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Hartree-Fock calculations of crystalline structure of nuclear matter with harl-core potentials
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A Hartree-Fock calculation for the binding energy of a crystalline structure of nuclear matter in the
presence of a hard-core potential is performed. As expected, a strongly unbound nuclear matter is obtained.

NUCLEAR STRUCTURE Nuclear matter, Hartree- Fock calculations, hard-
core potential.

It has been sometimes suggested that nuclear
matter at normal density may be described by a
Slater determinant exhibiting a crystalline struc-
ture. " Recently it has further been argued that
such trial functions may be useful in that they may
lead to bound nuclei in Hartree-Fock calculations
with hard-core potentials. ' 'This suggestion ap-
pears somewhat surprising in view of what we
know about the nuclear interaction. Indeed, in
order not to experience the strong short range re-
pulsion with a determinantal wave function, it is
necessary to confine each nucleon in a small vol-
ume v. At normal nuclear matter density the av-
erage distance between two nucleons is 1.2 fm.
Assuming a hard-core radius c =0.4 fm we find
that v should be of the order of 4wR'/3 with R
=0.4 fm. From Heisenberg's uncertainty relation
this value implies a kinetic energy per nucleon
T/A) (I/2m)(h/R)' =100 MeV. In contrast the
nucleon-nucleon attraction at a distance of 1 fm is
of the order of 1 MeV only which makes it difficult
to obtain a bound system.

Since the previous qualitative argument does not
seem to discourage the kind of speculations men-
tioned, ' ' we have performed a Hartree-Fock cal-
culation of nuclear matter in order to provide
numbers. We have used the Gammel-Christian-
Thaler potential~.

v= g[v, ,(~)+w, ,(r)s„]s„,
Sg T

where P» is a projector on the subspace with
spin S and isospin T, and where

V»(v) =~ if r (0.5 fm,

=A ~ rexp( p»r)/p»x , if r -& .0.5 fm

W &r(x) = ~ if x (0.5 fm,

=B»exp(-v»x)/v»x if x &0.5 fm.

We have used the parameter set 5100 of Ref. 5.
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FIG. 1. Body centered cubic crystalline structure for
nuclear matter. Small arrows indicate the spin orienta-
tion of the nucleons.

Our trial function is a Slater determinant,

c(x„x„.. . , x„)= detIIy, .(x,.)II,
1

A

with x =x, 0, 7. The single particle functions y;
are of the form

y (x) ="(
I
r -R I) x., (c)x, (r)

where the values of R, , o„v,. are assumed to cor-
respond to a bcc lattice, as described in Fig. 1.
The nucleon spins have been arranged in order to
obtain the largest binding energy from the tensor
force. ' Denoting the lattice constant by a the nu-
cleon density is p=2/a'.

In order to obtain a finite binding energy we
have to make sure that the distance between two
nucleons is always larger than the hard-core ra-
dius c. This will be the case if u(r) vanishes out-
side a sphere of radius R satisfying 2R +c (av3/2.
To determine u(r) we minimize the kinetic energy.
'This requirement is a plausible approximation to
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TABLE I. Binding energy per particle (E/A) of nuclear matter as a function of the density
p. The Fermi momentum &I is also given as well as the lattice constant a. The various con-
tributions in the total energy are given in detail, while point Yukawa refers to the classical
interaction between two particles (see text). The last column gives the results of a Jastrow
calculation performed in Bef. 5 with the same interaction.

Kinetic
P~ (fm ) p (fm ) z (fm) T/A (MeV)

Point Total
Yukawa Yukawa Tensor energy Bef. 5
(MeV) (MeV) (MeV) (MeV) MeV

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

0.117
0.185
0.277
0.394
0.540
0.719
0.934
1.187
1.483

2.576
2.211
1.933
1.719
1.547
1.406
1.289
1.190
1.105

273.2
408.8
593.9
837.8

1160.1
1587.7
2155.0
2907.7
3921.8

—11.5
—23.9
-43.7
—71.7

-109.8
-159.5
-222.1
-298.3
-389.9

—9.4
-20.9
-39.8
—67.3

-104.9
-154.3
-216.7
-293.0
-384.7

-5.3
-9.5

-14.9
-21.4
—28.7
-36.7
-45.1
-53.9
-62.8

258.5
378.4
539.2
749.1

1026.5
1396.7
1893.2
2560.9
3474.4

-15
—22
-24
-20
-10

self-consistency, since the potential energy will
be shown below to depend weakly upon u(r). This
procedure leads to

sinks"=(2.R) ~

with k=v/R. The minimum value of the kinetic
energy is

T I" r'
A 2m a'—with 2R+c =a&3/2.

The potential energy per nucleon

i2 V~2 V
1

A 2

is particularly simple in our case. Indeed, since
the single particle wave functions have nonoverlap-
ping supports, there is no exchange term. By re-
peated use of the multipole expansion formula for
a Yukawa potential we find

(
e-o lrl-&2l e-nl Rj-Rjl

nlr r i

U —
IR. R I

I( R)
1 2 1

where the function I(n, R) is given by

J(a,B)=j8(R —r)~u(r)~' d'r, sk(nR)

2 4
=1+—&r )+ —&r )+. . .Q

5t

with e(x) =1 if x )0 and 0 if x ~ 0. The first term
in the previous expansion corresponds to the in-
teraction of two point nucleons. It provides a
very good approximation to the potential energy
as can be checked in Table I. For this reason we
have also assumed the nucleons to be pointlike
when evaluating the potential energy due to the
tensor force. Notice that since &r~) ~R~ we have
1 &I(nR) ~ sk(nR)/nR. This implies that for n
= O. V fm ' and R =0.3 fm, the variation in the po-
tential energy with u(r) is less than 1.5 percent.

Results obtained for various values of the den-
sity are shown in 'Table I and compared with the
results of Jastrow calculations. ' Our energies
are much higher than those of Ref. 5 even at large
densities. This la, rge difference confirms the va-
lidity of the simple argument given above against
crystalline structure of nuclear matter at normal
density. In Ref. 1 a significant binding energy
was obtained. This is because the authors use the
kinetic energy of a Fermi gas and the potential
energy of a bcc lattice, which is not a consistent
procedure. We have also performed variational
calculations with sc, fcc, and hcp lattices. These
calculations yield very similar results.
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