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We discuss nuclear reactions induced by nucleons or heavy ions at incident energies in the range of 0.5 to
1 GeV/nucleon. One-particle spectra and the correlations of two nucleons emitted are studied in the
statistical limit: Subgroups of nucleons acquire a random occupation of their available phase space. As
opposed to the thermal limit the finite number of nucleons gives rise to sizable correlations among the
nucleons via the conservation laws. A surprising reproduction of the observed spectra—in particular at high
momentum transfers (as in proton backward scattering)—is achieved by the model.

calculation of inclusive one- and two-proton (coincidence) spectra by statistical

[NUCLEAR REACTIONS Proton and heavy ion induced; E=0.5-1.0 GeV/nucleon;

model.

I. INTRODUCTION

A great variety of theoretical models'~'® have
been equally successful in describing the gross
features of proton inclusive spectra resulting from
high-energy nuclear collisions.»'! They range
from the most simple thermal-limit models®~2
through simplified multiple collision pictures®-’
to sophisticated full scale intranuclear cascade,
hydrodynamical and classical dynamics models.?"*°
The study of the thermalization hypothesis sug-
gested by the relative success of the thermal
models was one of the major objectives of the
simplified multiple collision model.* The analysis
which has recently been extended to the energy
domain above the A isobar threshold® draws atten-
tion to a relatively fast equilibration within sub-
groups of nucleons with respect to various ob-
servables. On the other hand, the recently ob-
served correlations between two ejected protons'?
are beyond the scope of any thermal model.

It is the aim of this note to present a study
which, in its major ingredients, is as simple
as the thermal models: The central idea is that
each nucleon undergoes only a limited number of
collisions with other nucleons. That is to say well
confined groups of nucleons interact with each
other. Their final momentum distributions are
assumed to follow from the random occupation of
the available phase space. Through the conserva-
tion laws these distributions imply a considerable
correlation among the nucleons, as their number
is small. The initial Fermi motion is included
by an appropriate folding procedure.

The present study does not aim at fitting data.
Rather we consider it as a background approach
which, in the event of agreement with the data,
draws attention to those situations where major

dynamical effects remain masked. This might be
due to either the lack of more observed informa-

tion or processes where in fact a large number of
interactions lead towards equilibration.

II. THE GENERAL DESCRIPTION OF INCLUSIVE SPECTRA

Before we start to explain the details of the
model we wish to introduce a general frame for
the description of such reactions.

For simplicity we first concentrate on the reac-
tion of a nucleon with a nucleus A. We classify
the various events by the number N of (target)
nucleons which interact with the beam nucleon.
This picture coincides with the exciton model*?
where the incident nucleon creates an N-particle-
N-hole excitation. Therefore, both the one- and
the two-particle cross sections arise from an
incoherent sum over the different processes
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Here ¢,p and ¢’,p’ denote the respective ener-
gies and momenta of the observed particles. We
have purposely extracted the cross sections aA(N)
(hereafter called section areas) of these different
processes. The spectral output of the reaction is
contained in the appropriately normalized [cf. Eq.
(4)] one- and two-particle distributions F.

The picture changes in going over to nucleus-
nucleus collisions. Here it is possible that simul-
taneously in a single event different groups of
nucleons contribute to the resulting spectra. We
label each such group of interacting nucleons by
the numbers M and N of its projectile and target
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members. Through the assumption that the dif-
ferent contributing groups behave independently,
the corresponding one-particle spectrum results
from an incoherent sum similar to (1),

d®c

ap
Now 0,5(MN) defines the cross section that the
respective subprocess has in the collision of the
nuclei A and B. We omit the contributions of those
nucleons which have not encountered a single inter-
action. The contributions of these spectators
dominate the fragmentation cross section®® which
we do not consider here. We note that the two-
particle cross section arises from two terms:
a correlated one where the observed pair of nu-
cleons results from the same group M, N and,
if different groups are the source, an uncorre-
lated background term,
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The spectral functions are normalized to the num-
ber of nucleons and pairs, respectively,
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One of the main reasons for the particular sepa-
ration into section areas and appropriately norma-
lized spectral functions F is the following. One
can already obtain a fair estimate of the section
areas from particular sum rules. These relate
the section areas to experimental observables
in the form of thé reaction cross sections and the
moments of the respective nucleon multiplicity
distributions {v®.}* For the nucleon-nucleus
collision one finds (cf.'%)
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Since we omit the spectator contributions, there
are fewer relations in the nucleus-nucleus case
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Here 0,5~ (R, +Rp)® is the corresponding reac-
tion cross section.

The scheme developed abovel~® is fairly general.
It encompasses practically all multiple collision
models. In principle—apart from the spectral
distributions F—the section areas are also an
involved consequence of the complicated many-
body dynamics. They may equally include either
a trumpetlike opening of the participant matter
or a possible premature escape of a nucleon at
the surface.

It is through various, generally simplifying,
assumptions upon both the section areas and the
spectral output that different models emerge.
The high-energy Glauber picture as employed
below helps in deriving simple estimates of the
section areas. The restriction to the knock-out
limit® of quasifree scattering is as obvious as the
thermal-limit picture. The dynamical linear-
cascade model* provides a continuous link be-
tween the above extremes. It constructs the dis-
tributions F through a sequence of binary colli-
sions. Its two-particle correlation part has re-
cently been studied by a Monte Carlo simulation
method.'®

III. THE MODEL

We will specify the simplifications adopted in
the present study. According to the frame develop-
ed above two ingredients are incorporated: (i) the
section areas which in the present picture merely
reflect the initial geometry of the nuclei and (ii)
the spectral distributions which contain the dynam- .
ical aspects of the processes.

A. The geometry

We borrow the recipe for calculating the section
areas from the high-energy Glauber picture of
straight-line motion.'”*"" There, the section
areas result from an impact parameter integrated
Poisson distribution

oM = [ d#sP,W,3),
. ("
P,(N,3)= N (N ,®) ¥ exp[-N,(5)].
The mean number N ,(s) is given by the matter

o A(?) compiled in the beam direction within an
area of the total NN cross section o3¢,

N,(8)= o3t J p,(3,2)dz. (8)

Transcribing the straight-line idea to the nucleus-
nucleus case gives a factorized form

UABW’N)'_‘O'A(M)O'B(N)/O';&S. (9)
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It implies the geometrical sum-rule result
3
<V>A50‘A5=f dBp%=Ao'B+BoA, (10)

where

&’s ,d’sy d°s)d’s]

. ’ N . 2
0,5(M, N; M ,N)—fdb - -
ONN OnNwN

Here the two 5 functions ensure that both combina-
tions occur at the same impact parameter b.

We use the same specifications as in Ref. 6,
where we chose 03 =40 mb and a standard Woods-
Saxon form for the matter densities. Further
details about the sections areas are explained
there, too.

We like to clarify that in adopting the straight-
line approximation we do not pretend that the pro-
cess actually evolves in a collinear way. Rather,
the lack of more refined expressions compels us
to take them as an appropriate guess.

B. The statistical limit

The spectral distribution resulting from a colli-
sion of a group of 2=M + N nucleons can be writ-
ten in the general form (the upper label refers to
the number of observed particles)

,ﬁk)¢§(§1, e sﬁk) ’
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where S contains the dynamical information of the
process {MN} and the phase space function ¢ en-
sures the kinematical conservation laws. In the
event of precisely given initial total energy E,
and momentum P, the latter is

®5Bys -+ D)

=5 (B - 55 ¢ (Bur - Ye)/ 1), a9
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with the square of the invariant mass
s=E,n* =P

This corresponds to a microcanonical ensemble
with an isotropic occupation of the energy shell
in the 3k-dimensional momentum space. The
phase space integral I, (s) normalizes the dis-
tribution ¢ to one.

As already mentioned, the function S,y contains
the dynamical information of the process {MN}.
In a rigorous theory it would be constructed by
the square of the corresponding cluster part of

S > - e - - e - -
B *(s,— 55 —0)06%(8, - S =b)P,(M,S,)Py(N,S,)P,(M’,

cAzf d?s{1 - exp[-N ,(3)]} . (11)

The section areas for finding simultaneously two
groups of interacting nucleons are found to be

-

S4)Pg(N',8L) .
(12)

I

the S matrix summed over all final states which
are in.line with the momenta specified in (13); in
a diagrammatic picture this would correspond to
all diagrams which contain a connected piece of
precisely M projectile and N target lines. In the
simple case of elastic two-body scattering (M =N
=1), the dynamical structure function would be
proportional to the elastic differential cross sec-
tion

87 do(s,.,..)
oy dQ
where 6 . (51'132) is the respective c.m. scattering
angle. A factor of two arises because of the nor-
malization (4).

In actual measurements only a few particles out
of the considered cluster are observed. The
corresponding spectral function which results
from (13) by integrating over the unobserved
particles can be written in a similar form

(15)
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where now ¢f is the probability distribution of the

L observed momenta of the vandom ensemble (14).
Thus
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The statistical limit as invented by Fermi®® (see
also Hagedorn'®) assumes that the particular dyna-
mics of the process has only gentle implications
on the observed spectrum. That is to say, the
spectral function is dominated by the behavior
of the phase space distributions. Intuitively, this
appears to be more justified as the number of
observed particles is considerably smaller than
the size of the ensemble, or in other words as
the phase space which covers the unobserved in-
formation is sufficiently large. In the present
approach we adopt the strict limit of least dynami-
cal information which means S,y =const. It
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corresponds to the random limit where each re-
sult compatible with the conservation laws is as
probable as another. This picture deviates from
the phase space limit of the exciton model* where
the momentum conservation is completely ignored.

The phase space distributions are known to have
the explicit solutions for

Qs;f(ﬁn L ’.ﬁL)

L 2 L 2
=l [(EMN - Eﬂ) - <ismv - Zﬁz) }/Ik(s) s
i=1 i=1 (18)
where the phase space integrals can be constructed
recursively?°
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Ax, y,2) =52+ 92+ 2% = 2xy — 252 — 29z,
si=k'm®, s,=(/s -m), (19)
I,(s)=268(s = m?).

For illustration we discuss the one-particle
spectrum ¢}. It is an isotropic function in the
respective center of momentum frame. As the
size of the ensemble grows this distribution is
expected to approach the thermal limit: The
Maxwell Boltzmann distribution. This is illustra-
ted in Fig. 1. -Ensembles with small nucleon
number, however, deviate from the thermal
limit (2 =) showing a depression at moderate
c.m. momenta and a steeper falloff at the kine-
matical limit of the phase space. In particular,
the two-particle ensemble has'a 6-function shape
at a c.m. momentum corresponding to the energy
conservation. According to (15) it is identical to
the isotropic two-body scattering event.

So far we assumed that the considered ensembles
{MN} have precisely given initial total energy and
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FIG. 1. The one-particle spectrum ¢k (pe.m.) as a
function of the c.m. momentum of the statistical ensem-
ble of K=2, 3, 5, 10, and © members. The c.m. ener-
gy per particle is 100 MeV. The spike indicates the po-
sition of the 8 function of the K=2 ensemble.

momentum. This is in fact not the case because
of the Fermi motion. This leads to a finite width
of the knockout (M = N=1) distributions and to
essential corrections at the kinematical limits of
each ensemble. We include these effects by a
folding over the respective Fermi momentum
distributions

Fipy(1-oeb1)
k!

ey [ &P P, (B )y (B)

X OE(Pysevvsp s EyyrPay) - (20)

Neglecting the binding energies of the nucleons,
the lab energy and momentum components parallel
and perpendicular to the beam are

Eyy =M(Ey+ P,P,,/m)+Nm,
PMNu=M(P0+E0PA”/m)+NPBu s (21)
Pyy,=MP,, + NPy, .

The Fermi momentum distribution of the total
momentum P, of the M nucleons of nucleus A
(similarly for B) with respect to its rest frame
are assumed to be Gaussian

wy(PL)=[270,,2]"3"2 exp(~3P /0, . (22)

The independent particle model prescription for
the width? gives

. MA-M)1

w TTAIT 5 heA (29)

where kg, is the respective Fermi momentum.

The folding procedure (20) is calculated by the
corresponding multidimensional saddle point
method. The calculations are performed with a
Fermi momentum of 230 MeV/c for carbon and
260 MeV/c for all heavier nuclei.

IV. APPLICATIONS AND DISCUSSIONS

The present model rests on two basis assump-
tions: (i) Each event is thought to be built up by
uncorrelated contributions arising from the inter-
action of different subgroups of nucleons. Their
relative weights are estimated from the geometri-
cal concept of straight lines. (ii) the correspond-
ing momentum distributions are constructed from
the statistical limit where the nucleons of each
group randomly explore the available phase space.
The initial Fermi motion is included by a folding
procedure. The model represents the ultimate
limit of any multiple collision picture: the limit
of many collisions. This limit will be viewed in
conjunction with the opposite extreme: the knock-
out picture, where each nucleon undergoes a single
quasifree scattering at most.

Exploratory calculations have been performed
with the present model. The selected examples
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illustrate those features of the spectra which are
characteristic for this approach.

We start the discussion with the type of reactions
where the best agreement with data is achieved.
These are the proton spectra resulting from
high-energy nucleus-nucleus collisions, Fig.

2. The agreement is not only limited to the
bulk part of the spectrum but rather—be-

sides a slight overestimation there—persists

even up to the high momentum extremes of the
spectrum (a “cooling” induced through the inclu-
sion of pionic degrees of freedom might even help
improving the agreement). The main contributions
in our picture come from terms with M *=N=3
where—to say—each nucleon has undergone about
three collisions.

As the spectra of systems with equal projectile
and target mass with their nonisotropic shapes
in the c.m, frame rule out a complete equilibration
of all participants (fireball) they confirm one of
our assumptions: Equilibria—if at all—establish
themselves only among well confirmed subgroups
of the participating nucleons.

Correlation measurements are even more sensi-
tive on this partition into subgroups of interacting
nucleons. They were proposed for a more detailed
analysis of the dynamics of heavy-ion collisions.
In order to elucidate this point we discuss the
recently observed ratio R of the in- to out-off
plane coincidence rate of two protons, Fig. 3. The
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FIG. 2. Proton inclusive spectrum of the reaction Ar
+ KCl—p + X at 800 MeV /nucleon for various lab angles
as a function of the lab momentum of the observed pro-
ton (data from Ref. 11).
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FIG. 3. Coincidence measurement of two protons ob-
served at the same scattering angle 6; =40° and different
azimuthal angles ¢;. The ratio R gives the coincidence
rate at ¢;—@,=180° (in-plane configuration) relative to
the rate at ¢—¢@,=90° (out-off plane configuration) as a
function of the momentum P of proton 1. Proton 2 is
registered for all energies above 100 MeV. The full line
is the result of the present model, the dashed line ex-
cludes the knockout M =N =1 contributions.

kinematics was chosen such that the symmetric
quasifree NN scattering (90° in c.m. frame) can
be observed in the in-plane configuration (for
details see Ref. 11). The so expected quasifree
scattering peak at a momentum of about 1 GeV/c
of the spectrometer proton corresponds to the
contribution of M =N=1. This peak bears the
width due to Fermi motion. However, in deviation
from the knockout picture® the present study also
predicts a sizable correlation for those groups
with more than two nucleons (dashed line). The
latter notably raise the ratio at large spectro-
meter momenta, an aspect which should be clari-
fied by more accurate data. The remaining devia-
tions from the data ask for refined treatments.
Part of them can be attributed to two reasons:

(i) The anisotropy of the NN cross section causes
deviations from the isotropic knockout contribu-
tions here considered; and (ii) a sizable produc-
tion of A (1236) isobars reduces the coincidence
rate at the quasifree scattering peak in favor of
an enhancement of R at lower momenta. Our
studies also show that an additional spectrometri-
cal measurement of the second proton would
amplify the correlation effect to a peak value of
R=3.5 in carbon on carbon,

The following two examples concentrate on high-
energy proton-nucleus collisions. Here we focus
our attention on the particularly interesting part of
the spectrum at high momentum transfer.?> Be-
sides the simplest knockout picture employed
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agreement with the data (Fig. 4). Besides a
systematic overestimation of about a factor of

two for all targets and various incident enevgies,
the data are nicely followed even up to momentum
transfers of 2 GeV/c. Though these calculation
sensitively depend on the Fermi momentum chosen,
the agreement with the data occurred for the normal
value of 260 MeV/c. Thus these results contradict
the knockout picture initially employed; namely, ol %]
they cast some doubts whether the high-momentum 90 120 150 180 210 240
component of the nucleon’s momentum distribution o3 (degrees)

can be actually studied this way. Rather proceed-
ing in a single step, multiple collision processes
seem more likely to generate these high momen-
tum transfer. In our picture the major contribu-
tion arises from terms where about four target 04l 255_“:;"2:7“330”9" |
nucleons are involved. As we learned in addition ’ 3"

from a multiple collision approach® that such sub-
processes lead to spectra which have already a
fairly random appearance, one might even drop
the necessity of particular correlations.

The correlated cluster idea was the major moti-
vation for the Dubna C(p,2p) correlation experi-
ments,?® Fig. 5. Backward emitted protons are
registered in the coincidence with a proton in the
forward hemisphere. The energy windows are
purposely chosen such that the knockout process
is kinematically unimportant. This opens the

by Amado and Woloshyn®® where nucleons with LA I B L B B
fairly high momenta have to be picked up by the p+'2C— 2p+.. 1
reaction, particular mechanisms like the fluctuons 640 MeV ]
picture® orthe correlated cluster model® have been 0.25 oq=12° 7
invented to generate such high momentum transfer. ]
Our aim is to learn from the statistical limit how -
probable such events are from the perspective 020 ‘ 2 ]
of a multiple collision picture. ) °:
Surprisingly, we find a rather remarkable { 41T S
b
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= ] FIG. 5. The coincidence rate of two protons (Ref. 26)
100 :_ _; at scattering angles «; and o3 as explained in the figure.
3 E The open and full data points correspond to a kinetic en-
"g L a1 ergy regime of the backward registered proton of 105
S0 = MeV <T3<150 MeV and 50 MeV <T3< 90 MeV, respec-
e E 3 tively.
= E
3 C ]
£ 102E =
} E E analysis for a three-body process. Our model
o> 103k Ta v X . succeeds in reproducing parts of the spectrum.
+Ta— 3 4 s
‘% E P v P E However, it fails in piling up that peak observed
© ol 800 Me \ at the angle combination of @, =12° and a,=120°.
10 This precisely corresponds to the kinematical
C ! | | situation where the presumed unobserved third
10-5 L1t el b s Lo by by
0 X 02 03 04 05 06 nucleon has‘about the same momentum as the
p2/2m (GeV) forward emitted observed one. As known from
three-body dynamics, the long lasting final state
FIG. 4. Backward emitted protons (Ref. 22) in the re- interaction of the two parallel moving nucleons

action p+ Ta—p+ X at 800 MeV. causes such deviations from the bare phase space
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distribution. Therefore, in this case, our analy-
sis directly draws attention to a final state cor-
relation of the emitted nucleons. But even more;
as from the kinematical conditions chosen the
final state interaction peak only occurs if pre-
cisely thvee nucleons are engaged, we encounter
[similar to (p,d) reactions] the rare event of
isolating a three-body process embedded into a
many-body system. Here off-shell effects of the
interactions involved may even play an important
role for the production of these events.

V. CONCLUSION

We studied spectra of protons emitted in high-
energy nuclear reactions from a very simple
picture: the statistical limit of a random occupa-
tion of the available phase space. Whereas the
two-body kinematics employed in the knockout
picture required a rather peculiar momentum
distribution for the internal motion of nucleons
in nuclei®-* for just getting a rough reproduction
of the data, our model works with a normal
‘Gaussian shape Fermi distribution. The detailed
analysis showed that there are spectra of at least
parts of such which can be reproduced by our
simple statistical picture. Such instants draw
attention to the fact that multiple collision con-
tributions are not negligible and are in fact neces-
sary to understand the data. However, those
reactions with spectra which have already a
fairly random appearance may be rather weakly
predictive about the particular dynamics of the
process. Different dynamical theories may lead
to similar agreement with data. By far more
interesting and decisive are those cases where
the present predictions fail to reproduce the data.
They focus on particular dynamical effects of var-

ious origins such as pre-equilibrium situations,
correlations among nucleons, and final state
interactions. Still, the overall agreement of this
model with the investigated data clarifies the
following: (i) The straight-line estimate of the
section areas might not be so seriously in error.
They decisively determine the magnitude of the
various processes, in particular the correlation
parts. (ii) The necessity of multiple collision
contribution which in the discussed energy regime
may have already a fairly random appearance.
(iii) There are effectively no important long range
final state interactions which would sensitively
destroy the random appearance of the spectra.
The last point might be a serious handicap for
applying the present consideration to low-energy
processes. There, Coulomb forces play a non-
negligible role in the final stage of the reaction.

In order to gain a better insight into the develop-
ment of the discussed reactions forthcoming
studies should certainly aim at investigating them
by dynamical theories. The linear cascade
models*® as well as the correlation models?:~2°
are already an attempt in that direction. Still,
one should not lose sight of the limiting aspect
of such theories: the random limit where different
dynamical pictures converge indistinguishably.
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