Lifetimes of negative parity states in ^{11}C

A. Anttila, J. Keinonen, and R. Hentelä Department of Physics, University of Helsinki, 00170 Helsinki 17, Finland (Received 29 November 1978)

The lifetime limits $\tau_m < 34$, <12, <11, <8, and <23 fs for the negative parity states in ¹¹C, at 2000, 4319, 4804, 6478, and 8425 keV, respectively, were determined with the Doppler shift attenuation method through the ¹⁰B(p,γ)¹¹C reaction. The analog of the ¹¹C 6478 keV state lies at 6743 keV in ¹¹B and was measured to have a lifetime $\tau_m = 15 \pm 6$ fs using the ⁷Li(α,γ)¹¹B reaction. Experimentally obtained correction factors for the nuclear and electronic stopping powers were used in the Doppler shift attenuation analysis. In the calculations the Monte-Carlo method was employed. A new γ -ray decay scheme obtained for the ¹⁰B(p,γ)¹¹C reaction at $E_p = 1110$ keV together with the angular distribution data illustrate that the properties of the resonant state reported to exist at $E_x = 9.73$ MeV in ¹¹C are strongly influenced by background processes and that the resonance structure is ambiguous. In the light of the new lifetime values, the transition strengths are discussed in terms of shell model calculations.

NUCLEAR REACTIONS ¹⁰B(p, γ), E = 1.11 MeV; ⁷Li(α, γ), E = 0.96 MeV; measured E_{γ} , $I_{\gamma}(\theta)$, Doppler-shift attenuation. ¹¹C levels deduced γ -ray branching ratios, τ_m . ¹¹B level deduced τ_m . Ge (Li) detector, enriched targets.

I. INTRODUCTION

In terms of the shell model the lowest-order configurations of ¹¹B and ¹¹C are described by the term $(1s)^4 (1p)^7$, which will only give rise to states of negative parity. Considerable effort has been made in these mirror nuclei to identify and describe their level structure.¹ In comparison with the situation in ¹¹B, the lifetimes of these negative parity states in ¹¹C are poorly known, and only upper limits of the order of 0.1–0.5 ps have been reported.¹ Improved transition strengths are clearly needed when testing the configurations proposed in different shell-model calculations.^{2,3}

It appeared advantageous to use the method developed in our laboratory (e.g., Ref. 4) to determine the lifetimes of the negative parity states in 11 C.

The experimental arrangement is described in Sec. II, and Sec. III presents the measurements and results. The transition rates are discussed in Sec. IV.

II. EXPERIMENTAL

In the measurements, the 2.5 MV Van de Graaff accelerator at Helsinki University was employed. The energy resolution of the 50 μ A proton beam used was 1 keV. The 90° analyzing magnet was calibrated using the ²⁷Al(p, γ)²⁸Si resonances at $E_p = 773.70 \pm 0.03$, 991.88 ± 0.04 , and 1316.88 ± 0.07 keV.⁵ The targets were prepared by implanting a 9 μ g/cm² dose of 100 keV ¹⁰B⁺ ions into 0.4 mm

thick Ta backings in the isotope separator of the laboratory. The γ -ray radiation was detected with a Princeton 110 cm^3 Ge(Li) detector with an energy resolution of 1.9 keV at E_{γ} = 1.33 MeV and 2.9 keV at $E_{\gamma} = 2.61$ MeV and with an efficiency of 21.8%. The detector was mounted on a turntable centered on the beam spot on the target. Standard signal amplifying and analyzing equipment was used in conjunction with the detector. The stability of the spectrometer was checked with the ⁴⁰K laboratory background peak, a ²⁰⁸Tl γ -ray source, and with the accurately known γ -ray transition from the 19 F(p, $\alpha\gamma$) 16 O reaction.⁶ The intensity measurements were performed at an angle of 55° relative to the beam direction and the DSA measurement at the angles of 0° , 30° , 45° , 60° , and 90° , while in addition angular distribution measurements were made at 120° and 135° . In order to reduce the solid angle corrections, the beam spot on the target was collimated down to 3 mm and a target-to-detector distance of 6 cm was used in all measurements.

III. MEASUREMENTS AND RESULTS

A. Branching ratio and angular distribution data

The broad ${}^{10}B(p,\gamma){}^{11}C$ resonance ($\Gamma_{lab} = 500 \pm 50$ keV ¹) at $E_p = 1145 \pm 5$ keV corresponding to the $E_x = 9732 \pm 5$ keV state in ${}^{11}C$ is reported to be¹ the only resonance below the giant resonance region at $E_p > 2.5$ MeV, and is used to populate the negative parity bound states in ${}^{11}C$. The γ -decay scheme of this resonance has previously been examined using a NaI(Tl) detector.⁷ Because of the availability of

920

the large volume Ge(Li) detector, the γ -decay scheme was restudied in order to improve the experimental data on the feeding transitions to the bound levels in ¹¹C. The sample γ -ray spectrum recorded at $E_p = 1110$ keV with an accumulated charge of 1.5 C is shown in Fig. 1. A 1.1 cm thick lead absorber was interposed between the target and the detector in order to minimize the effects on the counting system of the high counting rate from the 431 keV γ rays yielded by the tail of the broad ($\Gamma_{lab} \sim 250 \text{ keV}^1$) ¹⁰B($p, \alpha_1 \gamma$) ⁷Be resonance at $E_p = 1.53$ MeV and of the 478 keV γ rays emitted in the 53 day β decay of ⁷Be.

Because of the total width of the $E_x = 9.73$ MeV resonance state it is not possible to use a background spectrum, recorded below the resonance, in the identification of the relevant γ -ray transitions. Consequently, γ -ray identification was started by comparing the intensities of the tentative primary transitions with the secondary transitions according to the branching ratios given by Ajzenberg-Selove.¹ The efficiency of the detector

was determined in the experimental geometry with the γ -ray transitions in ⁵⁶Co⁸ and using relative γ -ray intensities in the ²⁷Al(p, γ)²⁸Si reaction at $E_p = 992$ keV.⁹ The relative intensities as obtained for the primary transitions from the spectrum of Fig. 1 are summarized in Table I. In the cases of the γ transitions to the $E_x = 4.32$, 4.80, and 6.48 MeV states, at least the stronger of the secondary transitions were observed and the intensities corrected with the branching ratios¹ were in good agreement with those of the primary transitions. The relative intensity $(0.4 \pm 0.2)\%$ of the 2.00+0 MeV transition seen in the spectrum can be explained by the $(17 \pm 4)\%^{1}$ branch from the $E_r = 4.80$ MeV state. The secondary transition 8.43-0 MeV was observed with the intensity $(80 \pm 20)\%$ relative to the feeding transition $r \rightarrow 8.43$ MeV. According to the analog nature of the $E_x = 8.82(\frac{5}{2})$ MeV state in ¹¹B, an explanation of the unknown 20% decay could be α decay.¹ For this, however, there is no experimental evidence, only the γ decay of the 8.43 MeV state being reported.¹ In spite of the

FIG. 1. γ -ray spectrum obtained in the ${}^{10}\text{B}(p,\gamma){}^{11}\text{C}$ reaction at $E_p = 1110$ keV. The identification of the observed γ -ray transitions is shown, and r indicating the initial level energy at $E_p = 1110$ keV corresponding to an excitation of 9701 keV in ${}^{11}\text{C}$ (for the inclusion of the direct capture process; see text).

TABLE I. γ decay scheme of the ${}^{10}\text{B}(\rho,\gamma){}^{11}\text{C}$ reaction obtained at E_p =1110 keV, and comparison with the previous branchings reported for the E_x =9.73 MeV compound state.^a

		Relative intensity (%)		
E_f (MeV)	J_f^{π}	Present ^b	Ref. 7 ^c	
0	$\frac{3}{2}^{-}$	47.9 ± 1.9 d	63 ± 13	
2.00	$\frac{1}{2}$		(3)	
4.32	$\frac{5}{2}$	$\textbf{11.7} \pm \textbf{0.7}$	12 ± 2	
4.80	$\frac{3}{2}$	2.1 ± 0.4	(3)	
6.48	$\frac{7}{2}$	$12.6\pm0.7~^{\rm d}$	19	
8.43	$\frac{5}{2}$ -	2.5 ± 0.2 d		
8.66	$\frac{7}{2}$ +	$13.7\pm0.8{}^{\rm e}$		
8.70	$\frac{5}{2}^{+}$	9.5 ± 0.7 °		

^a The E_f and J_f^{π} values are taken from Ref. 1.

^bValues are given as obtained at 55° relative to the beam (see text).

^c Obtained at 0° and 90° relative to the beam and corrected for the measured angular distribution.

^dContributed by the E1 transition of the direct proton capture process (see text).

 $^{e}E1$ transition of the direct proton capture process (see text).

strong $r \rightarrow 8.66$ and $r \rightarrow 8.70$ MeV transitions as identified in Fig. 1, no secondary transitions were seen. The decay modes are unknown also in the literature, the γ -decay mode being assumed for the 8.66 MeV state. In order to confirm the identification of the $r \rightarrow 8.43$, $r \rightarrow 8.66$, and $r \rightarrow 8.70$ MeV transitions, seen for the first time in the present work, the γ -ray spectra were recorded at the energies $E_{p} = 1007$ and 1200 keV with an accumulated charge of 1.5 C. The peak positions and the same relative intensities as obtained at $E_p = 1110 \text{ keV}$ supported the identifications, which were manifested by the peak widths seen as the broadest peaks in the γ -ray spectra. After the deconvolution of the experimental resolution obtained from secondary transitions, the FWHM values yielded at $E_{p} = 1.11$ MeV to the target thickness the value of 28 ± 2 keV. The γ -ray peak of the $r \rightarrow 8.70$ MeV transition which is affected also by the width $\Gamma = 15$ $\pm 1 \text{ keV}^1$ of the 8.70 MeV state was seen to have a width 32 ± 2 keV. In order to have a more rigorous identification a new target was made by implanting a 5 μ g/cm² dose of 20 keV ¹⁰B⁺ ions into a 0.4 mm thick tantalum backing and a 1.5 C γ -ray spectrum was recorded at $E_{b} = 1110$ keV. Now the peak widths of the primary transitions narrowed down so that the target thickness of 10 ± 1 keV was obtained, and the $r \rightarrow 8.70$ MeV transition had the peak width 18 ± 2

keV. Thus, it can be concluded that the intensities given in Table I belong to the transitions indicated and require revision of the previous γ -decay scheme of the $E_x = 9.73$ MeV state in ¹¹C. The dis-appearance of secondary transitions from the $E_x = 8.66(\frac{7}{2})$ and $8.70(\frac{5}{2})$ MeV states may be explained by the analog nature of these states with the $E_x = 9.19(\frac{7}{2})$ and $9.28(\frac{5}{2})$ MeV states in ¹¹B, ¹ which have been reported to decay mainly through α particles.

Efforts to study the primary transitions in more details at proton energies above $E_p = 1200$ keV and below 1007 keV did not succeed. In order to learn more about the primary transitions given in Table I, angular distribution measurements were performed at $E_{p} = 1110$ keV at angles of 0°, 30°, 45°, 60° , 90° , 120° , and 135° . The eccentricity of the measuring geometry was checked by the isotropic angular distribution of the 7.90 MeV γ -rays at the $E_p = 620 \text{ keV}, J^{\pi} = \frac{1}{2}^+ \text{ resonance in the } {}^{30}\text{Si}(p,\gamma) {}^{31}\text{P}$ reaction⁵ and, (when the proton beam was removed from the target), by using the 478 keV γ rays produced from the 53 day β activity of ⁷Be. In order to know the absorption of the asymmetric target holder at the angles of 120° and 135° , the 12.54, 6.02, 4.50, 2.84, and 1.78 MeV γ rays from the $^{27}\text{Al}(p,\gamma)$ ²⁸Si resonance at E_{b} = 992 keV were recorded several times at the angles of 30° , 120° , 45° , and 135° . In this way the eccentricity and absorption corrections were found to be less than 3% over the γ -ray energy region of the transitions given in Table I. In the angular distribution measurements the radiation yields were controlled by monitoring the intensity of the 431 keV γ -ray transition with a fixed 66 cm³ Ge(Li) detector positioned at a distance of 70 cm from the target. The measured angular distributions shown in Fig. 2 were fitted to the expression $W(\theta) = a_0 [1 + A_1 P_1(\cos \theta)]$ $+A_2P_2(\cos\theta)$]. In order to check the angular distributions of the r +8.66 and r +8.70 MeV transitions, which have low intensities at the angles 0° , 30°, 45°, and 135°, the narrow 20 keV $^{10}B^+ \text{--} Ta$ target was also employed in the angular distribution measurements. In this case the ratio of the peak height to the background was higher, and owing to the narrower γ peaks the uncertainties of the background effected less to the intensities. The fit yielded the angular distribution coefficients A_1 and A_2 which, corrected for the finite detector solid angle, are given as a_1 and a_2 , respectively, in Table II. The r-6.48 MeV transition can be seen to have an unambiguous $P_1(\cos\theta)$ term. In the cases of the $r \rightarrow 0$ and $r \rightarrow 8.43$ MeV transitions the $P_1(\cos\theta)$ terms are also seen, their indisputability being not so clear. As the inclusion of the $P_1(\cos\theta)$ term in the fitting reduced the present a_2 values, no direct comparison can be made with the a_2 values obtained

FIG. 2. γ -ray angular distributions of primary transitions obtained at $E_p = 1110$ keV in the ${}^{10}\text{B}(p,\gamma){}^{11}\text{C}$ reaction. The possible *E1* direct capture contributions are indicated (see text).

in the previous ${}^{10}\text{B}(p,\gamma){}^{11}\text{C}$ study⁷ where no forward-backward asymmetry was found in the $r \rightarrow 0$, $r \rightarrow 4.32$, and $r \rightarrow 6.48$ MeV transitions. The higher anisotropicity seen in the present work for the $r \rightarrow 0$ and $r \rightarrow 6.48$ MeV transitions could be explained by the inclusion of the solid angle attenuation, see Table II.

The conflicting spin and parity assignments J^{π} $=\frac{3}{2}, \frac{5}{2}$ of the compound state populated in the reactions ${}^{10}B(p,\gamma){}^{11}C$, ${}^{10}B(p,p){}^{10}B$, ${}^{10}B(p,\alpha_0){}^{7}Be$, and ${}^{10}\text{B}(p, \alpha_1 \gamma)$ ⁷Be at $E_p \sim 1.15$ MeV have been illustrated by Overley and Whaling¹¹ and $J^{\pi} = \frac{3}{2}^{-}$ is considered to be a very improbable assignment. The proposed assignment $\frac{5^{+11}}{2}$ implies E1 character for the $r \to 0(\frac{3}{2})$, $r \to 6.48(\frac{7}{2})$, and $r \to 8.43(\frac{5}{2})$ MeV transitions which however, does not explain the a_1 and the high a_2 coefficients obtained in the present work. The significant single-particle spectroscopic factors (close to one) obtained in the ${}^{10}B(d, n) {}^{11}C$ and ${}^{10}B(\tau, d) {}^{11}C$ reactions for l=1proton strippings to the $0(\frac{3}{2})$, $6.48(\frac{7}{2})$, and $8.43(\frac{5}{2})$ MeV states¹ suggest that the dominant E1transitions in the direct proton capture process from the $l_p = 2 (J_r^{\pi} = \frac{5^+}{2})$ incoming partial wave could interfere with the l=1 final state orbital angular momentum and produce the $P_1(\cos\theta)$ term in the angular distributions (for details of the direct capture process, see Ref. 12). The $r - 4.32(\frac{5}{2})$ MeV transition can be explained by the pure E1 transition from the $J_r^{\pi} = \frac{5}{2}^+$ compound state. The large single-particle spectroscopic factors of the

TABLE II. Summary of the angular distribution results for the ${}^{10}\text{B}(p,\gamma){}^{11}\text{C}$ reaction at $E_p = 1.11$ MeV, and comparison with a previous (p,γ) study.⁷

Final state	Pre	Ref. 7		
(MeV)	a_1^{a}	<i>a</i> ₂ ^b	$a_2^{\ c}$	
0	0.08 ± 0.03	0.30 ± 0.05	0.21 ± 0.06	
4.32		0.05 ± 0.07	-0.17 ± 0.08	
6.48	0.16 ± 0.05	0.49 ± 0.05	0.40 ± 0.04	
8.43	0.04 ± 0.08	0.45 ± 0.09		
8.66		-1.06 ± 0.07		
8.70		-1.12 ± 0.06		

^a Solid angle corrections of the finite detector have been calculated in the present work to be about 3% and can be seen to be essentially smaller than the experimental uncertainties in the measurements.

^bSolid angle corrections have been taken from Ref. 10. In order to check the solid angle corrections calculated for a_1 coefficients, the corrections were calculated also for a_2 coefficients and were found to be in agreement with those of Ref. 10.

 $^{\rm c}As$ obtained from the $I(0^{\circ})/I(90^{\circ})$ ratio. No solid angle correction is included.

 $8.66(\frac{7}{2}^+)$ and $8.70(\frac{5^+}{2})$ MeV states obtained in the l=0 proton strippings¹ imply a significant direct E1 capture into these states, from $l_{p} = 1$ incoming partial wave, with γ -ray angular distributions of the form $W(\theta) \sim \sin^2 \theta = 1 - P_2(\cos \theta)$. The angular distributions obtained for both transitions are consistent with such an identification. As a consequence, a fraction of the observed γ -ray intensities as given in Table I for the $r \rightarrow 0$, $r \rightarrow 6.48$, and $r \rightarrow 8.43$ MeV transitions can be concluded to belong to the E1 direct capture process and that the branching ratios given in Table I which are obtained in the ¹⁰B(p, γ) ¹¹C reaction at $E_p = 1.11$ MeV are obviously not the correct branches of the single $E_{b} = 1145 \pm 5^{1}$ keV resonance, but are nevertheless relevant for the lifetime measurements. In order to untangle the resonant and nonresonant contributions to the γ -ray intensities observed a more detailed study should be done.

B. Lifetimes in ¹¹C

In order to avoid the disturbing effects of the angular distributions the DSA measurements were performed at the angles of 0° and 90°. The measurements were repeated several times. The present $F(\tau)$ values with the deduced mean lifetimes are given in Table III. The accumulated charge collected in the measurements was 1.5 C. The DSA measurement of the 4.32 MeV state is illustrated in Fig. 3. Photopeaks, single escape, and double escape peaks were used in the deduction of Doppler shifts when seen. The corrections for

		τ_m (fs)				
E_x (MeV)	E_{γ} (MeV)	$F(\tau)$ (%)	Present~	Previous "	Adopted	
2.00	2.00	86 ± 12 °	<34 °	<500	<34	
4.32	4.32	93 ± 4^{c}	<12 °	<140	<12	
4.80	4.80	97 ± 7	<11	<500	<11	
6.48	2.16	96 ± 2	4 ± 2	< 95.0	~0	
	6.48	93 ± 3	$7 \pm 4 \int_{-8}^{-8}$	<250	~8	
8.43	8.43	92 ± 11	<23		<23	

TABLE III. Mean lifetimes observed for levels in $^{11}\mathrm{C}$ and comparison with previous values. The energy values are taken from Ref. 1.

^a The error limits of $F(\tau)$, f_n , and f_e are included.

^bAs summarized in Ref. 1.

^c The effect of feeding transitions is included.

solid angle attenuation were taken into account using the shifts of the primary γ rays. The $r \rightarrow 0$ and $r \rightarrow 4.32$ MeV transition yielded an average value of $(99.8 \pm 1.2)\%$ for the full shift, where the average was taken over all cases studied. Although the primary lines were broad, their intensities were so high that the peak positions could be determined with an accuracy better than 3% compared to the full shift. The $r \rightarrow 6.48$ MeV transition was rejected due to its high a_1 term 0.16 ± 0.05 (Table II).

FIG. 3. Portions of γ -ray spectra recorded in the Doppler shift measurements of the $4.32 \rightarrow 0$ MeV transition. The double escape peaks obtained at the angles of 0° and 90° relative to the beam direction are shown in the same figure. The photopeak and the single escape peak was overlapped by the $4.80 \rightarrow 0$ MeV transition. The dispersion is 2.38 keV/ch.

The relevant data needed in the DSA analysis for description of the slowing down of the recoiling ¹¹C nuclei were taken from our earlier study⁴ where the correction factors of the nuclear (f_n) and electronic (f_e) stopping have been determined, in the frame of the LSS theory,¹³ to be 0.85 ± 0.05 and $1.0^{+0.4}_{-0.3}$, respectively, for the adjacent element ¹⁴N. These values were obtained by combining the range values of 20-100 keV ¹⁵N⁺ ions in Ta, the attenuation factor $F(\tau) = (26.4 \pm 0.9)\%$ and the line shape of the 3891 keV γ -ray peak from the 6204+2313 keV transition in ¹⁴N recoiling in Ta measured using the $E_p = 1150 \text{ keV} {}^{13}\text{C}(p, \gamma) {}^{14}\text{N}$ resonance. Because the range values of 20, 40, 60, 80, and 100 keV ${}^{13}C^+$ ions recoiling in Ta (56±3, 95±5, 121 ± 7 , 160 ± 9 , and $187 \pm 10 \ \mu g/cm^2$, ¹⁴ respectively) are close to those $(52 \pm 2, 81 \pm 4, 115 \pm 6, 139 \pm 7, 115 \pm 6, 115 \pm 6, 115 \pm 7, 115 \pm 6, 115 \pm 7, 115 \pm 6, 115 \pm 6, 115 \pm 7, 115 \pm 6, 115 \pm$ and $161 \pm 8 \ \mu g/cm^2$,⁴ respectively) used in the deduction of the stopping parameters, the correction factors $f_n = 0.85 \pm 0.10$ and $f_e = 1.0 \pm 0.5$ with enlarged error limits can be expected to be valid also for the present case of ^{11}C , where the dominant part of the uncertainties in the lifetime values arises from the $F(\tau)$ values close to 100%. In the analysis Monte Carlo calculations with the above stopping power parameters were employed.

The present lifetime results are compared in Table III with the previous values obtained in ${}^{6}\text{Li}({}^{6}\text{Li}, n) {}^{11}\text{C}$ and ${}^{9}\text{Be}({}^{3}\text{He}, n) {}^{11}\text{C}$ measurements (see Ref. 1). In an unpublished work by Rosenthal *et al.*, 15 where the ${}^{10}\text{B}(p, \gamma) {}^{11}\text{C}$ reaction was used, the 4.32 and 6.48 MeV states were reported to have lifetime values of <10 fs, and the change of slowing down conditions yielded the limit <20 fs.

C. Lifetime in ¹¹B

The only lifetime of the negative parity bound states in ¹¹B which is not accurately known is the upper limit $\tau_m < 10$ fs reported for the $E_x = 6.74(\frac{7}{2})$ MeV state.¹ Its analog state in ¹¹C, the $E_r = 6.48(\frac{7}{2})$ MeV state was found in the present work to have a lifetime value of < 8 fs. In the hope of improving the lifetime value of the 6.74 MeV state in ¹¹B and of getting a comparison with the lifetime value of the 6.48 MeV state in ¹¹C, the lifetime was remeasured in the present work through the ⁷Li(α, γ)¹¹B resonance at $E_{\alpha} = 0.96$ MeV. The DSA measurements performed at 0° and 90° are illustrated in Fig. 4. The target used was prepared in the isotope separator by implanting a 3.5 $\mu g/cm^2$ dose of 20 keV ⁷Li⁺ ions into Ta. The thickness of the target thus produced was $4\pm1~{\rm keV}$ at $E_{\alpha}\,{=}\,0.96$ MeV obtained from γ -ray spectra. In calculating the experimental value $F(\tau) = (94 \pm 2)\%$, the solid angle attenuation was taken into account using the shift of the primary γ rays from the $\gamma - 6.74$ MeV transition. Because of the lack of strong, narrow, isolated resonances in the ${}^{10}B(p, \gamma)$ ${}^{11}C$ or ${}^{11}B(p, \gamma) {}^{12}C$ reaction, no experimental correction factors for the nuclear and electronic stopping of ¹¹B in tantalum can be obtained. In deducing the lifetime value $\tau_m(E_x = 6.74 \text{ MeV}) = 15 \pm 6 \text{ fs}$, a similar procedure as for the case of the ¹¹C lifetimes was followed. The present lifetime is in agreement with the reported upper limits of 300,¹⁶ 210,¹⁷ and 40 fs.¹⁸

IV. DISCUSSION

The experimental transition strengths are given in Table IV along with the predictions of shell-

FIG. 4. Portions of γ -ray spectra recorded in the Doppler shift measurements of the 6.74 \rightarrow 4.45 MeV transition. The photopeaks obtained at the angles of 0° and 90° relative to the beam direction are shown in the same figure. The dispersion is 1.19 keV/ch.

model calculations. The theoretical values of M1 transition strengths have been calculated mainly for ¹¹B where experimental lifetime values have been known much better than in ¹¹C. The theoretical M1 strengths in ¹¹C, as shown in Table IV, have been calculated from the wave functions obtained in a 1p shell basis with the effective two-

TABLE IV. Experimental M1 transition strengths ^a for negative parity states in ¹¹C and their comparison with shell-model calculations.

E,	$E_{i} = E_{i} = \tau_{m}^{b}$ Branching δ		δ	$\Gamma_{\gamma}/\Gamma_{w}$ (W.u.) Theory					
(MeV)	(MeV)	J_i^{π}	J_f^{π}	(fs)	(%)	(E2/M1)	Exp.	Ref. 2 ^c	Ref. 3
2.00	0	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	<34	100		>0.012	0.683	0.947
4.32	0	<u>5</u> -	$\frac{3}{2}$	<12	100	$+0.17 \pm 0.03$ d	>0.032	0.201	0.218
4.80	0	$\frac{3}{2}$	$\frac{3}{2}$	<11	83 ± 4	e	>0.022	0.557	0.560
	2.00		$\frac{1}{2}^{-1}$		17 ± 4	f	>0.022	0.452	0.387
6.48	4.32	$\frac{7}{2}$	$\frac{5}{2}$	<8	11 ± 3	g	>0.02	0.0102	0.0309
8.43	0	$\frac{5}{2}$	$\frac{3}{2}$	<23	100	h	>0.0023	0.276	0.436

^aUnless stated otherwise, the experimental data are as summarized in Ref. 1.

^b Present work.

^c Determined from the (6-16)2BME interaction (Ref. 2).

^dExcluding the phase, the value is in good agreement with the value of $\delta = -0.19 \pm 0.03$ given in Ref. 1 to the analog transition.

 $^{e}\delta = 0.03 \pm 0.05$ given in Ref. 1 to the analog transition is adopted.

 ${}^{\rm f}\delta\!=\!-0.05\pm0.2$ given in Ref. 1 to the analog transition is adopted.

 ${}^{g}\delta = -0.45 \pm 0.18$ given in Ref. 1 to the analog transition is adopted.

 ${}^{h}\delta\!=\!-0.11\pm0.04$ given in Ref. 1 to the analog transition is adopted.

body interaction computed through a least-squares fitting of free parameters² or through the Sussex relative harmonic-oscillator matrix elements.³ The present lower limits of the M1 strengths are, even if the feeding transitions with very short lifetimes are taken into account in the cases of the $2.00 \rightarrow 0$ and $4.32 \rightarrow 0$ MeV transitions, clearly below the theoretical ones, indicating by about a factor of 10 lower lifetime values to these states compared with the present upper limits. In order to illustrate how the lower limits and values for M1 strengths would be effected by possible E2 contributions, the experimental $\delta(E2/M1)$ values as obtained for the analog transitions in ¹¹B¹ are employed in the calculations of the strength values for the states 4.80, 6.48, and 8.43 MeV. The present upper lifetime limits of the 4.80 and 8.43 MeV states can be concluded to be by about a factor of 10 and 100, respectively, higher than the theoretical predictions.

In the case of the analog transitions $6.48(\frac{7}{2})$ $+4.32(\frac{5}{2})$ MeV in ¹¹C and $6.74(\frac{7}{2}) + 4.45(\frac{5}{2})$ MeV in ¹¹B, the present experimental M1 strengths >0.02 and 0.06 ± 0.03 W.u. are in mutual agreement and in agreement with the theoretical values of 0.0309 and 0.218 W.u.,³ respectively, the theoretical values of Ref. 2, 0.0102 and 0.0066 W.u., respectively, being too small. The mixing ratio $\delta(E2/M1) = -0.45 \pm 0.18^{1}$ was employed in the calculations of both experimental M1 strength values. No theoretical values are given for the strong E2transitions $6.48(\frac{7}{2}) \rightarrow 0(\frac{3}{2})$ MeV, $(89 \pm 2)\%$, and $6.74(\frac{7}{2}) \rightarrow 0(\frac{3}{2})$ MeV, $(70 \pm 2)\%^{1}$ The present transition strengths $|M(E2)|^2 > 4$ and $= 1.9 \pm 1.0$ W.u., respectively, provide a further possibility to check the configuration of the initial $\frac{7}{2}$ state at 6.48 MeV in ${}^{11}C$ and at 6.74 MeV in ${}^{11}B$ through the E2 matrix elements which are more sensitive to configuration mixing than M1 matrix elements.

- ¹F. Ajzenberg-Selove, Nucl. Phys. <u>A248</u>, 1 (1975).
- ²S. Cohen and D. Kurath, Nucl. Phys. <u>73</u>, 1 (1965).
 ³P. S. Hauge and S. Maripuu, Phys. Rev. C <u>8</u>, 1609 (1973).
- ⁴M. Bister, A. Anttila, and J. Keinonen, Phys. Rev. C 16, 1303 (1977).
- ¹⁰5^p. M. Endt and C. van der Leun, Nucl. Phys. <u>A214</u>, 1 (1973).
- ⁶E. B. Shera, Phys. Rev. C 12, 1003 (1975).
- ⁷A. N. James, Nucl. Phys. 24, 675 (1961).
- ⁸M. Hautala, A. Anttila, and J. Keinonen, Nucl.Instrum. 150, 599 (1978).
- ⁹A. Anttila, J. Keinonen, M. Hautala, and I. Forsblom, Nucl. Instrum. 147, 501 (1977).
- ¹⁰D. C. Camp and A. L. van Lehn, Nucl. Instrum. <u>76</u>, 192 (1969).

- ¹¹J. C. Overley and W. Whaling, Phys. Rev. <u>128</u>, 315 (1962).
- ¹²C. Rolfs, Nucl. Phys. A217, 29 (1973).
- ¹³J. Lindhard, M. Scharff, and E. Schiøtt, K. Dan. Vidensk. Selsk. Mat. -Fys. Medd. 33, No. 14 (1963).
- ¹⁴A. Anttila, M. Bister, A. Fontell, and K. B. Winterbon, Radiat. Eff. <u>33</u>, 13 (1977).
- ¹⁵F. Rosenthal, J. Beyea, J. Lancman, and L. J. Lidofsky, Bull. Am. Phys. Soc. <u>14</u>, 628 (1969).
- ¹⁶E. K. Warburton, J. W. Olness, K. W. Jones, C. Chasman, A. R. Ristinen, and D. H. Wilkinson, Phys. Rev. 148, 1072 (1966).
- ¹⁷M. J. Throop, Phys. Rev. 179, 1011 (1969).
- ¹⁸J. Beyea, H. Lancman, F. Rosenthal, and L. J. Lidofsky, Bull. Am. Phys. Soc. 14, 628 (1969).

20