
as n, —Q,, == Q is given by

8Z„--—[aPr(a, c,)] .
BQ

Upon substituting Eq. (2) and differentiating, we
are led to the general result

~ g/Q

8+2+ 2a3

[If comparing this formula with Eq. (2) of Ref. 27,
note that the overall minus sign is missing
there. ]

The integral in Eq. (7) would be zero if the r
and r' integrations were both extended over all
space. It therefore does not contribute a, volume
term to the energy and does not require a vol-
ume-energy renormalization as does Eq. (I) for
the original single- Yukawa model. " ' The sat-
uration condition (4) is seen to be equivalent to
the requirenrent that the kernel of the double vol-
ume integral does not give rise to a volume term.

A t;wofold application of the Gauss divergence
theorem transforms Eq. (7) into the double sur-
face integral"'-"

I'., „=——-~ 2 p (p 2 — — +2—-+2 g/g
Bm2& 0' ~ Q a

0 .dSo dS'
40'

For an arbitrary shape, the generalized nuclear
surface energy in the Yukawa-plus-exponential
model can therefore be computed numerically by
means of a, fourfold integral. For an axially sym-
metric but otherwise arbitrary shape, one of the
azimuthal integrations can be performed trivially.
With the nuclear surface specified in cylindrical
coordinates p, z, Q by the equation

p = P(z),

the resulting threefold integral is

r S

4wr, 3 „ g
-2—+2 c "' -"(z) P(z) -P(-")cos0

0 Q

xP(z') P(z') —P(z)cosg ——,-(z' —z)
dP(z'), az dz'

Zl

dP(z)

where the z and z' integrations extend from one end of the shape to the other a.nd the Q integration extends
from 0 to 2m. For an axially symmetric shape the distance 0 is given by

g = [P'(z)+P'(z') —2P(z)P(z')cosP+z'"+z" —2zz']'i'.

Explicit expressions for various simple configurations can be obtained either by integrating Eq. (7) di-
rectly or by applying Eq. (6} to the corresponding expression in the single-Yukawa modei. ' This is now
done for some of the more important geometrical shapes of interest.

For a single spherical nucleus, we find that

/{0) y 3 + ~ y 2 t 3 + 3 ~0/ E(0)Q
' 'R a, Q

Pi0 Q Ji0 A0
(8)

where

F{0) g a/3

is the surface energy of the spherical nucleus.
[If comparing Eq. (8) with Eq. (2) of Ref. 27, note
that the middle term in square brackets should be
multiplied by A'~' there. ] As expected, the lead-

ing term in Eo. (8) is the surface energy, which is
proportional to O' '. The A. ' ' term, which rep-
resents the mean-curvature energy, is identically
zero. The A. ' ter m a,nd the exponentially small
term arise from the finite range of the nuclear
force and the diffuse nuclear surface.

We consider next the case of small distortions
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about a spherical shape, with the nuclear surface
specified in spherical coordinates r, 8, Q by the
equation

n

r=B(8, Q) =8 1+ Q Q P„Y„(6,Q)
n= 0 nt= -n

In defining the spherical harmonic 7„„,we use the
phase convention of Edmonds. " The quantity P»
is determined in terms of the other coordinates
by requiring that the volume remain constant;
to first order it is zero. Similarly, the three
quantities ti, may be determined in terms of the
other coordinates by requiring that the center of
mass remain stationary, in which case they are
also zero to first order. The generalized nuclear
surface energy is then given to second order by

The critical value of x at which the spherical
shape loses stability against fission is then

l~
+crit 2~»

which is less than unity for a nonzero value of a.
For two separated spherical nuclei of equiva-

lent-sharp-surface radii R, and 8» we obtain

E =E'"(I)+Z'"(2)+V

where the nuclear interaction energy V„may be
written in the form

Vn=-D I" + —— -- e
S ~~2 -Sia
a r

The distance s between the inner equivalent sharp
surfaces of the two nuclei is given by

where

00 n

E(0)—E(oi Q C Q iP [2
-n=2 nl= ~n

(10)
S =r -Ai2,

where r is the distance between the centers of
mass of the two nuclei, and

+~ + ~0+~ 2~~ +

+ 2g 0
&

0 h(X) 0

Here j„ is the spheri"al Bessel function and 0„
is the spherical Hankel function of the first kind, "
(Use of the same symbol n to denote nuclear en-
ergy and a summation index should cause no con-
fusion. )

For the special case of small quadrupole dis-
tortions this result simplifies to

C2=2 —27 —+ 4 ~ +14 ~ +32~
2

+ 52+ 54 +27 e ~0i'.
R0 A0

(12)

where

4a'g(R, /a)g(B, /a)e "» '
0 12

g(x) = x cosh(x) —sinh(x)

and, for the case of two separated nuclei,

c,'= I'c, (1)c,(2)]' '.
The constant I" is given by

f(R,/a) f(A, /a)
a g(R,/a) g(R,/a) '

f(x) =x'sinh(x) .

is the sum of their equivalent-sharp-surface
radii. The depth constant D is given by

(19)

(20)

It is convenient to define the nuclear fissility
parameter ~ as usual by"

g (0)
C

2g(0) &

S

where

~{0) g2g2g2
C 5 g aC ~113

0

is the direct Coulomb energy of the equivalent-
sharp-surface spherical nucleus. The last step
of Eq. (14) follows because the Coulomb-energy
constant a~ is defined in terms of the nuclear-
radius constant x0 by

2

Qt
5 t'

(14)

It should be stressed that Eq. (17) is valid only
for s ) Q. Determination of V„ for s &0 would re-
quire specification of the physical process that
occurs inside the contact point. We have not yet
done this, but present instead in Sec. IV a simple
quadratic parametrization of V„ that can be used
for s&0.

TG facilitate comparisons with experimental
data from various nuclear systems, it is often
convenient to write V„ in an alternative form,
which is motivated by noting that in the limit in
which a is neglected compared to both A, and 8„
ihe constant I" approaches the value 2. Also, in
the limit in which s is neglected compared to R»,
the quantity r/R» approaches unity. We therefore
write V„ in the reduced form
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O„/V„= —
(2 e —e

S
(21)

where the potential reduction factor V„„ is given
exactly by

(I" + s/a)It„
(2+ s/a)r D

which depends weakly on s.
lf we neglect the exponentially small terms

exp(-It, /a) and exp(-It, /a) compared to unity,
then Eq. (22) simplifies to

(22)

a (ei, —a) (is, —a) (4 — — —+ —c,'R1 R2 s
R, -a R2-a a

r,'(2+ s/a)r

(22)

Although it is in general not a good approximation
to neglect the range a compared to both R, and R,
and to neglect the separation s compared to R»,
wd note for completeness that in this limit Eq.
(23) simplifies further to

aR1R2c,'
rsd r 2(It +It )

e

which agrees with the proximity theorem of
Swiatecki and co-workers. "

We consider now the generalization of Eq. (17)
to the case in which a spherical nucleus 1 inter-
acts with a deformed nucleus 2 whose nuclear sur-
face is specified by

OO n

r=It, 1++ g P„.l„.(~, y)
n=p m=-n

in a coordinate system located at the center of
mass of nucleus 2. In this same coordinate sys-
tem, 8 a,nd 4 denote the angular coordina, tes that
specify the location of the center of mass of nu-
cleus 1. Then to first order the nuclear inter-
action energy for this deformed configuration is
given by

] i)O n

V„'"=-V„-4"'",-gA„g p„.y„.(e, e), (24)
&+0 n=2 m=-n

where V„ is given by Eq (17).and

For the special case in which the deformation
of nucleus 2 is of the quadrupole type, this result
can be written explicitly as

e), =a —
)

'cosh(—') —sinn(—') {—+3(—) sinh(—') —h(—) cosh(—')} — S(—) 3(—),e '').

If both nuclei are deformed, then to first order Eq. (24) generalizes by the inclusion of an analogous
term describing the deforma, tion and orientation of nucleus 1.

To describe nuclear ground-state masses and deformations we augment our generalized nuclear surface
energy E„by a volume term (including a quadratic volume-asymmetry term), ' a Coulomb term (including
surface-diffuseness"'" and exchange" corrections), a Wigner term proportional to } I },"'"an electronic-
binding-energy term, "'"a pa, iring term, "'"and a, single-particle-correction term. '"'"'" The resulting
macroscopic contribution to the mass excess of a spherical nucleus is then

M 0)„,=M„N+MsZ —a„(1—e„I')A a+, (1 —r,I')

~2/3 3 + 0 g1/3+ 1 ~2/3+ 3 ~ 1/3+ 3 e 2T0~ /|2

N and Z odd

3 e' Z' 5 b Z' 5 3 Z/'
+ — ) ——— ———,q, + W(}I }+d) —a Z'" + —,'5, N or Z odd

5 yp j 2 yp g 4 2tt'

—(b, ——,'5), N and Z even

wher ell ~ 12~ 35.36

M„= 8.071431 MeV,

,~„. = 7.289034 MeV,

e' = 1.439 976 4 MeV fm,

b = 0.99 fm, and

&V=30 MeV,

g„=1.433x10 ' MeV,

s = 12 Me V/WA,

6 =20 MeV/A,
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1/A, N and Z odd and equal

0, otherwise .
To obtain the total mass excess, we must add

to Eq. (25) a correction arising from single-parti-
cle effects. '"'"'" If the ground-state shape
is deformed, this single-particle correction in-
cludes also the changes in the Coulomb energy
and generalized surface energy from their spheri-
cal values. To second order in deformation, this
latter quantity is given by Eqs. (10) and (11).

1.2—

III. DETERMINATION OF CONSTANTS

Four different types of experimental information
are used to determine the values of the six con-
stants r„a, a„z„a„,and a„of our Yukawa-
plus-exponential model. These are elastic elec-
tron scattering, heavy-ion elastic scattering,
fission-barrier heights, and ground-state masses.
At this stage of our work, we take the strength ~
of the signer term and the pairing-energy pa-
rameters 6 and 5 from Hefs. 11 and 12.

Apart from elastic electron scattering, which
determines the nuclear-radius constant r„ the
experimental data do not determine the constants
uniquely, but instead only relationships between
two or more of them. In heavy-ion elastic scat-
tering, this relationship is primarily between ro
and a, but also involves g, and x, weakly. In
fission, the relationship is primarily between
r„a„and K„but also involves a. In ground-
state masses, the relationship involves all six
constants that we adjust, as well as the coef-
ficient & of the %igner term. It is therefore im-
portant to proceed systematically, but somewhat
iteratively, in the determination of the constants.

The nuclear-radius constant x, is related to the
charge radius as determined from elastic-elec-
tron scattering. Figure 1 shows experimental
values of the equivalent-sharp-surface charge
radius 8 divided bye. ' ', for a number of spheri-
cal nuclei throughout the Periodic Table. The
original data were analyzed in terms of various
functional forms for the charge distribution to
extract values" of the root-mean-square charge
radius (x')'~'. We convert this root-mean-square
radius into an equivalent-sharp-surface radius R
by use of Fig. 2 of Ref. 38, under the assumption
that the value"'" of the constant b that charac-
terizes the diffuseness of the surface is 0.99 fm.

However, we require the radius of the matter
distribution as well as that of the charge distribu-
tion. Unfortunately, there is no model-indepen-
dent way to infer a matter radius from a charge
radius. Figure 1 also shows Myers' Thomas-

f.O
0 IOO

Mass Number A

200

FIG. 1. Dependence upon mass number A of the equiv-
alent sharp radius R divid. ed by A' 3. The experimental
points give values of the charge radius for spherical nu-
clei, obtained from analyses of elastic-electron-scat-
tering data (Bef. 37). These are to be compared with
the lower d.ashed curve, which gives the result of a
Thomas-Fermi calculation for the charge distribution
(beefs. 11 and 12). The upper dashed curve and the solid
curve give the corresponding calculated results for the
neutron distribution and the total matter distribution,
respectively„The dot-dashed curve indicates the value
of 1.18 fm for the fundamental nuclear-radius constant
~0 that was used in these calculations.

Fermi calculation of the radii of the charge dis-
tribution, neutron distribution, and total matter
distribution, for a value of the nuclear-radius
constant x, = 1.18 fm, which had been adjusted to
reproduce an earlier collection of charge radii. "'"
This particular Thomas-Fermi calculation yields
a fairly large neutron skin, which thus far is
neither confirmed nor ruled out by experimental
data. As we go from heavy nuclei to light nuclei,
the calculated neutron skin decreases because the
neutron excess becomes smaller. Also, the cal-
culated values of R/A. '~' for the charge distribu-
tion, neutron distribution, and total matter dis-
tribution decrease because for light nuclei the
surface tension is more effective in squeezing
the nucleus and the Coulomb energy is less ef-
fective in dilating it than for heavy nuclei. For
example, the calculated value of 8/A' ' for the
charge distribution is about 1.14 fm for heavy
nuclei with A. = 250, about 1.12 fm for medium-
weight nuclei with A = 100, and about 1.10 fm for
light nuclei with A. = 20. Similarly, the calculated
value of R/2' ' for the matter distribution is about
1.18 fm for heavy nuclei, about 1.15 fm for
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medium-weight nuclei, and about 1.11 fm for light
nuclei.

In a macroscopic theory of large-scale shape
changes such as occur in fission and heavy-ion
fusion, where the mass number A is discontinuous,
it is extremely difficult to take into account the
small changes in charge density and nuclear
matter density that are implied by Fig. 1. If a
single set of constants is required in a unified
theory, we must select a value of jt/A' ' that is
independent of A. In principle, it would be possible
to select one value of 8/A'~' for the charge dis-
tribution and a slightly larger value for the matter
distribution. The ultimate decision depends upon
the relative weighting that is attached to the var-
ious types of experimental data that one plans to
describe in terms of a single set of constants.

In our present considerations, we weight most
heavily the use of our potential in calculating the
most probable fission-fragment kinetic energy
for the fission of a heavy nucleus, since conclus-
ions concerning the mechanism of nuclear dissipa-
tion depend critically upon a correct calculation
of this quantity. The calculated fission-fragment
kinetic energy depends primarily upon the distance
between the charge centers of the two fission frag-
ments at the scission point. However, for charge
distributions surrounded by a neutron skin, this
distance is deteremined primarily by the radius
of the matter distribution rather than that of the
charge distribution. Although Fig. 1 would sug-
gest that the density of the fissioning nucleus
might be slightly larger at the scission point than
at the ground state, other effects such as thermal
expansion and charge polarization would increase
the distance between charge centers Bt the scis-
sion point. For our present purposes, we there-
fore choose the value r, =A/A'~'= 1.18 fm that
corresponds to the matter distribution of heavy
nuclei.

For medium-weight and light nuclei, radii cal-
culated with x, = 1.18 fm are slightly larger than
the experimental equivalent-sharp-surface radii,
The range a that we determine from heavy-ion
elastic scattering is therefore slightly smaller
than it would have been had we instead used rea-
listic radii. As will be seen in Sec. IV, for de-
scribing heavy-ion elastic scattering the values
of r, and a are highly correlated. An inadequacy
in our present choice of r, is therefore partially
compensated by use of a slightly smaller range a.
In future studies of heavy-ion elastic scattering,
it might be preferable to use experimental equiva-
lent-sharp-surface radii for the target and pro-
jectile, with the range a readjusted to a slightly
larger value.

It is generally believed that heavy-ion elastic-

scattering data determine the real part of the
optical potential in the vicinity of the strong-ab-
sorption radius. " This quantity is defined, for a
given bombarding energy, as the distance of
closest approach of a hypothetical Coulomb tra-
jectory whose orbital angular momentum is such
that the transmission probability for the optical
potential barrier is 2. For a given potential, the
strong-absorption radius decreases with increas-
ing bombarding energy.

To obtain experimental values for the real part
of the optical potential at the strong-absorption
radius, we use an optical-model analysis of elas-
tic-scattering angular distributions for various
systems at various bombarding energies. 4' 4'

The form factor for the real part of the optical
potential used in this analysis is of the double-
folding type, obtained by integrating the M31
short- range potential"

-4r e-2 ~ 5?

e)e) = (- M2e)e) 7999 —2134 MeV
4~ 2.5~

over shell-model- generated density distributions
for the target and projectile. Iln Eq. (28) it is
understood that distances are measured in units
of fm. ] The overall strength of the real potential,
as well as in most cases the three parameters of
a Woods-Saxon imaginary potential, were varied
to optimally reproduce elastic-scattering data.

From this analysis, the value of the nuclear po-
tential V„at the strong-absorption radius is ob-
tained for a variety of systems and energies. In
order to eliminate the trivial dependence of the
potential on the size of the nuclei, we express V„
in units of the reduction factor V„d defined by Eq.
(22). Similarly, we convert the strong-absorption
radius into the distance s between the inner
equivalent sharp surfaces of the two nuclei by use
of Eq. (18). When V„/V„,„ is plotted versus s/a,
then the experimental results for the various nu-
clear systems can be compared with the theoreti-
cal curve given by Eq. (21). Once r, = 1.18 fm has
been specified, such a comparison can be used to
determine the value of the range a = Oe65 fm to an
accuracy of about 3%, as illustrated on a semi-
logarithmic scale in Fig. 2. (The value of a de-
termined in this way also depends weakly upon
a, and ~„whose values are determined later from
comparisons with fission-barrier heights to be
a, =21.7 MeV and lc, =3.0.)

The significantly shorter range of 0.65 fm in
the present Yukawa-plus-exponential model com-
pared to 1.4 fm in the original single- Yukawa
model" arises from a combination of three ef-
fects: First, the functional form (17) of the pres-
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ent potential is different from that of the original
potential. Second, the value of the nuclear-radius
constant ~, is now 1.18 fm, which is larger than
the value of 1.16 fm that was used in the single-
Yukawa potential. Third, we now use elastic-
scattering data in the determination of the range,
whereas in the original model only interaction-
barrier heights and not their positions were used.

The analysis thus far has been based on the as-
sumption that elastic scattering determines the
potential near the strong-absorption radius within
the context of an optical model. In order to check
the sensitivity of the range to this specific in-
terpretation of the optical model, we also include
in Fig. 2 some data derived from interaction-
barrier heights determined by ingoing-wave-

FIG. 2. Nuclear potential as a function of the distance
between the inner equivalent sharp surfaces of two
spherical nuclei. The potentials are plotted in units of
the reduction factor V«d defined by Eq. (22), and the dis-
tance is measured in units of the range a of the folding
function. The solid line is calculated from Eq. (21).
The solid circles are obtained from optical-model anal-
yses of heavy-ion angular distributions, with values for
the same system at different bombarding energies con-
nected by a thin solid line (Refs. 40-42). The open
points are obtained from ingoing-wave-boundary-condi-
tion analyses of elastic-scattering excitation functions,
with the open squares taken from R.ef. 43 and the open
circles taken from Ref. 44.

Qs 29 637QC ' (27)

This relationship is shown by the solid line in
Fig. 3, with the solid circle indicating the par-
ticular values adopted here.

boundary-condition analyses, without the use of an
imaginary potential. "" In these cases the ex-
perimental input data are elastic-scattering exci-
tation functions in energy ranges close to the
maxima in the interaction barriers. It is seen
that these data follow the same trend as the opti-
cal-model data.

In appreciating the significance of variations in
the experimental data in a semilogarithmic plot
such as Fig. 2, we should note that the two upper
points for "0+"Si, for which the values of V„
are -0.39 and -0.45 MeV, arise from the use of
a previously determined imaginary potential,
which leads to moderately large renormalizations
of the M3 Y double-folding potential. "" Further-
more, the extracted values of the strong-absorp-
tion radii for these two points are larger than
those for the other four points, although the lab-
oratory energies of 141.5 and 215.2 MeV for these
two points are higher than those for the other
four points. Therefore, the propagation of ex-
perimental errors in the optical-model analysis
becomes a very important question. Unfortunate-
ly, an error analysis analogous to that used in
connection with the determination of charge dis-
tributions from electron scattering"'~' has never
been made in a heavy-ion optical-model analy-
sis.

Once r, and a have been specified, the surface-
energy constant a, and the surface-asymmetry
constant a, are determined from comparisons
with macroscopic contributions to fission-barrier
heights for nuclei ranging from '"Cm down to
'"Ta. The methods used to correct the experi-
mental fission-barrier heights" "for single-
particle effects"'" "are discussed in Sec. V.
From this comparison the value of z, is deter-
mined to be 3.0 to an accuracy of about 17%. Once
~,' has been specified, the value of a, is deter-
mined from fission-barrier heights to be 21.7
MeV to an accuracy of about 0.5%.

Of course, for fixed values of a and ~„ the val-
ues of a, and x, [or alternatively the Coulomb-
energy constant ac defined by Eq. (15)] that are
required to reproduce experimental fission-bar-
rier heights are highly correlated. Because a
calculated macroscopic fission-barrier height
depends primarily upon the value of the fissility
parameter x defined by Eq. (13), experimental
fission-barrier heights are reproduced almost
equally well as long as
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once a and z, have been specified. By keeping
fixed the sum of the contributions from the sur-
face, Coulomb, and Wigner energies to the en-
ergy release in the symmetric fission of '4 Pu,
we obtain the simple result

a, = 61.006ac —0.025 12K —21.946 MeV. (26)
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FIG. 3. Approximate relationships between the sur-
face-energy constant a, and the Coulomb-energy con-
stant a& (or alternatively the nuclear-radius constant
~0), for fixed values of the range a and the surface-
asymmetry constant ~, . The solid curve gives the rela-
tionship (27) determined from fission-barrier heights,
with the solid circle indicating the values adopted here,
corresponding to F0=1,18 fm. The dashed curves give
the relationship (28) determined from ground-state
masses for the two indicated values of the signer coef-
ficient W. The open circle indicates the values corre-
sponding to &0 ——1.18 fm and W= 30 MeV.

If, in addition toro and a, the coefficient S" of
the Wigner term in the mass formula (25) were
known, then the values of a, and a, could also be
determined in principle from experimental ground-
state masses. As shown in Sec. VI, the resulting
values of a, and ~, unfortunately depend somewhat
upon the method that is used to correct the ground-
state masses for single-particle effects and upon
the sample of nuclei considered. When these cor-
rections are calculated by use of the folded- Yu-
kawa-II single-particle potential" for 165 even
nuclei, and when so=1.18 fm, a=0.65 fm, ~
= 30 MeV, and I&, = 3.0, the resulting value of a, .

determined from ground-state masses is 21.969
MeV. This value is shown by the open circle in
Flg. 3.

The energy release in fission, which involves
the difference between the ground-state masses
of a heavy nucleus and two medium-weight nuclei,
provides a relationship between a„a~, and VV,

The dashed lines in Fig. 3 give this result for two
values of ~.

It is seen that, within this approximate treat-
ment, a mass formula without a Wigner term
requires a radius parameter of Yp 1 235 fm
describe simultaneously ground-state masses and
fission-barrier heights. That this radius pa-
rameter is inconsistent with elastic-electron-
scattering data is a well-known anomaly in the
liquid-drop model. ' The introduction of a W'igner
term proportional to

~
f ~, together with the im-

portant assumption that it is shape independent
along the fission path between the ground state
and the saddle point, permits the use of a smaller
radius parameter. For example, with W = 30 MeV
ground-state masses and fission-barrier heights
would be reproduced simultaneously for xp 1 194
fm, whereas with ~ =40.7 MeV they would be re-
produced simultaneously for xp: 1 18 fm.

We have not yet explored the effect that a larger
value of H' would have on the masses of light nu-
clei near the .V=Z line. Furthermore, there are
other possible explanations of the nuclear-radius
anomaly besides a signer term proportional to
i I I. For example, the nuclear mass formula
could require a shape-independent A' term of a
different physical origin, such as the Gaussian-
curvature energy. ' Although our Yukawa-plus-
exponential model contains a Gaussian-curvature
energy, whether it is realistic in magnitude and
even sign is not known. Alternatively, it could
require an A -dependent zero-point energy, which
would be larger for light nuclei than for heavy
nuclei. For these reasons, at this stage of our
work we retain the value of 30 MeV determined
by Myers"'" and accept a slight reduction in the
quality with which we are abletoreproduce ground-
state masses.

Once the values of all the other constants have
been specified, the volume-energy constant a„
and the volume-asymmetry constant ~„are de-
termined from comparisons with experimental
ground-state masses. As discussed in Sec. VI,
these values depend slightly on the method that
is used to correct for single-particle effects and
upon the sample of nuclei considered. When
single-particle corrections are calculated by
means of Strutinsky's method from the folded-
Yukawa-II si.ngle-particle potential, "a least-
squares adjustment to the ground-state masses
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x, = 1.18 fm,

a = 0.65 fm,

g, =21.7 MeV,

K, =3.0,
a„=16.012 MeV,

(29a)

(29b)

(29c)

(29d)

(29e)

K„=2.04. (29f)

of 165 even nuclei in the deformed actinide region
and four regions of spherical nuclei throughout
the Periodic Table yields the values a„=16.012
MeV and a„=2.04.

The resulting complete list of values for the
six constants of our Yukawa-plus-exponential
model is therefore

contribution to the real part of the optical poten-
tial. This effect, together with the saturating
properties of the interaction V, is supposed to be
properly accounted for in our macroscopic model.
We therefore expect that the static contribution
of the second term of Eq. (30) to the real part of
the optical potential is already included in our
interaction potential (1V).

In order to compare our Yukawa-plus-exponen-
tial potential with the MSY double-folding poten-
tial, we calculate the double-folding integral for
the M3Y potential (26) with Woods-Saxon density
distributions rather than shell-model-generated
density distributions. "'"" For the surface-
diffuseness parameter of the Woods-Saxon density
distribution we use the value 0.50 fm, and for the
half-density radius C we use the result"

IV. HEAVY-ION ELASTIC SCATTERING AND FUSION

b2
C =R —==--

where

(31)

We now make more detailed comparisons of the
predictions of our Yukawa-plus-exponential model
with data from heavy-ion elastic scattering and
fusion, which probe the nuclear potential at dis-
tances ranging from well beyond the contact point
to slightly inside the contact point. At this time
we do not consider inelastic scattering and nu-
cleon-transfer reactions, but leave these appli-
cations of our model for the future.

The use of our Yukawa-plus-exponentia'l po-
tential as the real part of an optical potential re-
quires some comment. We write the optical
potential within the framework of Feshbach's
theory as"

U
p o 0

'V+ VQ, V 0 0 30
1

1.28A —0.76 + z/3 fm (32)

and

b = 1.0 fm. (33)

The folding integrals are evaluated conveniently
in Fourier space, using the Fourier transform
of the Woods-Saxon function given in Ref. 52. The
resulting potential is compared in Figs. 4-6 with
our Yukawa-plus-exponential potential for the
light system 'He+ "C, the intermediate system

where V and II are the potential and Hamiltonian
for the entire system, e is the averaging energy
interval in the optica. l model, and Q = 1-P, with
P the projection operator on the elastic channel.
The ground-state wave functions $0 and P, of the
target and projectile are assumed to depend only
on their internal coordinates, over which integra-
tion is implied by the brackets.

Satchler points out that if V arises from a rea-
listic two-nucleon interaction (as in the M31'
model), only the first term (g,p, l Vlf,g, ) is to
be identified with a double-folding model. " The
second term in Eq. (30), reflecting the influence
of all nonelastic channels on the elastic one, is
in general complex, nonlocal, and energy depen-
dent. Because of the Pauli exclusion principle,
once the target and projectile overlap in ordinary
space, the static polarization of their distribution
functions in momentum space makes an important

O
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6 7 8
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FIG. 4. Comparison of four nuclear potentials for the
4He+ ' C system, The Yukawa-plus-exponential potential
is calculated by use of Eq. (17), which is valid only out-
side the contact point between the equivalent sharp sur-
faces, as indicated by the short vertical line. The prox-
imity potential is obtained from Ref. 32, the double-
folding potential is obtained from Ref. 26, and the
Woods-Saxon potential is obtained from Ref. 53.
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FIG. 5. Comparison of four nuclear potentials for the
60+ Si system. The proximity potential is obtained

from Ref. 32, the double-folding potential is obtained
from Ref. 26, and the Woods-Saxon potential is obtained
from Hev. 54.

"0+"Si, and the heavy system "Kr+ "'Pb, . re-
spectively. For all three systems, the double-
folding potential is significantly deeper than the
Yukawa-plus-exponential potential near the con-
tact point, but the two potentials are similar to
each other near the strong-absorption radii.

%e also show in Figs. 4-6 the cubic-exponen-
tial approximation to the proximity potential of
Swiatecki and co-workers, which is given by"

where in this case
lie tg

c,' = 17.9439 1 —1.7826 —— -'- ' -'- MeV,A, +A,

ra= 1.2249 fm,

j ~ 1.2511.

The quantities C„C„and b are obtained from
Eqs. (31)-(33). For the heavy system, the prox-
imity potential is very similar to our Yukawa-
plus-exponential potential at all distances beyond
the contact point. However, for the light and in-
termediate systems, the proximity potential is
much weaker than our potential.

Part of the difference between the proximity
potential and our Yukawa-plus-exponential po-
tential arises because the equivalent-sharp-sur-
face nuclear radii calculated by use of Eq. (32)
in the former case are smaller than those calcu-

--,'(g —2.54)' —0.0852(g —2.54)', g &1.2511

c(&)= —3.437 exp(- &/0. 75),

I i l

l2 l3 l5 l6

Distance between Moss Centers r (fm)

FIG. 6. Comparison of four nuclear potentials for the
4Kr+ o Pb system. The proximity potential is obtained

fz om Ref. 32, the double-folding potential is obtained
from Ref„26, and the Woods-Saxon potential is obtained
from Ref. 55.

lated with a nuclear-radius constant so= 1.18 fm
in the latter case. In particular, the sum of the
equivalent-sharp-surface target and projectile
radii is smaller in the proximity potential com-
pared to the Yukawa-plus-exponential potential
by 0.28 fm for the 'He+ "C system, 0.38 fm for
the "0+"Si system, and 0.17 fm for the '4Kr
+'"Pb system. Most of the rema, ining difference
between these two potentials arises because near
a common contact point, the proximity potential
is deeper and has a shorter ra, nge compared to
the Yukawa-plus-exponential potential.

For all three systems, the proximity potential
is significantly weaker than the double-foLding
potential near and somewhat beyond the contact
point. even though the equivalent-sharp-surface
nuclear radii are in both cases calculated by use
of the same Eq. (32).

Figure 4 also shows for 'He+ "C the real part of a
Woods-Saxon optical potential determined53 from
an elastic-scattering angular distribution at a
laboratory energy of 1.39 MeV. The similarity of
this potential to our Yukawa-plus-exponential po-
tential indicates that the lattex can be used also
for very light systems, without readjustments of
the parameters. In Fig. 5 we also show for "0
+ "Si the real part of the E3.8 potential, "' which is
determined from a simultaneous adjustment to
the forward-angle elastic-scattering angular dis-
tributions at l'aboratory energies of 37.7 and
215.2 MeV. Although this potential is rather shal-
low near the contact point, it agrees fairly well
with the Vukawa-plus-exponential potential over a
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wide range of distances near the strong-absorp-
tion radii.

The Woods-Saxon potential shown in Fig. 6 for
~Kr+ 'Pb is determined" from the unresolved
'luasielastic angular distribution at a laboratory
energy of 718 MeV. This potential intersects the
other three potentials at a distance of approxi-
mately 13.2 fm, but lies well below the other po-
tentials at larger distances.

The solid circles in Fig. 7 compare with our
Yukawa-plus-exponential potential the experi-
mental data analyzed by Christensen and Win-
ther. "- Their analyses are based on a critical
distance that is slightly smaller than the distance
of closest approach for a trajectory leading to the
rainbow angle. Because of the very different
quality of the experimental data used in Ref. 56,
the scattering of the solid circles in Fig. 7 is
easily understandable. For example, the three
solid circles lying well above the curve between
sla =1.9 and 2.5 correspond to very heavy sys-
tems, where the quasielastic scattering has not
been resolved from the elastic scattering. The
remaining solid points in Fig. 7 are derived from
conventional optical-model analyses"' "'"'"and
from an ingoing-wave-boundary-condition analy-

sis"; the distances are taken to be the intersec-
tion points of various potentials that describe the
elastic scattering equally mell.

Figure 7 also shows values of the nuclear po-
tential at the maximum in the interaction barrier,
as derived from fusion excitation functions.
These measurements probe the nuclear potential
at distances closer to the contact point than do
elastic-scattering measurements. The open cir-
cles are taken from a compilation by Birkelund
and Huizenga, "which includes primarily mea-
surements made by Scobel et al." The open
squares are taken from the work of David et aL."
The mell-known uncertainty in deriving the bar-
rier position from fusion excitation functions in
a model-independent mp, y gives rise to slanting
error bars, "as illustrated in the figure for one
point. Despite the absence of error analyses for
the solid points derived from elastic scattering,
substantial errors are associated mith these
points also.

Comparisons such as those in Fig. 7 may be
regarded as attempts to extract a model-inde-
pendent heavy-ion potential from elastic scatter-
ing and fusion. A more stringent test of our po-
tential is to compaxe predicted angular distribu-
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FIG. 7. Nuclear potential as a function of the distance between the inner equivalent sharp surfaces of two spherical
nuclei. The potentials are plotted in units of the reduction factor V„d defined by Eq. {22), and the distance is measured
in units of the range a of the folding function. The solid line is calculated from Eq. (21). The open points are obtained
from heavy-ion fusion data, with typical uncertainties indicated by the error bar. The solid points are obtained from
the values of heavy-ion elastic-scattering potentials at the radii where they are determined experimentally. The points
are taken from the following: 0 from Befs. 59 and 60, 0 from Ref. 61, ~ from Ref. 56, 8 from Bef. 57, 4 from Ref.
26, + from Bef. 54, + from Bef. 43, and from Bef. 58.
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tions and fusion excitation functions directly with
experimental data. This is done in Fig. 8 for the
elastic scattering of "0+"Si at laboratory ener-
gies of 37.7, 81.0, and 215.2 MeV."'" (For the
first case, we correct the incident energy of 38.0
MeV by 0.3 MeV to account for target energy loss,
as suggested in Ref. 54. For the remaining two
cases, corrections for target energy loss were
made by the original investigators. )

For the real part of the optical potential we
use Eq. (17) for distances outside the contact
point defined by ~=A». For distances inside the
contact point we represent the potential by means
of the parabola

r r 2

V„= —Vp+B + C
12 12

with B and C determined by requiring that the
value of the potential and its first derivative be
continuous at the contact point. This yields

I

B—2V g - »+3
a a

C= —V +D "+2lE—
Q j Q

where D and E are defined by Eqs. (19) and (20).
The depth parameter V, depends upon the

specific physical process that occurs inside the
contact point. If the nuclei simply overlap with
an increase in density in the overlap region, then
V, could be determined within the frozen-density
approximation" by specifying the nuclear com-
pressibility. If the nuclei instead change their
shape so that the nuclear density remains roughly
constant, then V, could be determined within the
adiabatic approximation by specifying the se-
quence of shapes leading from the contact point to
the compound system. ' In the absence of other
information to indicate the curvature of the po-
tential inside the contact point, we may deter-
mine a representative value of V, by setting C
= 0, corresponding to a linear extrapolation. For
"9+"Si this yields Vp 84 8 MeV, which we use
to calculate the results shown in Fig. 8 and Table
I.

In calculating the Coulomb potential we take
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FlG. S. Ratio of the e1.astic-scattering angular distribution to the Rutherford value for ' 9+ Si at three laboratory
energies. The experimental points are taken from Refs. 54 and 62. The solid curves are calculated with our standard
Yukawa-plus-exponential potential, and the dashed curves are calculated with the 818 potential of Ref. 54.
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TABLE I. Parameters and X2/N of data points for the
elastic scattering of 0+ Si at three laboratory ener-
gies. With the real potential given by our standard
Yukawa-plus-exponential potential, the parameters Wo,

r;, and a; in a Woods-Saxon imaginary potential are
varied to minimize X /N. The sixth column gives the
corresponding values of X /N for the standard E18
Woods-Saxon real and imaginary potentials of Ref. 54.
The seventh column gives the values of X2/N that are ob-
tained by varying five parameters in Woods-Saxon real
and imaginary potentials, with the depth of the real po-
tential held fixed at 10 MeV.

E)~ W()

(Me&) (Me V) (fm)
a;

(fm) X /N X~j8 /N X5 y~ /N

37.7 207.28 1.060
81.0 32.95 1.157

215.2 18.55 1.238

0.492
0.680
0.717

1.5
2.5
5.3

1.2
9.5
4.9

1.2
2.4
4.6

r~ =1.0 fm .
For the imaginary part of the optical potential,

we use the Woods-Saxon potential

r)=-- tVO

1+exp[(r -R, )/a, ] '

where

The three parameters 8'„~, , and a, are varied
by use of the optical-model search program
GENOA"' "to optimally reproduce the experi-
mental angular distributions at each of the three
laboratory energies. The resulting values of
these parameters are given in Table I, along
with the corresponding values of

where o,'"~ and v", " are the experimental and cal-
culated values of the cross section at the ith ex-
perimental point, L, is the corresponding exper-
imental error, and N is the number of experi-
mental points.

We show for comparison in Table I the values
of X'/N corresponding to the energy-independent

into account the spatially extended diffuse charge
distributions of the two ions in the same way as
in Ref. 54. This approximate method consists of
representing the Coulomb potential by the inter-
action of a point charge with a uniformly charged
sphere of radius

Rc = rc(A '/'+A '~
)

with

E18 potential of Ref. 54, as well as separate
five-parameter adjustments in Woods-Saxon real
and imaginary potentials, with a real well depth
of 10 MeV. The results of the E18 potential,
which was adjusted simultaneously to the data at
37.7 and 215.2 MeV, are almost as good as the
separate five-parameter results at these two
energies, but are worse at the intermediate en-
ergy. The results of our standard Yukawa-plus-
exponential real potential, with the three par-
ameters of the imaginary potential varied, are
slightly poorer at all three energies than the sep-
arate five-parameter results. The angular dis-
tributions calculated with the E18 potential are
compared with those calculated with the Yukawa-
plus-exponential potential and with the experi-
mental data in Fig. 8.

Because the values r, =1.18 fm and a =0.65 fm
are determined from considerations other than the
elastic scattering of "0+"Si, the values of X'/N
will decrease somewhat relative to those in Table
I if these quantities are varied in addition to the
three parameters of the imaginary Woods-Saxon
potential. For the highest energy of 215.2 MeV,
when r, is held fixed at 1.18 fm and a is varied,
X'/N decreases from its original value of 5.3 at
a=0.65 fm to 5.1 at a=0.64 fm. When' and r,
are both varied, g'/N decreases to 4.8 at r,
=1.12 fm and a=0.73 fm. For the two lowest en-
ergies of 37.7 and 81.0 MeV, the reduction in
X'/N is much less when r, and a are varied.

The value of y'/N can also be reduced somewhat
by varying the depth parameter V, that deter-
mines the potential inside the contact point, al-
though the dependence of X'/N on V, is very com-
plicated. For the highest energy of 215.2 MeV,
when ~, =1.18 fm and a=0.65 fm, there are at
least three local minima in y'/N corresponding to
different values of V, and the three parameters
of the imaginary Woods-Saxon potential. These
are y'/N = 4.2 at V, = 415 MeV, X'/N = 4.6 at, V,
= 266 MeV, and X'/N = 5.1 at V, = 0, where the
minimum is very flat. This demonstrates that for
the highest energy of 215.2 MeV, elastic scatter-
ing is affected somewhat by the potential inside the
contact point, since the potential outside the con-
tact point is strictly independent of V,. For the
two lowest energies of 37.7 and 81.0 MeV, the
calculated results are nearly independent of V,.

For the highest energy of 215.2 MeV, we can
reduce the value of X'/N even further by varying
all parameters at our disposal, including a, and

In fact, there are at least two local minima
with X'/N = 3.V and 3.8, corresponding to real
potentials that never cross and that are roughly
15'Pp different from each other at all distances
qutside the contact point. Given this situation, it
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is clear that high-energy heavy-ion elastic scat-
tering does not uniquely determine the real poten-
tial at the strong-absorption radius.

Although our Yukawa-plus-exponential potential
satisfactorily reproduces the measured elastic-
scattering angular distributions for "0+"Sl at
forward angles, it does not yield the pronounced
backward-angle oscillations observed in this sys-
tem a.t a laboratory energy of 55 MeV."

We have also applied our Yukawa-plus-exponen-
tial potential to the elastic scattering of other
systems. For "C+"Si, it reproduces the mea-
sured angular distributions"' "at laboratory en-
ergies of 24.0 and 186.4 MeV in a manner similar
to that for ' 0+ Si. The results for ' C+ Si are
also relatively insensitive to the value of V„
which determines the potential inside the contact
point.

However, for 'Li+ "Si at a laboratory energy
of 135.1 MeV, where. rainbow scattering is ob-
served, 2* ' the potential inside the contact point
is very important. When our standard Yukawa-
plus-exponential potential is.used outside the con-
tact point, X'/N has a sharp minimum of 3.5 at
V, = 200 MeV, which is much larger thin the value
of 46 Me V obtained by setting C = 0 in a linear ex-
trapolation. The corresponding value of y'/N
for the R22 Woods-Saxon potential of Ref. 65 is
2.6. As observed previously, "high-energy light-
ion scattering is very different from heavy-ion
scattering.

Excitation functions for compound-nucleus
formation at energies close to the maximum in the
interaction barrier are usually analyzed in terms
of the result

o, (E)=—„, g (2f+1)p, (E),
l=o

where E is the center-of-mass energy, 0 is the
wave number at infinity, and P, (E) is the trans-
mission coefficient for the l th partial wave,
which is usually approximated by the Hill-Wheeler
parabolic -barrier result"

Z, (E) = 1
1+exp[2n'(V, -E)/(Ru), )]

+ 27AI
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where r, is the position of the maximum in
V(l, r) .As discussed in Ref. 67, the Hill-Wheeler
approximation for the one-dimensional transmis-
sion coefficients is sufficiently accurate provided .
that the dependences of V, and ~, on angular mo-
mentum are taken into account properly.

With V„(r) given by Eq. (17), we evaluate Eq.
(34) fore, (E) forthree systems for whichthere are
accurate measurements of the excitation functions for
compound-nucleus formation. "'""As shown in
Fig. 9, the calculated cross sections lie slightly below
the experimental ones, with the discrepancy increas-
ing as we go to heavier systems. This could arise be-
cause the barriers calculated with the Yukawa-
plus-exponential potential are slightly too high,
especially for heavier systems. Alternatively,
a one-dimensional treatment in terms of the
frozen-, density approximation" could be inade-

The quantity V, is the height of the effective po-
tential for the 3th partial wave,

( ) ( )
Z, Z,e' f(l+1)h'

py'

where p. is the reduced mass. The curvature
parameter ~, is given by

s'V(t, r)
BJ

IO
20

I I I i II
40 60 80

Center-of-Mass Energy Ec~ (Me&)

IOO '

FIG. 9. Comparison of calculated and experimental
compound-riucleus cross sections for three nuclear sys-
tems. The experimental points are taken from the fol-
lowing: + from Refs. 68 and 69, O from Refs. 60 and 68,
and 0 from Refs. 68 and 70. The solid curves are calcu-
lated with our standard Yukawa-plus-exponential poten-
tial, and the dashed curves are calculated with the prox-
imity potential of Ref. 32.
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quate. Either the formation of a neck through the
dynamical deformation of the target and project-
ile,"or the presence of zero-point vibrations
in the target and projectile, "could increase the
penetrability relative to that calculated for a one-
dimensional barrier.

The discrepancies shown in Fig. 9 would be
even larger if there is a dissipation of energy in
the entrance channel. However, if this is ac-
companied by the transfer of orbital angular mo-
mentum into the spin of the two nuclei, then the
calculated cross section will be affected in the
opposite direction. " The discrepancy would also
be larger if highly inelastic processes compete
with the formation of compound nuclei.

We also show by the dashed lines in Fig. 9 the
results calculated with the proximity potential. "
The larger discrepancies for this potential arise
because the barriers calculated with the proxim-
ity potential are higher than those calculated with
the Yukawa-plus-exponential potential.

V. FISSION

We turn now to nuclear fission, which probes
the nuclear potential energy of deformation for
shapes that are more compact than those in
heavy-ion reactions. In fission, the macroscopic
potential energy is often calculated by means of
the liquid-drop model' or the droplet model, " "
which neglect the finite range of the nuclear
force and the diffuse nuclear surface. As seen
with the original single-Yukawa model, ""
these effects strongly influence the variation
throughout the Periodic Table of the fission sad-
dle-point energy and shape. In this section we
calculate these quantities with our new Yukawa-
plus-exponential model and compare some of the
results with those of the three previous mod-
els' "'" "and with experimental data.

For nuclei along Green's approximation to the
line of P stability, "we compare in Fig. 10 fis-
sion-barrier heights calculated with these four
different macroscopic models. The barrier.
heights in the droplet model are calculated for
y-family shapes, "whereas those in the other
three models are calculated by varying all three
symmetric deformation coordinates in the three-
quadratie-surface shape parametrization. "
Standard methods are used for calculating the
Coulomb energy. "

The two models that include the finite range of
the nuclear force and the diffuse nuclear surface
yield results that are very similar to each other,
although for all nuclei the barriers calculated With

the new Yukawa-plus-exponential model are
slightly higher than those calculated with the orig-
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FIG. 10. Comparison of macroscopic fission-barrier
heights calculated for nuclei along the line of p stability
with four different models. The constants used in the
liquid-drop model, droplet model, and single-Yukawa
model are the original values given in Refs. 9, 11, 12,
and 19. The solid circles indicate for three of the mod-
els the Businaro-Gallone point, where stability of the
saddle-point shape against mass-asymmetric distortions
is lost. The arrows along the abscissa indicate for each
model the point at which the system loses stability
against fission.

inal single-Yukawa model. The results of these
two models are different from those of either the
liquid-drop model or the droplet model, except
for nuclei with mass number A= 200, where the
barrier heights calculated with the four models
are approximately equal. For heavier nuclei, the
droplet model yields the lowest barrier and the
liquid-drop model yields the highest, with the other
two models yielding results that are intermediate.
For lighte::.. nuclei, barriers calculated in the drop-
let model are highest and those calculated in the
liquid-drop model are second highest, with those
calculated in the other two models lying somewhat
lower.

The solid points in Fig. 10 indicate for three of
the models the critical Businaro-Gallone point, at
which stability of the saddle-point shape against
mass-asymmetric deformations is lost." This
critical point is shifted to heavier nuclei in the
Yukawa-plus-exponeritial model and single-Yukawa
model, compared to the liquid-drop model.

To illustrate the effect of the finite range of the
nuclear force and the diffuse nuclear surface on
saddle-point shapes, we compare in Fig. 11 for
nuclei along the line of P stability'4 the maximum
and minimum radii of these shapes calculated in
the Yukawa-plus-exponential model with those cal-
culated in the liquid-drop model. In both models,
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sults calculated in the liquid-drop model with the con-
stants of Ref. 9. The solid circles indicate for each
model the Businaro-Gallone point.

FIG. 12. Comparison of macroscopic fission-barrier
heights calculated for nuclei along the line of p stability
with three different models. We use a common value of

=3.0 for the surface-asymmetry constant and a com-
mon value of &0= 1.18 fm for the nuclear-radius constant,
but retain the original values of the range a that were
used for each model. The surface-energy constant a~
is adjusted in the liquid-drop model and the single-Yuk-
awa model to yield the same fission-barrier height for
2~6U as in the Yukawa-plus-exponential model; this com-
mon point is indicated by the open circle. For each
model the solid circles indicate the Businaro-Gallone
point, and the arrows along the abscissa indicate the
point at which the system loses stability against fission.

the saddle-point shapes undergo a qualitative
transition" from cylinderlike shapes for A & 200 to
dumbbell-like shapes for A. & 200. However, this
transition is smoother in the Yukawa-plus-expo-
nential model than in the liquid-drop model. For
A& 60 the dumbbell-like shapes are more com-
pact in the Yukawa-plus-exponential model than
in the liquid-drop model, whereas for A & 60 the
converse is true.

The results shown in Figs. 10 and 11 are inQu-
enced both by intrinsic differences in the models
themselves and by differences in the values of the
constants that are used. For example, the sur-
face-asymmetry constant ~, has the value 1.7826
in the liquid-drop model, ' 3.0 in the Yukawa-plus-
exponential model, and 4.0 in the single-Yukawa
model. " This means that as we move from heavy
nuclei to light nuclei, where the relative neutron-
proton excess I is smaller, the effective surfaee-
energy constant c, given by Eg. (3) becomes rel-
atively smaller for the liquid-drop model and
larger for the single-Yukawa model, compared to
that for the Yukawa-plus-exponential model. In
addition, the nuclear-radius constant r, has the
value 1.2249 fm in the liquid-drop model, 1.18

fm in the Yukawa-plus-exponential model, and
1.16 fm in the single-Yukawa model.

To remove some of the trivial effects caused
by differences in the values of the constants, we
also calculate fission barriers for common val-
ues of &, =3.0 and &, =1.18 fm, with the surface-
energy constant a, adjusted to yield for '"U the
same barrier height as in the Yukawa-plus-ex-
ponential model. The range a of the folding func-
tion in each ease remains unchanged from its
previous value, which is zero for the liquid-drop
model, 0.65 fm for the Yukawa-plus-exponential
model, and 1.4 fm for the single-Yukawa model.
The resulting values of a, are 19.685 MeV for
the liquid-drop model, 21.7 MeV for the Yukawa-
plus-exponential model, and 23.05 MeV for the
single-Yukawa model. As shown in Fig. 12, the
barriers calculated in this way for light nuclei are
somewhat higher in the liquid-drop model and
somewhat lower in the single-Yukawa model com-
pared to the corresponding results in Fig. 10.

In Fig. 13 we compare calculated and experi-
mental macroscopic fission-barrier heights for
nuclei ranging from '"Cm down to '"Ta. Be-
cause the barrier height is measured in units of
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FIG. 13. Comparison of calculated and experimental
macroscopic fission-barrier heights as a function of the
fissility parameter x defined by Eq. (13). The circles
give the experimental values for actinide nuclei (Refs.
47, 49, and 50), and the triangles and squares give
those for lighter nuclei (Refs. 34, 48, and 49). Typical
uncertainties in the experimental points are indicated by
the error bar.

tributions. The open triangles and squares
represent values for odd nuclei, for which the
calculated ground-state single-particle correc-
tions of Ref. 34 have been interpolated to correct
for sirigle-particle effects at the ground state on-
ly.

The systematic. discrepancies that are evident
for the triangles in Fig. 13 arise primarily from
errors in the calculated ground-state single-par-
ticle corrections for nuclei near the doubly magic
nucleus ' Pb. The agreement between these points
and the curve would be improved significantly if
we were to replace our calculated ground-state
single-particle corrections by experimental val-
ues, as is customarily done in comparisons of

type 9Q 11 y 12' 48

Although the experimental determination of fis-
sion-barrier heights for light nuclei with A = 100
is very difficult, three recent studies indicate
that the barriers for such nuclei are somewhat
lower than those calculated in the liquid-drop
model. ' Taken together with our present cal. -
culations, these results suggest that the finite
range of the nuclear force and the diffuse nuclear
surface are lowering the barriers for light nuclei
relative to those calculated in the liquid-drop model
and droplet model.

VI. GROUND-STATE MASSES AND DEFORMATIONS

E,'" and the fissioning nucleus is specified in terms
of the fissility parameter x [see Eqs. (9) and

(13)], the curve calculated for nuclei along the
line of P stability is also approximately correct
for nuclei off the line of P stability. Similarly,
when plotted in this way, the curve is also ap-
proximately correct for other values of a, and

K, , although it depends fairly sensitively upon
a and ~„since these quantities affect the critical
value of x at which the spherical shape loses
stability against fission [see Eqs. (12) and (16)].

The circles in Fig. 13 give the experimental
macroscopic contributions for actinide nuclei,
derived from the experimental fission-barrier
heights of Ref. 47 and the calculated fission bar-
riers of Ref. 49. The solid circles represent
values obtained from the second saddle point,
and the open circles represent values obtained
from the first saddle point, where the results of
Ref. 50 have been used to correct for the lower-
ing in energy due to axially asymmetric distor-
tions. The remaining points for lighter nuclei
are derived from the experimental fission-bar-
rier heights of Ref. 48. The solid triangles and

squares represent values for even nuclei, for
which the calculated fission barriers of Ref. 49
have been used to extract the macroscopic con-

Our final application of the Yukawa-plus-expo-
nential model is to nuclear ground-state masses
and deformations. At this stage of our work, we
calculate the single-particle correction that is
added to Eq. (25) in two separate ways.

In the first way, we use the folded-Yukawa-II
single-particle potential, whose parameters
were adjusted to reproduce experimental single-
particle levels in deformed actinide nuclei. "
With shell and pairing corrections calculated
from this potential by use of Strutinsky's meth-
od, ' ' and with the deformation dependence of
the macroscopic energy calculated from the
droplet model, " "single-particle corrections
have been calculated previously, for even de-
formed actinide nuclei. " We also use this poten-
tial to calculate the single-particle corrections
for even spherical nuclei in four regions of the
Periodic Table, where the deformation depend-
ence of the energy does not enter. In this way
a total of 165 even nuclei are considered.

In the second way, we calculate single-particle
corrections by use of the method of Myers and
Swiatecki. ' "'" In determining the ground-state
shape and energy, we treat the Coulomb energy
and generalized surface energy to second order in
the quadrupole deformation coordinate, for which
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purpose Eqs. (10) and (12) prove useful. In this
way a total of 1340 nuclei are considered.

For various sets of constants, the root-mean-
square errors in the masses calculated the first
way are shown in TaMe II, and those calculated
the second way are shown in Table III. In each
case the range a of the Yukawa-plus-exponential
potential is set equal to 0.65 fm, and the nuclear-
radius constant ~o and the Wigner constant 5'are
set equal to the indicated values.

With 9 = 30 Me&, which is the value determined
by Myers from an examination of the masses of
light nuclei near the E=Z line„ »' "the first five
rows of each table show the dependence of the re-
sults upon r„when all four of the remaining con-
stants are varied to minimize the root-mean-
square error in the calculated masses. With both
of the single-particle corrections that we have
used, ground-state masses prefer the value of
r, to be somewhat less than 1.16 fm.

With r, =l.l8 fm, the next three rows of each
table show the dependence of the results upon 8;
when all four of the remaining constants are var-
ied in the least-squares minimization. At this
value of +0, ground -state masses prefer the value
of 8'to be somewhat larger than 40 Me&.

With x, = 1.18 fm and W= 30 MeV, the next three

rows of each table show the dependence of the re-
sults upon «, , when the remaining three constants
a, , «„, and a„are varied. At these values of &,
and tV, the ground-state masses of 165 even nuclei
calculated the first way prefer the value of «, to
be about 2.8, whereas the ground-state masses of
1340 nuclei calculated the second way prefer the
value of «, to be about 3.2, which confirms that the
value of «, is determined very poorly.

With x, =1.18 fm, TV=30 MeV, and «, =3.0, the
last four rows of each table show the dependence
of the results upon a, , when the remaining two
constants «„and a, are varied. At these values
of ~„R', and x, , ground-state masses prefer the
value of a, to be slightly larger than the value of
21.7 Me7 determined from fission-barrier
heights. As can be seen from Eq. (28) and Fig.
3, this discrepancy could be removed by increas-
ing somewhat the value of either W or r,.

In Fig. 14 we show the experimental and cal-
culated single-particle corrections, as well as
their differences, corresponding to the set of con-
stants given by Eqs. (29), which is the set listed
in row 13 of Table II for the folded-Yukawa-II
single-particle potential. Some of the discrepan-
cies evident in this figure for the lighter actinide
nuclei arise because the droplet model, which is

TABLE II. Hoot-mean-square error in the calculated
ground-state rn. asses of 165 even nuclei in the actinide
region and four regions of spherical nuclei, for various
sets of constants. Single-particle corrections are cal-
culated from the folded- Yukawa-II single-particle poten-
tial (Ref. 34), with a constant zero-point energy of 0.5
MeV used for each nucleus. The range a of the Yukawa-
plus-exponential potential is set equal to 0.65 fm. Con-
stants to the left of the dashed line are held fixed at the
indicated values, whereas those to the right of the
dashed line are varied in the least-squares minimization.

TABLE III. Boot-mean-square error in the calculated
ground-state masses of 1340 nuclei with Z~ 6, & ~ 6,
and experimental. error &1 MeV, for various sets of
constants. S ingle-particle corrections are calculated
by use of the method of Myers and Swiatecki (Hefs. 9,
11, and 12), without the addition of any zero-point ener-
gy. The range a of the Yukawa-plus-exponential poten-
tial is set equal to 0.65 fm. Constants to the left of the
dashed line are held fixed at the indicated values, where-
as those to the right of the dashed 1 ine are var ied in the
least-squares minimization.

W

{frn) (MeV)
as

(MeV} K

a„Error
(Me V) (MeV)

W

(fm) (MeV) (Me V) (Me V)

Error
(MeV)

1.16
1.17
1.18
1.19
1.20
1.18
1,18
1.18
1.18
1.18
1.18
1.18
1.18
1.18
1.18

30 I 2.52 22.485
30 ' 2.64 22.150
30 ' 2.77 21.823
30 2.90 21.504
30 ~ 3.04 21.193

0 t 216 21993
20 2.57 21.880
40 2.98 21.766
30 2.8 l 21 840
30 3.0 t' 21.969
30 3.2 ) 22.097
30 3 0 21 6

t
30 3.0 21.7
30 3.0 21.8
30 30 219 I

1.96
1.98
2.00
2.02
2.04
1.89
1.96
2.04
2.01
2.06
2.10
2.03
2.04
2.05
2.05

16.216
16.127
16.040
15.955
15.871
16.055
16.045
16.035
16.043
16.066
16.089
15.993
16.012
16.032
16.052

0.96
0.97
1.00
1.04
1.09
1.11
1.01
1.00
1.00
1.02
1.09
1.26
1.15
1.08
1.03

1.16
1.17
1.18
1.19
1.20
1.'1 8
1.18
1.18
1.18
1.18
1.18
1.18
1.18
'1.18
1.18

30 I 3.00 . 23.055
30 ' 312 22 V38
30

)
3.24 22.430

I

30
)

3.36 22, 129
30 ) 3.48 21.836

0 ~ 2.56 22.689
20 i 3.01 22.516
40 ~ 3.4V 22.343
30 2 8 ~ 22 1VV

30 3.0 22.293
30 3.2

I
22.409

30 3 0 21 6
30 3.0 21.7
30 3.0 21.8
30 3 0 21.9

2.08
2.11
2.13
2.15
2.17
2.01
2.09
2.17
2.02
2.07
2.12
2.02
2.03
2.03
2.04

16.323
16.240
16.1 58
16.078
16.000
16.193
16.170
16.146
16.111
16.133
16.1 54
1 5.984
16.006
16.027
16.049

1.71
1.78
1.85
1.93
2.02
2.29
1.99

73
1.91
1.87
1.85
2.29
2.19
2.09
2.01
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FIG. 14. Comparison of experimental and calculated ground-state sing1. e-particle corrections for even deformed
actinide nuclei and for even spherical nuclei in four regions of the Periodic Table. The experimerital correction
is the difference between the measured ground-state mass of a nucleus (Bef. 35) and the value calculated for a Spheri-
cal shape with Eq. (25). The calculated correction is the sum of the shell and pairing corrections calculated with the
folded-Yukawa-II single-particle potential, whose parameters were adjusted to reproduce experimental levels in de-
formed actinide nuclei (Ref. 34).,

relatively stiff with respect to hexadecapole de-
formations, was used to calculate the deformation
dependence of the macroscopic energy. Other
discrepancies arise because of deficiencies in the
single-particle correction itself, particularly
around closed-shell nuclei.

VII. LIMITATIONS

In summary, we have presented a new Yukawa-
plus-exponential model for calculating the gener-
alized nuclear surface energy, obtained by re-
quiring that two semi-infinite slabs of constant-
density nuclear matter have minimum energy at
zero separation. The resulting unified nuclear
potential reproduces experimental data for heavy-
ion elastic scattering, fusion, fission, and ground-
state masses. However, the model does have
some specific limitations, ind we would like to
conclude with some general comments concerning
tPe range of its applicability.

First of all, we stress that the form of our gen-
eralized surface energy does not imply that the
nuclear surface is sharp. The equivalent sharp
surface is introduced only as a reference surface
in order to define the nuclear shape unambiguous-
ly. However, we do assume that the density pro-
file perpendicular to the surface is the same at

all points on the surface, independent of the nuclear
size and shape. This implies that our heavy-ion
interaction potential (17) is based on the frozen-
density approximation, "since the possible polar-
ization of the surface areas of the two nuclei is
not taken into account. As Randrup has shown for
two semi-infinite slabs of nuclear matter, such
an effect is energetically favorable beginning at
the relatively large distance s=3.44 fm between
their half-density points. " Because his calcula-
tion is purely static and because we do not know
the time scale for polarization, we cannot check
at this time the appropriateness of the frozen-
density approximation. However, it is more
likely to be valid for elastic scattering in the
strong-absorption case than for fusion and elastic
scattering with orbiting, where the interaction po-
tential is probed at shorter distances between the
nuclear surfaces.

The inherent limitation of our model to situations
in which the density profile can be assumed to be
frozen excludes a discussion of the neck rupture
in fission. When a nucleus is close to its scission
point, the central density in the neck is presumably
smaller than the saturation density of the standard
profile. Such a configuration is therefore excluded
from consideration in our model. This can also be
inferred formally from the lack of any information
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about the nuclear compressibility in our model.
A treatment of the neck rupture obviously requires
some input information concerning the response
of the neck region to external stress.

Surface tension arises physically because par-
ticles at the surface interact with a smaller num-
ber of surrounding particles than do particles in
the interior. However, because the double volume
integral (7) does not contribute to the energy in the
interior, the surface ener'gy in our model is pro-
duced by a delicate balance in Eq. (7) between the
long-range attraction for distances 0&2a and the
short-range repulsion for distances v& 2a. This
has the seemingly unphysical consequence that a
nucleus would gain energy by decaying, for ex-
ample, into two hemispheres, separated by a
distance of order a between their newly created
equivalent sharp surfaces. However, the actual
density distribution corresponding to such a con-
figuration would' contain only a small depression
along the internal crack. Such configurations with
an internal density depression are excluded from
consideration in our model because they violate
the implicit assumption that the density is constant
in the interior. An appropriate treatment of such
a decay degree of freedom would require that the
volume-energy term be density dependent, which
would stabilize the system against granulation.

The incorporation of such a density dependence
would represent a useful extension of our model.

However, even apart from that, there are several
important refinements that should be studied with-
in the present version of the Yukawa-plus-expo-
nential model. It should be used to calculate
heavy-ion elastic and inelastic scattering, nu-
cleon-transfer reactions, and compound-nucleus
formation for nuclear systems throughout the
Periodic Table. In conjunction with an appropriate
single-particle potential, it should be used to cal-
culate fission barriers and ground-state masses
and deformations for nuclei throughout the Period-
ic Table. Finally, it should be used in dynamical
calculations of large-scale nuclear collective mo-
tion to study the descent of nuclei from their fis-
sion saddle points, as well as the fusion of collid-
ing targets and projectiles. We hope that in the
coming years our unified potential will prove use-
ful in studies of this type.
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