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This paper derives cluster expansions for the three-body scattering problem. We determine, by
c'omputation, the utility of the exact and approximate descriptions that emerge from the cluster approach. In
general, cluster expansions can give simple approximate solutions to the scattering process that are accurate
whenever clusters dominate the underlying physical states of the system, The approach to the problem taken
here is to employ the Karlsson-Zeiger integral equations to provide a theoretical framework that is natural
for a cluster expansion. Eventually one can restate the scattering problem in terms of effective intercluster
potentials. We construct integral equations whose solutions are the effective potentials. The cluster expansion
for this problem leads to successively more exact effective potentials. For systems composed of either three
bosons or fermions and interacting through separable potentials we compare exact three-body solutions in the
bound state arid elastic scattering sectors with those obtained by the cluster-expansion techniques.

NU CL EAR REACTIONS Three-body problem. Cluster representations. Approxi-
mation schemes.

I. INTRODUCTION

The objective of this paper is to describe cluster
expansions of the three-body problem and to as-
sess, by computation, the utility of both the exact
and approximate descriptions of the three-body
scattering theory that emerge from the cluster
approach. In part this work is motivated by the
success in nuclear collisions of the resonating
group theory to approximately describe the elastic
scattering of two tightly bound clusters. However,
the resonating group theory treatment of the scat-
tering process' is not an exact description of the
N-body scattering process and a number of at-
tempts to bring it within the framework of a com-
plete and exact scattering formalism have been
made. ' It is now understood that considerable
care is needed, as Adhikari and Glockle have re-
cently shown, ' if one is to avoid both spurious so-
lutions of the scattering problem .and internal con-
tradictions within the formalism.

The basic goal of any cluster expansion is to ar-
rive at a simple approximate description of the
scattering process that is accurate when cluster-
ing dominates the underlying physical states of the
system. In this paper we obtain several sets of
integral equations that feature in a natural way
two-cluster states and at the same time remain
exact descriptions of three-body scattering. The
approximate solutions of these equations obtained
by low order iterations define the cluster expan-
sion of the three-body problem and enable us to
quantitatively investigate the accuracy of this de-
scription and its rate of convergence to the exact
three-body scattering solutions.

Our approach to cluster representations is set
in the context of the Karlsson-Zeiger (hereafter
KZ) integral equations. ' Generally, integral equa-
tions for the three-body problem require a choice
of a complete basis in moment space. In the ap-
proach of Faddeev' the basis is taken to be plane
waves of three free particles, whereas in the KZ
equations the basis is taken as one free particle
adjoined to an interacting pair that is either in a
scattering state or a bound state. The resultant
KZ equations are structurally different from those
found by Faddeev. In particular, the complex
three-body energy z appears only in the propaga-
tors of the equations. The simplicity of the prop-
agators in the KZ equations allows us to decom-
pose these Green's functions into a sum of two
propagators —one contains only a, two-cluster state
and the other the orthogonal three-particle conti-
nuum state. This decomposition in turn allows us
to decouple tQe integral equations so that the con-
tinuum and the two-cluster contributions are
treated separately. In fact, two sets of cluster ex-
pansions result, depending on the order in which
one turns on the continuum and cluster states.

The method outlined above for decoupling the KZ
equations has been investigated at a formal level
by Bolle, ' and given an explicit kernel form using
a three-body scattering wave functions approach
by Kuzmichev. ' The equations outlined in the next
two sections in part consolidate and extend the re-
sults of these two authors. A feature of consider-
able interest is the emergence of an effective chan-
nel potential that arises when the three-body de-
grees of freedom are decoupled from the problem.
This effective intercluster potential is given as

20 869 1979 The American Physical Society



D. EYH, E ANIjj T. A. OSBORN 20

the solution of an integral equation. Section V de-
scribes iterative approximations for the effective
channel potentials. The final section describes
numerical solutions of the cluster expansions for
three equal mass bosons or fermions that interact
via identical pairwise separable potentials. We
obtain results for the three-body bound state sec-
tor as well as the scattering sector below three-
body breakup.

2 2 2
PN 7w Po
2'Pl ~ 2O,~ 2' Q

(2 1)

The scattering problem is assumed to be ini-
tiated in channel n. Particle n, with initial mo-
mentum p', is incident on the pair Py. The am-
plitudes for elastic and rearrangement scattering
are denoted by Hs„(ps, p'), where P= 1, 2, 3 and
labels the final channel. The breakup amplitude

II. DECOUPLED KARLSSON-ZEIGER EQUATIONS

In this section we recall the form of the KZ
equation, introduce the cluster decomposition of
the propagators, and give the operator form
of the cluster expansion. We adhere to the choice
of three-body momentum variables given by Karls-
son and Zeiger, namely, the two independent Jaco-
bi momentum variables in the three-body c.m.
system are denoted by (p, q„). The momentum of
particle n having mass m is p„, and the relative
momentum of the pair P and y is q„. The reduced
mass of pair Py is i„)=msm&( sm+ zm)

', and the
reduced mass of cluster Py relative to particle
n is n„= m( ms+ mz)( m+ms m+z) '. We often will
represent the pair of vectors (p„,q„) by a single
six dimensional vector p, and associate with p, a
reduced mass no'=n O, . In this case the three-
body Hamiltonian for kinetic energy Ho may be
represented by

will be the sum over P of the three functions
Es (p, ; p'). As Karlsson and, Zeiger have shown,
these six functions satisfy a set of coupled inte-
gral equations, whose kernels are given by the set
of energy-independent rearrangement potentia. ls,

V",„(p„p'.) = -F&s„y,(qs'))q. (qg)),

V"s'„(Ps, Po) =-5B„P s(q su')Q„(q ",q„'),

Vs' (p„p'„)=fs„t s(qs", qs)g„(q„"'),
(2.2)

VB'„(P„P,') =Os„t s(qsu), qs)Q (qg), q'„),

where E8 —-1—6&„. The momenta q8" and q"' are

pi ~
OB.

p q(2) O'N p/ p (2.3)

The functions Q's, f'z, gs, and Ps are all construct-
ed from solution of the n-y two-body problem. If
l)8 is the two-body interaction and 58 =q &'/2O.

&
the

kinetic energy operator, then gs(q) is the bound
state eigenfunction with binding energy c &, viz. ,

& sk s = (h s+ ' s)4 s = e s'& s . (2.4)

The vertex function iP s is constructed from Ps by
the equation

2

W, N) =
2 +~~)0,(i).
2O. 8

(2.5)

The scattering wave function solutions of hz are
the momentum space matrix elements of the wave
operator defined by the time limit

gk I' m e fh gt e-g It 8 g

8
f ~'p oc

(2.6)

In terms of 0~8 the half-on-shell t matrices are

f's(q, q') =&qlUBQslq') =&q'IQB'. lq) (2.7)

The six functions II8 and Es„satisfy the coupled
integral equations

y&& f «l~+ f
H+

pp pl ) Vbs (p pl ) g 2n BY ~ps) PYI vn~pY 7 Pn~ dp/I

y &Q y&Q

V sy(PB) Po )E) ~(pp & P~) d~ii
-0 Po~

~o o 4

(2.8)

E „(p„'p ) = V"„(Po P ) —g 2
y&o

V's'v(PO Pv')H,
'

(P,''P~) d "—M 2n
y y y&o

V's', (po pl')E;. (pl', p.') d-:
0 ' 0

(2.9)

In describing an arbitrary final state channel y it
is useful to know the magnitude of the momenta al-
lowed by energy conservation. We have reserved
the symbol ky for this momenta which is deter-
mined by p„', the eigenvalues e& of Eq. (2.4), and
where by convention we set co=0:

12 1/2

k& =(2n&)'~' —e„+e&, y=0, 1,2, 3. (2.10)
lg

Ot

Examining Eqs. (2.8) and (2.9) reveals the basic
structure of the KZ equations. The equations
form a set of connected scattering equations for
the physical amplitudes II'8 and EB . The kernels
depend on simple energy-independent potential-like
functions given in Eq. (2.2). These potentials
utilize only half-off-shell two-body t-matrix in-
formation determined at positive two-body scat-
tering energies. In Eqs. (2.8) and (2.9) the singu-
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lar denominator (p"' —kz —i0) ' describes prop-
agation of the cluster g&, the denominator (P,"'
—k, —i0) ' gives the propagation of an interme-
diate state that is composed of a free three-par-
tic'e continuum.

We now turn our attention to the problem of de-
coupling these equations. In the process of solving
this problem we will automatically construct a
cluster expansion of the three-body problem. De-
fine for complex z the Green's functions G(z) and

G„(z) and G (z) by (H-z) ' and (H -z) ', respec-
tively T.he transition operator Uz„(z) of Alt,
Grassberger, and Sandhas' is determined by

G(z) = 6„,G, (z) —G, (z) U,.(z) G„(z) . (2.11)

—P K„V,G, (z)T, „(z), (2.13)

where y is summed over 1,2, 3. It is well known'
that the interacting matrix elements of Tz„(z) give
representations of the physical transition ampli-
tudes in momentum space. Specifically, if s
=p "(2n„—e„ is the available incident energy, then

H'8„(pa) p„') =&pzqsl T8„(s +i0)lp' y„& (2.14)

E8„(p,; p') = &p80&(, q8) I T8„(s„+i0) lp„'g„& .

(2.15)
The half-off-shell function Hs is identical to the
function appearing in Faddeev's description of the
elastic and rearrangement amplitude, whereas
E& —the P component of the breakup amplitude—differs from Faddeev's breakup representation
and the two are only equal for on-shell kinematics.

To proceed with the decoupling of the KZ equa-
tions, it is convenient to write Eq. (2.13) in a ma-
trix form. Let V, V, R,(z), R(z), and T(z) denote the
3 X3 matrices withoperator elements 6„&V„, V 5„6,
6 8G,(z), 6„8G„(z),and T„s(z). Then Eq. (2.13)
can be written

T(z) = T[-R,(z) V] —VR(z) T(z) . (2.16)

Now expand G (z) into cluster and continuum parts.
Let the projection operators P' and P' be defined
by

&p.q. lP'.
I p."q."& =6(p. —p.")P.(q.)P.(q.")*,(2»)

&p.q.lP: I p."q."& = 6(p. —p.")&q.Ill.fl.' lq."&

(2.18)

The projectors P' and P' have orthogonal ranges,

Use U8„(z) to define a related operator Tz„(z) by

Ts„(z) = VBG,(z) U8„(z)GO(z) V, o. &0, p&0. (2.12)

It is a simple matter to show that T8„(z) satisfies
the equation

Ts„(z) = —68„vsG,(z) V„

diagonalize H„, and span the three-body Hilbert
space. Thus one can write

G„(z) = G.(z)+ G'„(-.), (2.19)

R(z) = R'(z) + R'(z), (2.21)

where [R"(z)] 8=6„8G"„'(z).
The next stage is to decouple the equations for

Hs„and EB„. We assume that [1+ VR'(z)] ' exists.
This is very probable since the operator WR'(z) is
completely connected. In this circumstance the
equation

T'(.) = V- VR'(z) T'(z)

has the formal solution

T'(z) = [1+ VR'(z)]-' V.

Using Eq. (2.21) in (2.16) leads to

[1+ VR (z) ]T(z) = V[—Ro(z) V] —VR~(z) T(z) .

Applying the inverse of the left factor gives

(2.22)

(2.23)

(2.24)

T(z) = T'(z) [-R,(z) V] —T'(z)R'(z) T(z) . (2.25)

At a formal level Eqs. (2.22) and (2.25) constitute
a decoupling of the scattering problem. In Eq.
(2.22) the only intermediate states that can prop-
agate are continuum states. Given knowledge of
T'(z), then Eq. (2.25) essentially turns on the clus-
ter features of the scattering problem.

We note that the order in which cluster struc-
ture may be turned on is arbitrary. So assuming
[1+VR'(z)] ' exists, we can define T'(z) as given
by the solution of

and

T'(z) = V- VR'(z) T'(z) (2.26)

T'(z) = [1+ VR'(z)]-'V.

Then, arguing a,s above, we have

(2.27)

T(z) = Z'(z) [-R,(z) V] —Z'(z)R'(z) T(z) . (2.28)

In this order, one solves for the effect of the clus-'
ters first and then, in Eq. (2.28), takes into ac-
count the changes in the system due to the conti-
nuum states. The statements (2.25) and (2.28) re-
produce the results first obtained by Bolle. ' How-
ever, in order to see the full physical content of
the operator identities in Eqs. (2.22)-(2.28), one
must take matrix elements of these equations with
respect to the interacting two-particle basis sets.
This is the task of the next section.

G' (z) =P'„G„(z)P'„, G'„( ) =P'„G (z)P'„. (2.20)

Note that the product G'„(z)G'„(z) =0. Using this de-
composition to write R(z) as the sum of a cluster
state and a continuum state gives us



872 D. EYRK AND T. A. OSBORÃ 20

TB„(z)=58 V~ —Q 5sy V~Gy(z)Ty„(z),
y

7',„(z)= 7"8.(z)[-G,(z) V„]

(3.1)

8y z G~q z Ty z
y

(3.2)

After appropriate matrix elements are formed,
and the completeness of the two-body wave opera-
tors Q& is utilized, operator identities (3.1) and
(3.2) will give us four independent equations —two
integral equations and two quadrature relations.
We define a quasibreakup amplitude Ez from the
operator T'8„(z) by

E'„(p. p') =&p fl (,q )17".( + 0)IP„'g„&

(3.3)

This definition clearly parallels that of Eq. (2.15)
for the P component of the physical breakup am-
plitude. Now multiply Eq. (3.1) from the left by
&psos(, qs) ~; from the right by ~p„'p„&, and set z
= s +iO. It is readily found that

E B (P.; p.'}= V8'. (p. , p.')

y&Q

2n, v;;rp. , P;)E;.rp:; p.) „„
(3.4)

This is an integral equation for E'8 . The kernel
and driving terms are constructed from the KZ
potentials Vs'„and Vs~ .

The second relation to be extracted from Eq.
(3.1}is obtained by using states &psgs] and~p' g„&
to construct matrix elements. We shall need the
two-clusterlike amplitude

ff'B.rps, p.') =&

Pet�.

817 8.(s.+ ~0}
I p.'4.&

then Eq. (3.1) becomes

H'g rp8, P') = V'8'„rp8, p'„)

(3.5)

y&P

VBv(P89 Po)+vn(po & Pa) d il
pf2 y 2 o PQ

Q

(3.6)

III. INTERACTING REPRESENTATIONS

We investigate now the consequence of the iden-
tities (2.22) and (2.25). In component form these
two equations read:

In obtaining Eq. (3.7) we have employed the identity

-G,(s.+ iO) V„~p„'y„& = ~p„'y.& . (3.8)

y&Q

E'8, rp. ; P!}Jf,'.(p", p.'}d-„
y y

(3.9)

This is a quadrature relation for E8 . In order to
use it we must first have solved for Hy„. Essen-
tially the integral on the right of Eq. (3.9) com-
putes for us the difference between the quasibreak-
up component E& and exact breakup function E8„.
This difference is just due to the effect of including
the influence of the cluster structure on the break-
up amplitude.

Our second set of decoupled equations are de-
rived by taking matrix elements of the identities
(2.26) and (2.28). The component form of Eqs.
(2.26) and (2.28) reads

This latter result is nothing more than the Schro-
dinger equation for the state ~p„'g„& .

Equations (3.4), (3.6), and (3.7) form a solvable
system. In Eq. (3.4) we solve a three-body prob-
lem that allows only continuum intermediate
states. Then via. Eq. (3.6) we take E&„and by in-
tegration determine an effective potential function
H8„. Lastly, this effective potential is used in the
coupled cluster structure given by Eq. (3.7) to find
the exact elastic and rearrangement amplitudes
H8„. Taken together, this system of three equa-
tions provides a cluster description of three-body
scattering which is exact. The effect of the inter-
mediate three-particle continuum states is summed
up into the form of the effective two-cluster poten-
tials Hz„. Iterative approximations to Eq. (3.4)
will automatically define a cluster expansion of
the three-body problem wherein one can take into
account successively more accurate, but approxi-
mate effects of the three-body continuum. At
each stage of the iteration of Eq. (3.4) one is able
to construct a more accurate approximation to the
exact effective potential H'8 .

One additional equation is needed to make the
system (3.4)-(3.7) complete. We must find the
breakup function EB . This is given by the matrix
element of Eq. (3.2) with respect to &pBQ&( ~, q8)~
and ~p„'(„&. The result is

E8.(P.; p'. ) = E't .rp. ; p.')

Given E' „,Eq. (3.6) is a quadrature relation for
H's . Finally, turning to Eq. (3.2), its two-cluster.
matrix elements are obviously

r', „(z)=K,.V, —g 6„V,G', (z) r', „(z),
y

(3.10)

ff S„rpB,P') =He„rps,'P')

H'a, ps p„" H' p" d
y&Q

p"'-u '- o
y y

(3.7}

r,„(z)= r', „(z)[-G,(z) V.]-g 7'„(z)G'„(z)T„.(z).

(3.11)

Equation (3.10) leads to two integral equations,
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one for the case when the right-hand state is a
cluster and one for the continuum case. We define

Dg„(pg, p,";s„+i0)=&pggg~Tg„(s +i0)~p„"0„(',q'„')& .
(3.13)

H'g. (p g, p.') = &pgy gl &g.(g. + i0)
I p„'e.&, (3.12) These amplitudes are the solutions of

H'g„(pg, p„') = ~'g'„(Pg, P„') —g 2&/
y&p

~'g", (Pg r, )H', .(r, P.') d-,
y jp z0 . y

y y

g) &pg ) ry) vn~ )i po ) n+

y & p J
y y

z

(3.14)

(3.15)

Associated with Eq. (3.10) are two quadrature relations that determine the functions

Eg (p, ; p'„) =&pgOg(, qg) IT'g. (s„+(0)Ip.'P.&

F',„(p,;p,";s„+i0)=&p &g(, qg)17'. (g. +i0)lp."~.(,q.")&.

These two functions are computed from Hg and D'g„by

(3.16)

(3.17)

E'g (p0', p')= l'g (P0 p')-Z 2")
y&p

~",(p.. .)H', ,(, ; P.') d-,
& '-u ' —zo

y y

(3.18)

F g (P0ipo's +i0) = l g (Po Po) Q 2+y
y&p y y

(3.19)

The linkage of the four functions H'8„, D'z, E'8,
and F 8 to the physical observables is dictated by
Eq. (3.11). For example, take the matrix elements
of (3.11) that lead to the physical breakup ampli-
tude (2.15). We obtain

Eg. (p. ; p.')

= E'g. (p. ; p.')

Eg„(PD, P,";s +i0)E g(PQ d
~ ~

~
~

u' oy&p Pp —
p

—Z

(3.20)

This is an integral equation for the breakup am-
plitude with kernels given by the functions E'8„,

Finally, the set of rearrangement and elastic
amplitudes is determined from Eq. (3.11) by taking
two-cluster matrix elements. One finds that

Hg (PgiP')

= Hg~(Pg) P)),)

Dg, (Pg' PD i s + i0)E„„(PD' P ')
d

y&o Po -uo -S
(3.21)

The set of six equations (3.10)-(3.11), (3.14)—
(3.15), and (3.20)-(3.21) are a solvable system of
three integral equations and three quadrature re-
lations. Evidently this set of equations is more
elaborate than those of the first decoupling scheme.
However, the physical interpretation of our equa-
tions is again evident. The functions H~ are the
two-cluster scattering amplitudes in the situation
where there are no intermediate three-particle

I

continuum states. Dz gives an off-shell 3-2
transition amplitude that results if all intermediate
states are two-cluster states. The last pair of
equations (3.20)-(3.21) allow one to compute the
difference between the exact amplitudes &z and

Hz and the two-cluster approximations Ez~ and

H~

Both sets of decoupled equations share the fea-
ture of unlinking the continuum and two-particle
states. This structure then gives us the oppor-
tunity to treat either the continuum intermediate
states or the two-cluster intermediate states in a
perturbation expansion. An expansion of this sort
is attractive because it has a well-defined physi-
cal meaning.

It is helpful to have simple names to distinguish
the two different decoupling schemes we have de-
rived in this section. Because the first method,
Eqs. (3.1)-(3.9), reduces the three-body problem,
via integral equation (3.7) to a set of coupled two-
cluster channels interacting through the effective
channel potentials Hg, (pg, p„"), we shall call this
the effective potential representation (hereafter
EPR). Our second decoupling scheme determines
Hg, with the integral equation (3.20) which has
only continuum intermediate states. So we shall
denote this representation by the initials CIS.

Finally recall that the solubility of the decoupled
schemes EPR and CIS requires that (3.2) and (3.10)
have unique solutions. In a previous study of the
KZ equations we have shown how to introduce an
algebraic decomposition of the amplitudes that
transforms the KZ equations into a Fredholm
equation with nonsingular kernel. ' Similarly
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(3.4), (3.14), and (3.15) can be brought into a
Fredholm form. Thus Eqs. (3.6), (3.14), and
(3.15) obey the Fredholm alternative and have
unique solution, provided that the corresponding
homogeneous equations have no solution. A com-
plete mathematical proof of uniqueness would now
show that these homogeneous equations can have no
solutions or only have solutions in exceptional sit-
uations. %e have dealt with this problem by solving
the numerical equivalents of (3.6), (3.14), and

(3.15). For three-body energies in the bound state
and two-cluster scattering sector (i.e., below
breakup) we have always found unique solutions.

IV. CLUSTER REPRESENTATIONS OF THE
BOUND STATE

In this section we present the decoupled integral
equations that occur in the EPR approach to the
three-body bound state. I et the ith bound state
wave function of the full three-particle Hamil-
tonian H have energy -s,.& 0. Faddeev's solution
to this problem is to represent the wave function
as a sum of three terms, I+g&. These thr~e fun
tions are the solution of the coupled homogeneous
system

~e,&=-g G, (*&v,a,„&e„& (4.1)

(Hg —s)I+g&= ICg& ~ P =1,2, 3.
In terms of ICg& the bound state analogs of the
scattering amplitudes, H~ and E~, are

H"(p)=&p.e Io & E'(p')=&& II( q )IC & (4.3)

No label e occurs with these amplitudes since
there is no incoming state. In terms of H~ and

Ez the cluster and continuum projections of the
Faddeev components I+g& are

(4.2)

for z = -s .. We find it convenient to define a modi-
fied Faddeev component function given by

&pgqgI@g& = (pg'/2ng &—g+ s,) ~.H-g(pg),

&pgIIg(', qg) I+g& = (pg /2'+ gg /2 pg+ s,) Eg(po) .
(4.4)

In many ways the functions H,'(pg) and Eg(pp) are
the generalization of the two-body vertex function
defined in Eq. (2.5). The conventional plane wave
representation of I+g& may be determined from
Hg RIll Eg by

2~gag«~»g(pg)
p, —2ng(ag —s,.)

(qg, qg )+g(pg& qg ) „-pp
pg /2tlg+4'g /2+g+ S. (4.5)

Io,&= P 5,„v,G„(s)Ic„&, g = s, (4.6)

Taking the interacting matrix elements of this
equation shows that H& and Ez are solutions of the
homogeneous form of Eqs. (2.8) and (2.9), with
the propagators (p„"' —k„' —i0) ' and (p,"' —k,' —i0) '
replaced by (py~ —2n„q„+ 2n„s,.) ' and (p,"'+ 2n, s,.) ',
respectively.

The operator equations (4.6) may be decoupled
by the same analysis as in Eqs. (2.19)—(2.25).
It is readily shown that

IC,&=-g T;„(z)G„'(s)IC„&, s= s,. (4.7)

where Tg„(z) is given by the solution of Eq. (3.1).
In fact, if Eg„(p,;p'; -s,.) is the solution of Eq. (3.4)
with -ko' replaced by 2n, s, , then the effective
channel patential is

This equation -is the immediate consequence of the
definitions (4.4) and the completeness of Qg and

gg

The general relationships outlined above pro-
vide the bound state wave function once Hz and

Ez are known. The first thing to note is that H~

and Ez are solutions of an appropriate homogeneous
KZ equation. Equation (4.1) implies I4g& satisfies

ga(Pg~POI~ ~f~ P~&Pg) Poj ~ 0 ~rr2+ 2y&0 P'0 0 f

The homogeneous integral equation for the bound
state cluster amplitudes Hz is determined by tak-
ing two-cluster matrix elements of Eq. (4.7). One
finds that

H( ~=-~Z ~H' (p, ; p„";-s,.)H„'(p„") „-„
ply�& ~ I p

~i2 p
y&0 y y y y j

(4.9)

Finally, the continuum component of I4&g& is pre-
dicted by the quadrature relation

Eg(p, ) = —Q 2n
y&0

This completes our cluster description of the
three-body bound state problem. Note that one
can obtain a quantitative definition of the fraction
of the three-body bound state that is in a cluster
farm by computing the ratios of the norm of the
first term on the right of Eq. (4.5) over that of the
entire term (p, I@g&.
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V. EXPANSION APPROXIMATIONS

-Q 2n,
y&0 Po" -&0'- zo

(5.2)

In terms of the ith iterate for the pseudobreakup
amplitude E~ ' there is a corresponding effective
channel potential given by

H( (p(ip. ) —I',.(p(ipn}

y&O

&~"(p„pl')&;.*(Pl', p.') d-„
(5.3)

This section will develop the iterative expansion
of the EPR system of equations. Iterative approxi-
mations to Eq. (3.4) will define approximations to
the effective channel potentials H~ (pz; p,'). We
establish that the first iterate effective potential
contains the impulse approximation. At the close
of this section we indicate how the system of equa-
tions simplifies if the basic pairwise interaction
is separable.

We define the zeroth iterate of E~ and H~ by

&;.'(p. ;p.') = o, H;.'(P; P.') = q,'(P„P') (5.1)

The tth iterate of Eq. (3.4) is defined by the re-
cursion relation

&))I' (Poi Pn) = I ()u(Po|Pn}

H''-H' H"' H' as j-.ga ga & ga ga (5.4)

The convergence property reflects the fact that
Eq. (3.4) may be solved by iteration. This is
characteristic of many physical circumstances
where it occurs that the coupling of the three-
particle continuum to .itself is weak. Technically
this means that the operator VB'(z) has all of its
eigenvalues inside the unit circle of the complex
plane. This will not always be the case and alter-
nate approximate methods can be devised to deal
with this situation. The last stage of obtaining
a solution is to solve the coupled channel problem
given in Eq. (3.V). Essentially Eq. (3.V) is a ki-
nematic copy of the two-body problem and is
always easy to solve whatever the strength of
the coupling.

We turn now to the question of whether or not
the approximate solutions obtained by iteration are
self-consistent with the impulse approximation.
We prove that the first iterate contains the impulse
approximation. To this end we establish that

The last step in obtaining an approximation for the
physical scattering amplitude is to use the approxi-
mate potential Ha ' in place of H~ in Eq. (3.V).
The corresponding solution of Eq. (3.V) we will
denote H~', '. In all the examples studied numeri-
cally in this paper

~ay~pa & py ~ yaaa &Pa~pal aa&Pa~pa&
y 0 g

where the left-hand side is the standard expression for the impulse approximation given by

4.(q.'")(q,'" l t,(p."—~. —p,'"++) l q,'"')q. (q.'")
yo

where p„'=p„'/2n„and q„'=q„'/2t(„. The vectors q„" " are

(1) r I y rr (2) ~~ rr
qy

= -Pa — Py ~ qy
= -Pa — Py ~

PPf 8 8

(5 5)

(5.6)

(5.7)

To prove Eq. (5.5), substitute the definitions into the right-hand side of Eq. (5.5). The right-hand side is
then equal to

{~())) r{qy i 'qy)ty(qy ~ 'q) ) d e kg{(I y ) p) ((I) },), { (2)) d iia q prr2+-rr2 pr2+ .0 qy —
prra pr2+ -0 va a Py- (5.8)

The term inside the brackets can be reduced to
the matrix elements of a single off-shell I, matrix.
Recall the standard two-body identity

(5.9)g,(z) t(z) = g(z)u .
Take the (q~ and ~q') matrix elements of Eq. (5.9}
and use the completeness of the set 0 and )I) to
evaluate the product g(z}v. The identity

(ql t(z) I q') yr(q }(t(q') Q-(q, q")t'(q', q")
g —Z q+Z

(5.10)

l

follows. If we employ Eq. (5.10) in the expression
(5.8) we obtain the formula (5.6) for H' '(p; p' }.
To interpret this result correctly, we note that the
right-hand side of Eq. (5.5) is not the definition
of H~ '. Recall that Hz' is the solution to the in-
tegral equation (3.7), with H~„replaced by H~"'.
However, the solution of H~

' contains all the
terms on the right-hand side of Eq. (5.5) and so
includes the full impulse approximation.

The final topic of this section is to indicate the
simplification that occurs when the pairwise in-
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d;(P;P,*)=,f', (ss)s s')(,(sP ss)( ss)(s+ )(0(P„')d ss.s

(5.11)

In the case where the interaction is separable we
may write t' as the product of two factors

s(» «»
)

(qs q) y(» ss)f q, q— (5.i2)

teractions are separable potentials. Consider the
behavior of the amplitudes E~ (p, ;p') and Ef„(p,;p„')
The definition of these functions in Eqs. (2.15) and
(3.3) have the common feature that they are matrix
elements of an operator of the form VzAz (s +i0).
The operator A~, (z) simply takes a different form
in the two cases E~ and E~ . Using definitions
(2.15) or (3.3) and inserting a complete set of mo-
mentum states between VB and A~ (s„+iO) gives
Us

where Q is the vertex function defined in Eq. (2.5).
Thus the right-hand side of Eq, (5.11) can be
written

s(qs')(psqs'lAs (s +'io)lp')dqs'
$()(q ())

(p8&8lv~A& (s +i0)lp'g„). (5.13)
()(qa)

However, we note that the amplitude on the right
of Eq. (5.13) is just H~"(p8;p'). Altogether one
obtains the factorization property

(5.14)

This property is easily seen to reduce the two-
vector variable integral equations to equations in
the one-vector variable. Consider the EPR sys-
tem first. Then quadrature relation (3.6) and in-
tegral equation (3.4) reduce to the common form

«s;(ps;)s„')=ys,'(ps;p„') —Q f Ss„(psp„;s„+Sp)«,,*„"(p„"; ') p)s„",d
y&O

where the kernel I&„ is given by the integral

(5.i5)

(5.16)

Finally we state the form of the integral equations in the CIS representation. Again the separability
leads to factorization properties analogous to Eq. (5.14). In this case Eq. (3.20) simplifies to

«S.(Ps'P.') =«s. (Ps, P.') —Z fds, (Ps, P,";s.+ SP)«„'.(P„";P.') d P„".
y&O

The kernel J~, is the solution of

(» ~ »s.
& +f0)-I (»») s +f0) p 2 ()»(p()sp»)»y(p» ppyp a+~ ) d«»

Qo

(5.iv)

(5.18)

The equation for ZB„ is the one-variable form of Eq. (3.15). After the separable reduction is effected, it is
seen that the CIS system is no more difficult to solve than the EPR system.

VI. CONCLUSIONS

We report here the computational results we have obtained using the decoupling schemes EPH and CIS.
Basically we have compared the approximate solutions found by iterative expansions for the effective po-
tentials with those determined from an exact solution of the Amado-Lovelace equations for the separable
potential three-body problem. To begin with, we quote' the form taken by the Amado-Lovelace equation.
The two-cluster amplitudes Ha satisfy

If+ (p ps ) VA (p ps s+ &0) P 2+ ~-PBs s y s sd yds(Py s Pds

r&0

The kernel U~ is constructed from the two-body functions by

y, (C',")&,m' )

The function 8, is defiried from the full-off-shell two-body t matrix" by

+
t,iq» q,";s ~ + &0- p„"' =-

jig —k,' —iO

(6.1)

(6.2)

(6.3)
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3,fXACT2'

—0.10

1.0
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-0.14

o
C3 0.9—

—0.18—
0

I

0.5

(k/s, )2

I.O

0.5

(k/k )

0
1.0

FIG. 1. Solution of the EPR for a system of fermions
corresponding to n-d scattering in the 4$ state. Each
curve is labeled on the right by the i th iterate of the
EPR expansion.

Finally, all the equations are reduced to diagonal
form by taking appropriate linear combinations of

The two-body interaction is chosen to be a
Yamaguchi potential, viz. ,

(5.4)

1.2—

0.8—

The range parameter P is set to 1.44401 fm ', and
X adjusted to reproduce a two-particle binding en-
ergy of & =0.053 695 fm '. The solution on Fig. 1
labeled EXACT is the solution of the Amado-Love-
lace equations throughout the elastic scattering
sector. This system corresponds to neutron-deu-

FIG. 3. Continuous curve is the L norm of I and
dotted curve is the square root of the largest eigen-
value of I~I. The curves are shown for the case of
identi. cal spin-0 and isospin-0 particles.

teron scattering in the spin quartet state. Also
shown on Fig. 1 are the first four approximate
solutions, namely the value of kcot5 determined
for Hz' ' where i =0, 1,2, 3. The range of momen-
tum plotted is the fraction of the momentum at
breakup threshold which is given by k~ =0.2676
fm . When i=3 the approximate solution is indis-
tinguishable from the exact result on the graph.
Note that the approximation for i =0 is quite bad.
This is in accord with the fact that only for i~ 1
do our approximations become sufficiently self-
consistent to contain the impulse approximation.

Figure 2 shows the behavior of kcot6 in the elas-
tic scattering sector for three identical bosons in
the J= 0 state. This is a more strongly interacting
system than the three-f ermion system because of the
different spin and isospin recoupling coefficients.
Again for i~ 1 there is rapid convergence of the
approximate solutions. In fact a good measure of
the degree to which the three-body continuum
states in Ecl. (5.15) couple strongly to each other
is determined by the L' norm of the operator I

0.4—E

OO

O
O

0~

3
5
EXACT I 1111

1.2—

0.8

I I I 111III I I I 111111

—04—
-0.4

0.5

(k/k, )'
1.0

-0.8
I I I II

10'
I I I I IIIII I I I I I IIII

I 10

(-E) fm'
10

FIG. 2. Solution of the EPR for identical spin-0 and
isospin-0 particles. Curves are labeled on the right by
the i th iterate of the EPR expansion.

FIG. 4. Fredholm determinant at negative energies.
The continuous curve is obtained from an exact EPR,
and the dotted curve from the Amado-Lovelace equation.
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Iterate Fermions Iterate

-0.178 07
—0.13432
-0.125 08
-0.124 74
-0.124 99

-0.12503 fm ~

0
5

10
15
20
21
22
23
24
25
26
27
28
29
30
35
40
45

-0.580 27
-0.14578
. 0.00383

0.065 20
0.102 05
0.105 93
0.15429
0.177 62
0.15275
0.12419
0.11797
0.13783
0.157 26
0.152 16
0.13578
0.140 56
0.14175
0.14149
0.13975 fm-~

defined by Eq. (5.16). The top curve in Fig. 3
gives this norm and the lower curve is the value
of the square root of the largest eigenvalue of
I tI. The curves shown are for the boson case.

TABLE I. Iterative solutions to CIS showing the con-
vergence rate for k cot ~ at energy (k/kz) = 0.5.

The corresponding fermion results are obtained
by dividing by 2.

Figure 4 shows the values of the Fredholm de-
terminant for negative three-body energies in the
three-boson system. The dotted curve gives the
Fredholm determinant defined by the Amado-Love-
lace Eqs. (6.1). The solid curve is that implied
by the cluster integral equation for the bound state
Eq. (4.9). It is seen that, although different, both
Fredholm determinants have the same zeros,
each zero corresponding to a three-body bound
state pole.

Our last computations concern the t IS cluster
description. We do not have as well developed a
physical picture for this decoupling scheme and
for this reason have not carried out such extensive
calculations as in the EPR approach. Typical re-
sults are given in Table I. We have calculated
H~ and J~ . With these functions given we have
solved Eq. (5.17) by iteration. Recall H8' has the
simple interpretation of the solution of the KZ in-
tegral equations with the three-particle continuum
intermediate states turned off. Thus the iterative
convergence of Eq. (5.17) gives a measure of the
perturbation of the solution caused by the three-
particle continuum states. For fermions the con-
vergence is very rapid. The boson case shows a
characteristic slow convergence which oscillates
about the correct solution.
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