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A generalization of the Feshbach projection operator method to include rearrangement in the context of the
Sacr, Kouri, Levin, and Tobocman many-body scattering theory has been proposed recently. The formalism
provides a simplified set of connected kernel equations for an approximate transition operator matrix and an
explicit procedure for relating the approximate transition operators to the exact ones. In this paper we
extend the flexibility of the aforementioned generalization by making it possible to allow the approximate
transition operators to couple fewer partitions than the exact ones. Particular attention is given to the case
where the approximate transition operator matrix is the solution of coupled-reaction-channel —type equations
for transitions between few cluster configurations of the system. It is also shown that all the equations
derived here have connected kernels after iterations,

NUCLEAR REACTIONS Multipartition generalization of the Feshbach projection
operator method applied to BELT many-body scattering theory. Approximate

few-cluster-model scattering equations developed.

I. INTRODUCTION

Several theories have been formulated in recent
years which provide mathematically well defined
formalisms for analyzing the N-body scattering
problem. ' The complexity of the equations is
sufficiently great to rule out exact treatments of
many-body systems in the immediate future. Con-
sequently, there has been interest in developing
approximate versions of these N-body formalisms
which would be more amenable to calculation. '
These approximate theories generally have the
form of a coupled-reaction-channel formalism'
where the wave furiction is restricted to a small
number of few-cluster configurations.

It is desirable to be able to formulate the ap-
proximate version of the iV-body scattering theory
in such a way that the approximate version is
imbedded in the exact theory. By this we mean
that either there is a well defined procedure for
modifying the approximate version so that the dif-
ference from the exact theory can be made arbi-
trarily small or that there exists a well defined
procedure for usingthe result of the approximate
version to calculate the exact transition ampli-
tudes. An approximation procedure of this sort
has been proposed by Polyzou and Redish' in the
context of the Bencze, Redish, and Sloan N-body
scattering theory.

Tobocman' has shown that the Baer, Kouri,
Levin, and Tobocman (BELT) N-body scattering
formalism' can be transformed into an approxi-
mate theory of the coupled-reaction-channels-
type by means of a multipartition generalization

of the Feshbach projection operator method. '
However, the equation Tobocman gives for the
relationship between the approximate and exact
transition operators is an integral equation having
a kernel which will not be connected if the approxi-
mate version includes three-or-more-body break-
up channels. This shortcoming of the method was
eliminated in a reformulation by Raphael, Tandy,
and Tobocman (RTT).' However, both treatments
have another undesirable feature, namely, all
(two-cluster) partitions must be included in the
approximate version as mell as the exact one in
order for the dynamical equations to have connectec
kernels. This paper generalizes the method of
RTT so that the number of partitions coupled in
the approximate version of the theory is fairly
arbitrary. We show that our equations are of the
connected kernel type and that they can be used
to generate a sequence of approximations which
approach the exact solution.

In Sec. II we present the antisymmetrized BKLT
theory X-body scattering equations. The Fesh-
bach projection operator reduction of these equa-
tions is carried out in Sec. III. Several alternative
ways of using the projected BELT formalism are
described in Sec. IV. The partition coupling array
used in the projected BELT formalism is dis-
cussed in Sec. V. The choice of projection operat-
ors is discussed in Sec. VI. Section VII is devoted
to a proof of the connectivity of the reduced equa-
tions for the modified wave operator. In Sec. VIII
we show that the choice of projectors and partition
coupling which makes the reduced equations con-
nected also ensures the connectedness of the em-
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bedding equations. Our results are summarized
and discussed in Sec. IX, and a simple n-triton
cluster model example is given in the Appendix
B.

/

II. ANTISYMMETRIZED BKLT N-BODY SCATTERING
FORMALISM

Consider a system of N particles initially re-
garded as distinguishable. For each partition
&)'(1), ()((2), . . . , ()((N ), l3(1), l3(2), . . . , +(N„-1),
&d(N„) of the particles into a pair of clusters
there exists a decomposition of the Hamiltonian
into the sum of two terms:

r(y )e«) Vl (g)+ V~(y)~ e(&) ~

() =(8+i& -H) '.
(2a)

(2b)

The consequence of exchange symmetry is the re-
placement of these transition operators by

Ne f

(1) (&) (&)e ( 83

andtheuse of the eigenstatesof H (y) Hg(z) H
only as asymptotic states for the calculation of
transition amplitudes g„:

H He( j )+ Ve (y) He (2) + Ve (2) ~ ~

The partition Hamiltonian H, (, , contains the kinet-
ic energy and the intracluster interactions, while
the residual interaction V „,is the sum of the in-
tercluster interactions for the two-cluster parti-
tion n(i). The partitions labeled by the same
Greek letter and differing only by the index that
appears in the parentheses belong to the family of
partitions whose members are physicaQy indis-
tinguishable in that they differ only by the exchange
of identical particles between clusters. The Greek
letters then serve to identify physically distinguish-
able families of partitions. N will represent the
number of distinct permutations of identical parti-
cles which can result from exchanges between the
two clusters of the ri family of partitions. The
Greek alphabet (). , 8, . . . , g, ur will. serve to repre-
sent a, particular (arbitrary) ordering of the parti-
tion families.

The transition operator for scattering from a
partition n(i) channel to a partition y(j) channel
is

and o» is the number of fermion exchanges re-
quired by P („,. The above formulation of exchange
symmetry is sufficiently general to include the
case of a system comprised of more than one type
of identical particles.

Our starting point will be one of the antisymme-
trized BELT equations given by Goldf 1am and
Tobocman (GT)':

e(i)~(&) e» ~ e e7 r (&) ~(l)l (&)
y

Using matrix notation, this is written

T =MA +UTVGT.

In the above equations

G„„&=(E+~ -H„,)-',
Ue = Ve(~)G (2)Ve(,). . . Geer )Ve(„),
W„=(N,/N»)'i'5 „,

u» (~u(1) a(2) u(1) n(2) n(2) a(3)

(6a')

(6b)

(6c)

(6d)

a&i) a(n) 'Ya(n) ua (nba(n)

can be used. This reduces the sum for MA to a
single term, and we obtain a modified T matrix
equation of the form

e(l)e(l) e eX v~ w(&) w(&)~(&

. n&&) n&a) nQ) ' ' aK ) n Nu &
)' &1)) n» &

(6e)

A»a =Q(- ) " 'G„(n) P„(n)5»„. (6f)
n=l

: The quantity 5, is defined to be equal to 1
when y follows c( in the sequence &», P, y, . . . , (f), ~, ()(, . . . ,
and it equals zero otherwise.

The inhomogeneity in the above equations differs
from the one given by GT, the latter being in er-
ror. The factors G «)G„(„)

' appearing in MA can
be transformed to more convenient expressions
as follows:

Ga (()Ga(n& a(()(6 a(n))

=G n «)(Gn (()
—I'u (()

=1 'G-('&(I'. ~) —I"-(.) ~n

Alternatively, the Lippmann identity

~aa (kc(& )I »(&.)~a(&)l ~a(&)) '

(E-H (.))4(")=O

(E -H„(()&t&,~) =0.

In Eq. (3) P
&„&

is the permuation operator that
transforms partition n(1) into n(n),

a(n&~a&& ) ~al'n) &

(4a)

(4b)

(4c)

which is on-shell equivalent to Eq. (6a). However,
if &t&„&„& is represented by an expression which is
not an exact eigenfunction of H„(„„then this sub-
stitution may give poor results. This was found to
be true for a particular case studied by RTT.

In the following we shall omit the (1) index on
the partition unless necessary. Thus G —= G (»,
etc. , unless otherwise required.
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The nonantisymmetrized version of the theory
is recovered from these equations by simply set-
ting N =1 for all n.

In Appendix A we discuss some of the questions
that arise in the implementation of the antisymme-
trized BELT equations.

III. REDUCTION OF THE BKLT EQUATIONS WITH
PROJECTION OPERATORS

The fact that the inhomogeneity MA differs from
the interaction UTV represents an obstacle to the
application of the Feshbach projection operator
formalism to our coupled integral equations. To
circumvent this difficulty we follow the procedure
used by RTT to replace T by an operator K which
is the solution of an equation in which UW is the
inhomogeneity. Let K be defined by

ff = vw+UwG "Vc=(l+ffG'")vw

Then K and T are related to each other in the
following way:

T =(1+KG'")(MA + UWGT) —KG'"T

=(1+SCG")ma+ff(G G'"')T (10)

where

The procedure just described is an example of the
subtraction technique discussed by Kowalski. "

Now we have a couple of options we can exercise
in the choice of G'". We can take G'"=G, in which
case the second term in Eq. (10) vanishes and T is
calculated from K by means of a simple quadra-
ture. Alternatively, G "' may be chosen to be the
principal value counterpart of G, in which case T
is calculated from the on-the-energy-shell part
of K by integration and a matrix inversion in chan-
nel space.

Next we introduce a reduction procedure to sim-
plify the coupled integral equations for the react-
ance operator K. This is done as suggested by
Tobocman' by replacing the Green's function opera-
operators G (,) and G"(', , by G (,.)(t (, ) and G"('&)p «»
respectively. Here (p (,) projects the partition
Green's function operator G' (',.) onto a finite numb-
er of partition o. (i) channels. However, as a part
of the reduction procedure we make the additional
step of replacing the partition coupling array W

by an alternative one W'. Thus the reduced react-
ance operator X is defined to be the solution of

man, "Kouri and Levin, "and by Greben and Lev-
in." However, the projectors employed here are
somewhat more general than those used in these
references in that we do not restrict ourselves to
projection onto two-cluster channels only.

The purpose of using the reduced partition coup-
ling array VP to replace 8' is to remove the coup-
ling to those pa, rtitions which are eliminated by
the projection operator matrix O'. Thus it becomes
possible to have fewer partitions included in the
coupled equations for the reduced reactance oper-
ator matrix X than in the coupled equations for K.
The elements of X that refer to the excluded chan-
nels are set equal to zero except for the diagonal
elements which are set equal to 'h. The explicit
expressions required for VP and 6' in order to en-
sure connectedness will be discussed in Secs. V
and VI.

The final step in our analysis is the establish-
ment of a relationship between the exact reactance
operator matrix K and the reduced one X. To do
this we introduce the wave operators 4,J which are
solutions of

4 = j. +W&uG(')4 =1+Is~(PG") (13)

J=1 + UWG' 'I = 1 +JUWG( '.
Combining Eqs. (13) and (14) we obtain the embed-
ding equation

d =4+a(UW-~~s)G"V.

These modified wave operators are related to the
K matri. ces K, X by

(16a)

(16b)

We will show that this provides a connected kern-
el formalism for calculating the exact reactance
operator matrix K from a modified wave operator
matrix g. Equation (13) provides a connected
kernel formalism for calculating the modified wave
operator matrix/. The connectivity of Eqs. (13)-
(15) depends on the choice of the projection operat-
or matrix (3 and the reduced partition coupling
array VP. The properties of these quantities and
their choice are discussed in Secs. V and VI.

Qur choice of the letters 4 and J to represent
wave operators is different from the more conven-
tional choice of the Greek letter 0 for that pur-
pose.

~e e(l) e(2)+e(2) e(2) ' ' ' e(N )6e(N ) e(N ) '
IV. APPLICATIONS OF THE PROJECTED BKLT

FORMALISM

Similar introductions of projeetors into the
BELT equations have been carried out by Toboc-

Qne can imagine several alternative procedures
for employing the projected BELT formalism to
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generate a sequence of successively improved
reactance operator matrices. One alternative is
to have 6 be nonzero for all partitions and have
5 exclude only the elastic channel and no more
than a few others. Then ~ is set equal to, R' in
Egs. (15) and (16b) with the result

8 =4+/(UW-'aWO')G "9

K= [1—g(UW-%%" 6')G"']-'JUW

=aUW+8(UW-mrna )G&0&

x [1-y(UW-a%6')G "&]-'gUW. (18)

The inverse appearing in the second term might
then be evaluated approximately by using a finite
basis of states suitable for representing compound
nucleus configurations. Then the second term on
the right of Eq. (18) could be identified with the
compound nucleus contribution to the reactance
while the first term would be the shape elastic
plus direct interaction part.

Another way to proceed is to have a sequence of
successively more encompassing projectors
6'"', 6'"', . . . such that +'"+~'= 6"j' if i ~ j. These
are used to define a sequence of more and more
complex sets of equations with the solutions of one
set of equations being the input into the next more
complex set. To introduce a more convenient
notation i'or this purpose we rewrite Egs. (16a)
and (14) in the form

E =4UW+8(UW-RLW(P)G@&E.

For the nonantisymmetrized version of the theory
where '4=U this set of equations would be relative-
ly simple, coupling no more than a few channels
to the elastic channel. The true complexity of the
problem would be buried in the modified wave
operator matrix g. Then one could start with
g =1 as the lowest order approximation to g, and
use Eq. (13}for J to generate successively im-
proved representations for g. In this approach
g(UW-R, W6'} appears as a kind of generalized op-
tical potential. The procedure just described is
similar to one proposed by Kowalski, Siciliano,
and Thaler. '~

Alternatively, one could have 6' project onto what
are deemed to be the most important few-cluster
channels. Then Eg. (13) would be a set of coupled-
reaction-channel equations for the modified wave
operator matrix g." The result of a calculation
of g then would represent the shape elastic and
direct interaction contributions. The reactance
operator matrix K would be calculated by using

g Eps. (15) and (16a). The formal solution of these
equations is

K(8 -JNP'U)gr(f) =K

J0) —1 + U U) gr (j) (P(j)G (0)J(j) =J
(19a)

(19b)

and we rewrite Eqs. (15) and (16b) in the form

g(j &. & I+ U(j &. &W(j-& &P(j 1&GQ&g(j 1&= g

Then Eq. (15) becomes

J0) JU-&)

(19c)

(19d)

V. CHOICE OF THE PARTITION COUPLING ARRAY

The partition coupling array S' is defined in
Eq. (6d). It is seen that only the elements
lVO 8 p IVAN@ p lVy6 p p WQ ~ W„are nonv anishing . By
cycling in this manner through all possible fam-
ilies of tzoo-cluster partitions we are assured of
having a connected kernel formalism for the react-
ance operator matrix K.

Now let us consider the reduced partition coup-
ling array W that appears in Eg. (12) for the re-
duced reactance X. If all the projectors
6,g~, .. . ,g „are nonvanishing, then ~ must be
chosen to be identical with 8' to ensure connect-
ivity. Under these circumstances our formalism
reduces to that of B,TT.'

+J (j-1&(U (j&WU& P(j&

UU-1&W(t-1&PU &&)G-(0&g(j&

One way to use this version of the projected
BELT theory would be to let (P"' be the projector
onto all two-body channels, let (P~' be the project-
or onto all two-body and three-body channels, let
6'"' be the projector onto all two-body, three-body,
and four-body channels, and so on. Then starting
with a coupled two-body channel formalism, one
could address a sequence of successively more
complex sets of coupled equations. This program
is similar to the one outlined by Redish" for the
Bencze, Redish, and Sloan N-body formalism.

Another way to use this version of the projected
BELT theory would be to let 6'"' be the projector
onto all N-body channels, let +~' be the projector
onto all N body-and (N —1)-body channels, and so
on. Then p-" would be the projector onto a11,
channels except the two-body channels and 6'""
would be the projector onto all channels. Then one
could start a calculation by setting J+'=1 for some
n intermediate between 1 and N- 1. Then this is
inserted into the embedding equation for J'""'.
'The solution is inserted into the embedding equa-
tion for J''""', and the process is continued until
J'"- ' is calculated. This amounts to approximating
transition operator K~' by the inhomogeneity
U'"'W'"' and then solving the subsequent (i.e.,
m & n) ec[uations exactly.
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Next consider the case where some of the pro-
jeetors 6„vanish. Let B~ be the set of disting-
uishable two-cluster partitions P for which the pro-
jectors (P are nonvanishing, let B be the set of all
distinguishable two-cluster partitions z, P, . . . ,
etc., and let B~ be the complement of B„ in B:

B =B UB (21)

The matrix 'N is then chosen so that it couples
sequentially all the partitions belonging to B~ and
is the identity matrix" in the part of partition
space spanned by the members of B~. Using the
Greek alphabet to specify a particular arbitrary
ordering we can choose

Q)P) o ~ ~ ) p cB~ )

v, $, ~, (dcB~. (22b)

'N= 100 and 8"= 001

001 100,

Substituting Eq. (23) for % into Eq. (11) gives a
set of coupled integral equations for 3,'~; +, PcB„,
and X,~ = 5„,'U, for o,o' cB~. All other elements of
X vanish. Thus there is no coupling between B~
and B~."

The reduced partition coupling array 'N is then
written

(23)

where 6 ~ =6 for z)y c B~ and 5 R =6 for
n, y c B~ and both are zero otherwise. Note that
8', ='N „for ~,y cB„except for. one element.

For example, for a system of three distinguish-
able partitions n, P, y we can take n, PcBs. Then

' 010 010

(24)

i=a
(25)

Hg =H@ +Ha + T„,=H,„t+T„, ,
1

where Hg„H8, describe the internal motion of
clusters P„P„and T„, is the kinetic energy oper-
ator for the relative motion of the two clusters.
The spectrum of the partition Hamiltonian H~, in-
cludes states in which clusters P, and P, are in
unbound configurations as well as states in which

P„P„orboth are bound.
A channel is defined by the set of quantum numb-

ers required to specify an eigenstate of a partition
Hamiltonian H~. To do this one starts with a par-
tition o, 4 P composed of n clusters A„A„.. . ,A„.
Each cluster A,. is understood to be in a bound state
with quantum numbers a, Each set a,. includes
the negative binding energy E, The set of quantum
numbers a, , i =1, . . . , n defines a cluster state.
We refer to the a,. as the internal quantum numbers
of the channel.

To complete the identification of a channel it is
necessary to specify the external quantum numbers
in addition to the internal ones. These describe
the motion of the clusters relative to each other.
There are a number of ways to associate a rela-
tive motion state with these (n —1) vector degrees
of freedom. A possible choice of externa1. quant-
um numbers is to associate the kinetic energy
8,)0, the orbital angular momentum l„and its
projection m, with the qth indePendent vector coor-
dinate. An asymptotic channel state is then de-
fined as the scattering eigenstate of H~ specified
by the quantum numbers a, , $„ l„m, ;
i =1, . . . , n; q =1, . . . , n —1. Such an eigenstate of.

H~ is said to be of connectivity +.
The conservation of energy requires

VI. CHOICE OF THE PROJECTORS

For the case where some of the projectors 6',
vanish we have chosen the reduced partition coupling
arraywso that there is no coupling to the partition
families that have been eliminated (i.e., where 8„' = 0).
With such a choice of %" and 6'one must take care
not to destroy the connectedness of the kernel of
the equation for the reduced reactance and the em-
bedding equation by either including too few par-
titions in the coupling scheme or by taking the
projectors to be too encompassing.

Before discussing the sufficient conditions for
connectedness of our equation we shall define our
symbols more carefully. To do this we start by
noting that in the BELT equations, only the two-
cluster partitions p c B are coupled. The Hamil-
tonian H8 corresponding to such a partition P can
be split into three parts:

Each of the quantum numbers contributing to the
identification of a channel (i.e., an asymptotic
channel state) belongs to a discrete set except
for the relative motion energies h, . For a two-
eluster channel, h, is fixed uniquely by Eq. (25).
So the set of two-cluster channels is denumerable.
However, the n-cluster (n~ 3) channels form a
continuum for each given total energy E.

In the BELT theory, associated with each two-
cluster partition there is an infinite set of chan-
nels. This set includes a discrete set of two-
cluster channels and a continuum of three-or-
more-cluster channels. For the two-cluster chan-
nels, both clusters are in a bound state. For the
breakup channels one or both of the clusters are
in an unbound state.

For a given two-cluster channel there is a unique
two cluster partition pc B to which it belongs. "
For a three-or-more-cluster channel associated
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with the partition ~ =A,A, ~ ~ A„ there will be sev-
eral two cluster partitions to which this channel
may be assigned. These will be all the two cluster
partitions P such that o, L P, that is, all the two
cluster partitions that are identical to ~ or can
form o, by some division of their members.

Following Polyzou and Redish4 we define the
reaction mechanism" Q~ to be the collection of
cluster states which are deemed physically impor-
tant. These are the states we want to include in
the calculation of the reduced wave matrix g. Each
cluster state a(= ez corresponds to a partition ~.
We define the reaction set A„ to be the set of all
partitions ~ such that there exists at least one
cluster state ac C~ corresponding to it. %'e then
require that the projectors 6'..~ be nonvanishing for
the set B~ of all distinguishable two-cluster par-
titions P cB such that there exists a partition
o, cAz such that n L P. We also require that none
of the projectors 6'~. projects onto any channel that
he has a cluster state associated with a partition
y~ A~.

We will show that these requirements are suffi-
cient to ensure the connectedness of the kernels
of our dynamical equations after iteration. The
requirement that B„includes all the two-cluster
partitions consistent with our choice of the reac-
tion mechanism is the analog of the requirement
that all two-cluster partitions be included in the
(unprojected) BKLT equations to ensure connect-
edness. It has been pointed out that such a re-
quirement is necessary for the uniqueness and
unitarity of the BELT equations. " The same
arguments can also be used to shorn that projected
BELT equations will be unitary on the restricted
channel space for this choice of B~."

VII. CONNECTIVITY OF THE REDUCED EQUATIONS

With these definitions we are ready to discuss
the sufficient condition for the connectedness of
the kernel of the modified wave operator equations.
We will show that the nth iterate kernel of Eq.
(13) is a connected operator if for each partition
~ (=-A~ the set B~ includes all two-cluster partitions
pc B such that o & p. Here n denotes the dimen-
sion of B~. By connectedness of the~kernel of Eq.
(13}we mean that the matrix elements [(9'vvs'G'o')" ] „
tl, y @BE, of the nth iterate of the kernel are con-
nected operators. For P or y cB„the kernel ma-
trix element [('a'uXPG '0')"],„vanishes.

When the coupled equations for the approximate
wave operator g, Eq. (13), are decoupled by itera-
tion, "we get an integral equation for each element
of g." The kernel for each of. these equations is a
product of the form'4

(a6)C = .. . (P~ G~+)%~.
I'~~a

The order of the factors is different in different
equations but that is irrelevant for the discussion
of connectivity. Let us consider the products

(a7)

VIII. CONNECTIVITY OF THE EMBEDDING EQUATION

Having assured ourselves that there is an ap-
propriate choice of % and 6' for which the kernel
of the equation for the reduced reactance g is con-
nected, we now demonstrate that this choice will
also ensure the connectivity of the kernel of the

C2= 5'8 ' (as)
BESg

These ean be expressed as sums of terms of dif-
ferent connectivity. Let y, (y, ) be the connectivity
of any particular term in the sum for C, (C~). It
is clear that the product C =C,C, must then contain
a term of conneetivity y =yy U yg the union of y,
and y, . The union y, ~y, is the finest partition y,
that is, the one with most clusters, such that

-y~(=y and y, (-y. If C is a connected operator,
then y must be the one-cluster partition for all
y]. py2~

Suppose now that the cluster state associated
with one of the channels is composed of clusters
A»A». .. ,A„. We label this n-cluster partition

The product C, will then contain a term of
eonnectivity o. Since me required that B~ contain
all partitions P Do, it must also contain the parti-
tion P, =A, (Ag, . . .A„). Since% cycles through
all partitions in Bg Cy must contain a factor /z 1
which has every one of its terms connecting a
particle from A, to a particle external to A, Since
A, is a stable cluster (a bound state}, all particles
in the cluster A, are therefore connected to this
particle external to A, . Suppose this external
particle belongs to A, . Since A, is a stable cluster
we conclude that this term of g, connects all
particles in cluster A, to all particles in cluster
A2.

If partition n has only two clusters (n =a), then
the connectedness of C is established. If n) 2,
then B~ must also contain the partition
P, =(A, A, )(Ag, ~ ~ ~ A„) and C, must also contain
the factor Mq, . Each term of 'hz, connects a parti-
cle in (A,A, ) to an external particle, say one in
A3 . Since A, is a stable cluster, it fol lows that
A,Ag, is conne'cted. If n=3 the proof is complete.
For n&3 the proof follows by induction.
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(29a)

embedding equation, Eq. (15). If Eq. (15) is iter-
ated (N —1) times (N being the number of all dis-
tinguishable two-cluster partitions possible in the
system), we find

$-1
Z=.g I"'g+ I"Z,

where

I =g(UW-vms)G &o&. (29b)

From the discussion of Sec. VII we know that
('trVV6'G"')" is a connected operator where n is the
dimension of Bz. A similar proof also shows that
the operator (UWG@')" is connected. The second
statement is just the statement of the connectedness
of the original BKLT equations. ' From the defini-
tion of % in Eq. (23) we have

[(Lw(PG ' )"
1

Qo
=~

FIG. 1. Diagram for constructing the terms of
f&(V W-~~I)P for +=7 and m=4.

and from the definition of W in Eq. (Gd) we have

[(UWG"')"
1

=5 ~'U G"'U ~ ~ ~ U G"'. (3l)+1 1 el +2 2 N 1
/

On the right. of Eq. (30) the subscripts cycle
through all the partitions in B~ and on the right
of Eq. (31) the subscripts cycle through all the

possible distinguishable two-cluster partitions
of the many-body system.

We now show that Eq. (29) has a connected kern-
el. From Eq. (13) we observe that

g =Q (%l'Ã6'G ) (32)

It follows that I"" is an infinite series each term
of which is a product of N or more of UWG"' and
&~6'G"'. As a result of the partition coupling.
structure of the arrays 8' and W, the nonvanishing
terms in the series expansion of I" have a parti-
cular structure. We will describe &his structure
with the help of Fig. 1.

Figure 1 is an N xN matrix of points. We have
circled the points coupled by the full partition
coupling array 9' and placed crosses at the points
coupled by the reduced partition coupling array

These connections are indicated by the solid
and broken lines, respectively.

A particular term of order M~ N will contain,
say, a factors z;6q, .„Gg,-'„and 0 factors U &G "&„,
where P, c Ba and o,zc 8 for i =1, . .. , n and

j =1, . . . , ¹ We also take n+ i =i and N+ j =j.
Starting at a point yzyz„on the diagram we move
clockwise, making each step along a solid or a
broken line segment, until I steps are made.
Moving along a solid line away from y~y~„gives
the factor U&&G„'&'+» whereas follow'ing the broken

line segment instead gives%, »{P»+,G„J'+,. We note
that we must pass through all the circles or all
the crosses at least once since M ~

¹ This means
that we cycle either through all the partitions
P c Ba or through all the partitions n L B. In the
latter case the term must include all the factors
U G„on the right of Eq. (31) which is sufficient
to make that term a connected operator.

If in a particular term we cycle through all the
partitions P c Bz, that term must contain the fact-
ors &g, %,@,.. . ,'4g, G~, GB, . .. , Gq„, and 0'q .
This set of factors differs from that which appears
in Eq. (30) in that s'8, replaces the product

We now show that a term of th is
form is connected.

Suppose at first that our reaction mechanism
consists of a single cluster state corresponding
to the multicluster partition ~. Then each of the
projectors (Pg; where P;c B„will have a connecti-
vity a, and the product 6'g, 6'@ ~ ~ ~ 6'q„wil1. have
connectivity z as well. Consequently, the product
(II.";,Ug, G&)(Pg& must have the same connectivity
as the product in Eq. (30) and thus must be a con-
nected operator. Therefore, for the case of a
single partition z in the reaction set A„every
term in (I'") 8 must be connected.

Consider now a reaction mechanism consisting
of several cluster states corresponding to the
multicluster partitions cy». . . , z . Suppose that
o, && P, . By the single cluster state argument, the
product (g~~s R~G~~O')6'g, contains a fully connected
factor multiplied by some extra factors of U~, G~.
Since the above holds for every n~L: P„ the operat-
or (I'")

~ must be fully connected for any o, , P.
This completes the proof of connectivity of Eq.

(15). Together with the connectedness proof of
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Sec. VII we have shown that the projected BELT
theory based on Eqs. (12)-(16)has a connected
kernel structure.

IX. CONCLUSION

Vfe have. shomn hom the coupled integral equations
of the BELT N-body scattering formalism can be
reduced to equations of the same type as the cou-
pled- reaction-channels formalism by means of a
generalization of the Feshbach projection opera-
tors. In addition, we have provided explicit. ex-
pressions relating the solutions of the reduced
equations to the exact transition operators or to
the solutions of a less reduced set of equations.
Exchange symmetry effects are explicitly included.

Throughout the derivation care has been taken to
ensure the connectedness of all equations. In par-
ticular, we have shown that the reduced equations
for the modified wave operator and the equations
embedding the approximation in the exact theory
both have connected kernels after iteration. The
connectedness of our equations then allows their
solution by constructive numerical methods.

The reduced equations given here provide a-
method for treating approximately few-cluster re-
actions within the framemork of the many-body
connected kernel formulation of scattering theory.
In this respect, our work parallels that of Polyzou
and Redish, 4 with the specific application to the
BELT many-body equations. It should be noted
that the present approach appears to be easily gen-
eralizable to include other partition coupling
schemes by a suitable redefinition of the partition
coupling arrays, ~,VP and the projeetors.

The present formulation has various possible
applications. An example of a possible application
is the cluster model for n- triton scattering given
in the Appendix B. It is seen that the theory pro-
vides a substantial reduction in the number of
coupled equations in comparison to the exact for-
malism. Furthermore, since the BELT theory is
capable of dealing with many-body forces and non-
local potentials, the present formulation can be
taken to include such forces.

The BELT equations used in our discussion mere
the antisymmetrized form of the Kouri-I evin-type
equations due to Goldflam and Tobocman. ' Our

' analysis can be carried out in a similar fashion for
o the r versions of the BELT formalism. The pro-
jection operator reduction of the nonantisymme-
trized BKLT formalism equations is recovered
from the above results by simply setting N
=. . .=N„=1.

In place of the Goldflam and Tobocman antisym-
metrized BELT formalism equations we could
have started with the antisymmetrized BKLT for-
malism equations due to Toboeman. " These have

the same fo™as Eq. (6) with just the following
changes in definition:

U(„= V~ (, )A (33a)

-Ã-& Q ( 1)~n(nU (33b)

M =tj W „6„(),, (33c)

(3M)

Thus the results derived above can be applied to
these equations just by making these changes in
definition. The Tobocman equations are much
simpler than the GoldQam and Tobocman ones,
but they are not of the connected kernel type. "
However, if one always makes the approximation
of neglecting three-or-more-body channels, then
the resulting equations will be connected.
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APPENDIX A. SOLUTION OF THE BKLT EQUATIONS
FOR REALISTIC CASES

First of all, one must recognize that evaluation
of the antisymmetrized BELT equations presents
no difficulties that are not already present in the
original unantisymmetrized BELT equations. The
antisymmetrized equations are the result of mak-
ing a finite number of iterations and forming linear
combinations of subsets of the original finite set of
BELT equations. Such a finite sequence of itera-
tions will in general be used in solving the BELT
equations since they are thereby decoupled from
each other.

I.ike any other N-body scattering formalism, the
BKLT equations require the solution of all the N
—1,N —2, . . . , etc. problems as input to the N-
body equations. This is simple enough for N = 3;
for N greater than three we must be prepared to
make approximations and use models.

In the BKLT and all other minimally coupled
theories, the solution of the equations is expressed
in terms of the T-operator matrix elements with
respect to the eigenstates (i.e. , the asymptotic
channel states) of the two-cluster Hamiltonians H .8'
Al.so, the partition Green's functions G are ex-

B

pressed (via their spectral decomposition) in terms
of these eigens tates. Ultimately, we are required
to evaluate the matrix elements of the residual in-
te rac tion V of the form

( ) &4.( )
~
&. I e,(&)) P &
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(b) (&t' (a)
~

V ~4& (a')),

where (a), (b) denotes the relevant quantum num-
bers of the channel. To evaluate such matrix ele-
ments the knowledge of the asymptotic channel
states Q (a) is necessary. Here we may use vari-
ous models of nuclear structure, e.g. , the shell
model. Such matrix ele.ments are the same as
those required in distorted wave Born approxima-
tion calculations for inelastic and rearrangement
scattering and folding model potential calculations
of elastic scattering. Techniques for evaluating
such matrix elements are well developed.

The effect of the antisymmetrization is the re-
duction on the number of such matrix elements,
thus decreasing the amount of computational labor
needed to solve the problem. In particular, the
particle identity allows us to express all matrix
elements g& „„(a)

~
V, &;& ~&f& &,,»(a')) interms of the

matrix element (p &, &(a)
~
V, &, &

&t& &, &(a')).

Thus, for any partition n, the net reduction in the
number of matrix elements of V needed for the
solution is ~N (N, +1). Similar reduction obtains
for all other matrix elements. If N is not too
large (N ~ 5) it appears that the GT (Ref. 9) ver-
sion of the antisymmetrized BELT equations is
numerically tractable.

APPENDIX 8. CLUSTER MODEL EXAMPLE

In this appendix we shall work out a few details
of a simple cluster model within the framework of
the present formalism. We start by considering
an effective four-body problem: a+ three nucle-
ons, where all the nucleons are treated as distin-
guishable and we shall assume that the n particle
exists in the system as an inert core.

In the full BELT equations for a four-body prob-
lem, all the two-cluster partitions must be in-
cluded. These are

B =—(o.(n,nP), (nn, )(nP), (o&n, )(n,p), (nnP)n„(on+)n„(nn, n, )p, (oP)(n,n, )j.
The first partition corresponds to the a+( channels, the next two to the 'He+I channels, the next two to
'Li+n, the sixth partition corresponds to the 'He+P channels, and the last to 'Li+ (nn) scatterings. With-
in the assumption of an inert n particle, the complete set of partitions occurring in the final state is

A =(o.(n,nP), (nn, )(np), (on, )(n,P), (nn, P)n„(on@)n„(nn„n, )p, (np)(n, n, ), on, (np), on, (n,p), o&p(n, n, ),
(oP )n,n» (o'n, )Pn „(on,)Pn „nPn,n,j, (82)

where the parentheses indicate a stable cluster (i.e., bound state of the particles in the parentheses). The
.three- and four-body final states appearing in A enter in the BKLT via the continuum of the two-cluster
states associated with the two-cluster partitions p cB.

Let us now choose the reaction set, the set A~ of partitions n (=A to which belong the channel states
(i.e., the eigenstates of H ) which we select as most important from all those which can be formed in the
n+t reaction. To be specific, assume that only the following final partitions can occur,

A„-=(o(n,n p), (on, )(n p), (on, )(n,p), (o.n, p)n„(one)n„(on, )n p, (on, )np, (nn, n, )pJ;

i.e., we allow three-body breakup but not the four-body final states.
To this setA~ corresponds the BKLT reaction set

Bs=—(yP cB, go& cA» o. &PJ

-=(n(n,np), (on, )(nP), (nn, )(nP), (o&n P) n„( on@) n„(n nn, )P),

where all two cluster partitions from B which contain at least one partition a (=A~ have been included to
ensure connectedness. Thus B~ contains six partitions out of the seven possible. We now construct the
projectors in the following manner. For each partition n &A~ there is a set of quantum numbers
a =(E,a„.. . , a„j corresponding to the internal states of each of the clusters and the total energy. From
the collection of eigenstates of H, , P E B„, we select only the states with asymptotic n-cluster states cor-
responding to partition n c- P.

In particular, since our reaction mechanism does not contain the breakup states of the triton, the pro-
jector P, is

P, = d'k, k k, x weight factor .

Note that only the ground state of the triton appears once we have assumed that n is inert.
Similarly, the 'He d = (nn)(nP) projector is
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I'. ,-ZJ d'k
I &.„.& I @8& Ik&&l I &@8 I &&.„.I ' (weigh«a«or) .

. The sum over the internal states of 'He is limited to the selected bound states, while the sum over the in-
ternal deuteron states includes the bound and breakup states selected as important for the problem.

In this manner, we can construct the projectors for each two-cluster partition Pc B„from a given set of
important states. The expressions for the projectors are understood as compact representations of, e.g. ,
the coordinate space projectors of the form

d'~I&,„(f)e,(j)~(r.„.,—r)&B(,j)«,„.(f)e,(j)~(,„„-r) I,
if

where B(i,j)=1 for included states and zero otherwise. For the problem described here we can now take
the partition coupling array ~ to be

~e,s,=~s,s,
=' ' ' =~s,s,=~ =~s,s,

where p, g' Bs, p„.. . , p8c B„Of c. ourse any other choice of '&v which cyclically couples the partitions
P„.. . , P, E Bs can be used to write Eqs. (12)-(16).

Before writing down explicitly our set of coupled equations, we carry out a partial antisymmetrization
of the problem. We will assume that n behaves as an inert particle and antisymmetrize only the external
nucleons. Then the partitions p, and p„p, and p, are equivalent, and we obtain the following set of equa-
tions (p, = nt, p, = p8 = 'He d, p, = p 8= 'I i h, 88 ='He p):

TB 8 VB GB (1+VB GB )GB + VS GB, VB GB TB 8:VB GS (1+VB GB )GB '+ Vs GB VS GB (H8

TS 8
= VB + VB GS ~8 8 TB 8

= VB GB ( 8 + ~8 8 ) .
The implementation of equations of this type is discussed in Appendix A. In Eq. (B8) the propagators are
assumed implicitly to contain the appropriate projectors.
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