
PH Y SISAL RE VIEW C VOLUME 20, NUMBER 2 AUGUST 1979

Hyperspherical harmonics method for the hypertriton and ABe
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The hyperspherical or K-harmonics method is used to investigate the properties of ~H and &Be (in the a-a-
A model). A set of coupled integral equations for functions of a single variable is obtained for determining
the eigenenergy. Retaining nine harmonics, the ground-state energy of ~H is calculated for two-body
potentials of square-well, Gaussian, exponential, and Yukawa shape. The volume integrals of the total AN
potential in AH which yield the experimental energy are obtained. These are utilized to find the AN
scattering length and effective range. For ABe, suitable forms for the a-a and a-A interactions are employed
to evaluate the A separation energy. Comparison is made with available experimental data.
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I. INTRODUCTION

The method of hyperspherical harmonics or &
harmonics, which was introduced by Delves' and
Smith, ' and developed by Simonov, ' Badalyan, '
and Fabre' has recently been used to investigate
the properties of a number of three-body systems
in nuclear ' and atomic' "physics. It has also
been applied to study some four-body systems
like the n particle. ""The basic idea of the
method of & harmonics is to expand the wave func-
tion for a system oft particles (in the center-of-
mass system) in terms of a complete set of ortho-
normal functions of 3A-4 angular variables. The
expansion coefficients are functions of a single
variable that represents the length of a &-3 di-
mensional vector. On substituting the expansion
in the Schrodinger equation for the system, one
gets an infinite set of coupled differential equa-
tions for the expansion coefficients. For a three-
body system, the angular harmonies are functions
of five angular variables. We have to calculate
the matrix elements of the potential between pairs
of such hyperspherical or E harmonics. The sym-
metry of the system under study rules out certain
harmonics from appearing in the set of coupled
differential equations. Further, the centrifugal
barrier terms which occur in the set grow con-
siderably for the higher harmonics. One can,
therefore, truncate the set, and work with a finite
set of coupled differential or corresponding one-
dimensional integral equations. This can be con-
trasted with the Faddeev formalism" for a three-
body problem in which one gets a set of two-di-
mensional integral equations, unless separable
approximations for the two-body scattering am-
plitudes are made.

The number of equations that have to be retained
in any calculations using the & harmonics method
will, of course, depend on the nature of the po-
tential used, and the results of some of the in-
vestigations have been summarized by Levinger. '
Most of the detailed works done so far are for sys-
tems with particles of equal mass. Among the
few studies on systems of three particles where
the masses are -not all identical, we may mention
the recent work of Fang and Tomusiak, ' who con-
sidered the 'Li problem in the n-n-P model. They
have developed the theory in its general form, but
have made calculations by retaining only one ang-
ular harmonic.

In the present work, we have examined the ~H
hypernucleus by employing the method of E har-
monies. We have used different sets of two-body
potentials and have retained a number of harmon-
ics to get a convergent result for the ground-state
energy of ~H. In hypernuclear physics, the study
of the simple system ~H is very important, like
that of the triton in nuclear physics. The ~& bind-
ing energy provides valuable information about
the &N interaction. It is difficult to obtain direct
information on such interaction, as the &A system
is not bound and as it is troublesome to perform
AW scattering experiments. ' In view of the im-
portance of the investigation on the binding energy
of ~H, many calculations have earlier been made
using the Faddeev theory" "or the ordinary vari-
ational method. " However, for local two-body
potentials, the K-harmonics method used by us
has one advantage over the Faddeev method —the
former leads to a set of coupled one-dimensional
equations as explained earlier. The method of
K harmonics in its general form is also-free of
the uncertainties involved in the choice of the
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trial function of the ordinary variational method.
As another application of the formalism devel-

oped in this work, we have calculated the binding
energy of the hypernucleus ~Be in the &-&-~
model. This model has earlier been used success-
fully by Bodmer and Ali" within the framework
of the conventional variational method. One can
expect the distortions of the individual Q.'particles
in ~Be to be small. The n-Q. potential used by us
is that recently proposed by Buck et al." The
n-~ potential has been taken from the work of
Tang and Herndon. "

The method of K harmonics as applied to the
hypertriton and &-&-A problem is discussed in
Sec. II. Section III contains a discussion of our
results obtained by this method.

II. METHOD OF K HARMONICS

(v, '+vq')+ V.
2p,

Although three-particle forces can be included
in our formalism, we ignore them and assume
t/' to be the sum of two-particle central potentials.
We will be interested in the ground state of ~H
which is a T=0, J = —,

' state. The total orbital
angular momentum can be taken as zero and only
the triplet spin state for the nP system need be
considered. The space part of the wave function
should remain unaltered when g is changed to

The Schrodinger equation for the system is
now

(V 2 V 2) V(12) V(13) g (23)

2p,

x g($, q)(t)(1, 2, 3) =0,

Denoting the position vectors of the neutron,
proton, and the ~ hyperon by r„r„and r„re-
spectively, and their masses by m» m, (m,
=m2=m), and m, (mA), respectively, we first
introduce the coordinates f, q, and R defined
below.'

with
I

3+ o(i&, f(i)V(ij) V(ij) (r )
+

T fj 4

~0(&), g~V)

("") (r, r,),

m(r, +r,)+m, r,

(2)

(3)

and

g (1,2, 3) = ([o.'(1)P(2)+P(1) o.(2)]o!(3)
W6

-»(1)~(2)P(3)].

where M is the total mass, p, , =2mm, /(2m+m, ),
p, »= —,

' m, and p. is a suitable chosen mass which
we have taken to be equal to M/3. The interpar-
ticle separations can now be expressed as

1/2
r„= — p(1+A cosj(.)'j',

[1+A cos(X —28)]'j',

(4)

Here the Fs are the spin operators, o.'and P are
the spin functions, and the r,, 's are given in Eqs.
(4)-(6). Multiplying Eq. (10) by Qt(1, 2, 3) and
summing over spin, we get the equation satisfied
by the space part p($, )l) of the wave function for
the hypertriton:

2p

,' V,'"'( „-)+-,' V,'"'(r„)-E y(Cq)=0. (»)

r» —— [1+A cos (A + 28)] ' j'.

Here the hyperradius p= ($'+)1')'j' is the length
of a vector ($, q) in a six-dimensional space, and

A cosX = 2, A sink =
(n'- &') . 2(& n)

P P

A combination of triplet and singlet nucleon-~ po-
tential and only the triplet nP potential occur in the
equation.

We now expand g($, rj) in a complete set of ortho-
normal angular functions (K harmonics)' U)j(Q, )
depending on the direction ~, of the six-dimen-
sional vector p,

a= —"+,",tane=
'

(6) q(F, n)= . haft", (p)U."(~,).
r, v

(14)

The nonrelativistic Hamiltonian for the hyper-
triton, after separating out the motion of the
center of mass, then takes the form (using units
such that 8=1)

For the ground state of the hypertriton with zero
orbital angular momentum the quantum number
K must be an even positive integer, ' and, for a
fixed value of &, v ranges between -&/2 and
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+K/2 changing in steps of 2. Some of the harmon-
ics will, however, not appear in the expansion
(14) because of the symmetry requirement
P($, )})-= &I)($, )}) mentioned earlier. After trun-
cating the expansion and substituting in Eq. (13),
one can use the standard method for getting the
finite set of coupled differential equations for the
partial waves R»(p). The corresponding equations
for the case of three particles of equal mass like
the triton or "C (in the (2-(2-&2 model) have been
the subject of a number of investigations.
The partial waves are often '" expanded in terms
of trial functions of p of known form and containing
adjustable parameters. The parameters are then
determined from the condition of minimization of
energy. This procedure, like the ordinary vari-
ational method, contains the uncertainties in-
volved in the choice of the trial function. Fang
and Tomusiak' have considered the &-n-P system
where they have particles differing in masses.
However, they have keptonly the term with grand
orbital zero, and have thus obtained an uncoupled
differential equation. This equation has been
solved numerically.

In the present work, the set. of coupled differ-
ential equations for R»(p) is converted into a set
of coupled integral equations and is solved nu-
merically to give the ground-state energy E of
the hypertriton. The size of the set is gradually
enlarged by including an increasing number of
K harmonics until a satisfactory convergent value
for the ground-state energy is obtained. The set
of integral equations is shown below'.

g j r„(.,)«„(.,)«;; (
—*'}..«». (

—"')p.

-ER' — = 0. ]5

where

V'"'(2 „)]U,(n, )dQ, , (16)

and

V""(r,3)= ,' V","—(3,)3+-,' V,"-"(3„),2=1, 2. (ls)

The modified Bessel functions are calculated nu-
mericaQy. As the primary object of this work
is to investigate how the hyperspherical harmonics
method works for a ihree-body hypernucleus where
all the masses are not equal, we have considered
four different types of simple potentials —square
well, Gaussian, exponential, and Yukawa. We
expect to be able to handle potentials of more
complicated shape in a later work. The matrix
elements can be evaluated by expanding the two-
body potentials in series of Gegenbauer poly-
nomials and integrating term by term. ' The first
few harmonics and matrix elements are presented
below, ' others are not given because of their length:

Here (& = (-2)&E)'~2, n =%+2, f„and K„represent
modified Bessel functions of order )2, x& (X&) stands
for the smaller (larger) of x and x', and M»», are
the matrix elements

«'"' (p)= j&& "(p&)[p'«" (& )+p""(r )

(n' (')-
Uo ——~3, U2 =~3
U'=(3/)&')'"(l —2[(2}'—4')'+4(4 ~)']/P'] U'=(6/v')"'[(3}' —t')' —4(( )})']/P'

Moo(p) V((2&(PP) + V(13&(p() y V(23)(p«)

M02(p) = V2"'(p'} + cos28[V,'"'(p") + V2"'(P")),

22(P) = V'"'(P') + V4"'(P') + V'"'( ") + V'"'(P) +(3+ 3 cos4&})[V4"'(P) + V' "(P)]

(19)

Moo (p) [V( 12 ) (p p) + V& 13)(p«) + V(23& (ppp) ]

M"(p) = (-')"'[V'"'(p') + cos4&}[V'"'(p")+ V'"'(p")P

M" (p) =-(l/~3)(V'"'(p')+ V'"'( ') + cos28[V'"'(p") + V'"'(p")+ V'"'(p") + '"'( ")]f (2O)

M' (p) = (—')' '[V'"'(p')+ V,""(p') +cos28[V," '(p )+ V' '(p )]+(—'cos20+ —,'cos6&))[V" '(p ) + V' "(p )]]
Moo(p) V&(2&lp p) + 2V'"&( ') + V&(3&(p«) + V'23&(p«) + 2[V'&3&(p'q+ V'"'(ppq]

M" (p) = -(3/V2)$-'V'"'(p') + -'V'"'( ') + «»4+(-'[V'(3'(p") + V'"'(P")]+ -'[V'"'(P") + V'"'(P")]}]

M"(P) = V'"'(P') + ' V' "'(P ') + ' V"-"(p') + V'"'(p") + V'"'(P") + '[V""(P")+ V'"'-(P")]

(
1 + 3 cosgg) [V(13&(p«) + V(23)(p«)]
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where p'=(g/m)'~ p and p"= (~/))2)p. The functions V(I~) occurring in (20) are given by

y(i.2) I

p ~ 1 ~2 1/2g(i) ~ y(12) I

p ] + ~ f /2 (21)

+1
V(', ' —p =— (1 —x')' C,"'(x) —,'V" ' p(1+x)' ' + —', V'p' —p(1+x)'1') px, 1=1,2, (22)

where CI"(x) is a Gegenbauer polynomial.
For potentials of the square well and Gaussian

shape, the integrals of the above type can be an-
alytically worked out. For exponential and Yukawa
potentials, we have numerically determined the
corre sponding integrals.

After the evaluation of the matrix elements
1Vl~~„we have replaced the integrals occurring in
Eq. (15) by summation using the Gaussian quadra-
ture formula and converted Eq. (15) into a set of
mN linear algebraic equations for Rx(x, /x). Here
rn represents the number of harmonics retained,
and N is the number of quadrature points used.
We have searched for the largest a value which
makes the determinant of the coefficients of the
algebraic equations zero and got the ground-state
energy of ~3H. For each type of potential, we have
checked the convergence of the numerical pro-
cedure by changing the number of quadrature
points. The final results with nine harmonics re-
tained are presented in Sec. III. The potential
parameters used are also described in that sec-
tion. The harmonics used in the calculation are
Uo, U,', U4, U4, U(;, U6, U8, U8, and UB. The last
harmonic has been found to contribute much less
than one percent to the energy. Six other harmon-
ics allied to this set, namely, U&', U4', U&',
U6', U8, and U8 do not appear-because of the
symmetry requirement mentioned earlier.

The above formalism can be easily adapted for
the o.-n-A system. Now r, and r, will denote the
position vectors of the two n particles and rn will
be equal to the n-particle mass. Since n particles
are spinless, the wave function must be symmetric
with respect to their interchange and we have
again the symmetry condition (1)($,7)) = ())($,—q).
For the ground state, J= ~, the orbital angular
momentum is zero, and we will have to consider
Eqs. (15) and (16), but with

III. RESULTS AND DISCUSSION

TABLE I. The magnitudes (V~) of the volume integrals
of the total A+ potential in A3H and the corresponding
ground-state energies (E).

Potential
shape

rg-p triplet potential
parameters

Strength Hange
(Me V) (fm)

Vp
(MeV fm )

-E
(Me V)

Square-well

Gaussian

36.2

72.5

2.02

1.47

698
702
719

714
719
723

2.304
2.355
2.612

2.280
2.355
2.414

In our work on ~3H, we have used those nP triplet
potential parameters which give rise to a scatter-
ing length of 5.4 fm and a deuteron binding energy of
2.225 Me V. The parameters for the four different
potential shapes are shown in the second and third
columns of Table I. In each set of calculations, the
form of the AN potential used is the same as that
of the nP potential. The intrinsic range for the
AN singlet and triplet interaction has been taken
to be 1.484 fm, corresponding to a mechanism of
two-pion exchange. Choosing different values for
the potential strength, we have found the ground-
state energy of the hypertriton by the method ex-
plained in the previous section. The magnitudes
V& of the volume integrals of the total AN poten-
tial in ~H are given in the fourth column of the
above mentioned table. The corresponding ground-
state energies calculated by us are presented in
column five. In particular, we have determined
the volume integrals for each potential shape which
yield the experimental~5 ground-state energy of
-2.355 MeV. These V, values for the given hy-

(22)

The a-n and n-A potentials used are explained in
the next section. The final calculation has been
done with the inclusion of nine A harmonics.

Exponential

Yukawa

189.1

41.5

0.67

1.58

722
729
734

745
751
767

2.252
2.355
2.421

2.239
2.355
2.643
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4g = ——+—xk
0

(24)

where rm|' is the Ap center-of-mass momentum.
The data can be fitted well by a straight line
against k mith the average scattering length and
effective range being given by OLD = —1.80 fm and

OLD = 3.16 fm. Our values for the average scat-
tering length for the AN interactions considered
are comparable to OLD, but those for the effective
range are somewhat lower than x». A more de-
tailed comparison cannot be made because of the
inadequacy of the available AN scattering data
and the simple form of the interaction used.

The method of K harmonics has also been used
by us to calculate the binding energy of ~Be in the
n-z-A model. Buck et pf. have recently sug-

/

pe rtriton energy represent upper bounds, as any
incre ase in the numbe r of E harmonics used can
only decrease the ground-state energy.

We have next utilized the AN potential strengths
determined for E= —2.355 MeV to calculate the
average scattering lengths (a) and effective ranges
(r). The normal procedure has been used for
the square-well case. For the potentials of other
shape, we have employed the formulas derived by
Levee and Pexton. '6 The (a,r) values (in fm)
arising out of the four types of well described in
Table I are (-1.81,1.97), (—1.85,2.05),
(-1.86,2.22), and (—2.05,2.39), respectively.

A few years ago Londergan and Dalitz" used
the experimental data of Alexander et al. ' and
Sechi-Zorn et gl. '4 for the total Ap elastic scat-
tering cross section (o) and fitted them to a
formula

gested a simple form for the o.'-n potential which
can produce scattering data mell in accord with
experiment. The nuclear part of the potential is
given by

gl2
V"(r) =-V," &exp— (25)

where Vo ——122.6225 MeV and P = 2.132 fm.
The Coulombpartis4e'erf(Ar)/r with g=0.75fm '.
The I = 0 resonance state with this potential oc-
curs at 92.12 keV. It is to be remembered, how-
ever, that this potential supports some redundant
bound states. We have taken the potential (25) in
our ~Be calculation. For nA interaction, we have
used a similar Gaussian potential of Tang and
Herndon" with Vo

~ = 60.17 Me V and P ' =1.273 fm.
This potential just reproduces the n-A bound state
at -3.04 MeV. The highest pf the redundant states
supported by the potential (25) occurs at a. rather
high negative value of —22.1 MeV. The E harmon-
ics calculation on the n-n-A system yields some
eigenenergies below -22.1 MeV. We have ignored
them and have searched for the energy value that
may correspond to the n-n resonance and a-A
bound state. We have found only one eigenenergy
between the a-A bound state and —22.1 MeV, and
far removed from the latter. We chose this as
the required energy for the n-n-A system. The
A-separation energy B~ has been found to be 6.39
MeV. This is quite close to the experimental
value of 6.71 + 0.04 MeV, ' in spite of the simplicity
of the potential forms.

We conclude that the method of hyperspherical
or K harmonics can be successfully employed to
investigate the properties of many hypernuclei.
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