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Using a chiral Lagrangian we have evaluated the tree diagrams for m p~yyn. With this model we have

studied the feasibility of using an experiment which detects only the final state gammas to resolve two
matters of theoretical interest: the off-mass-shell behavior of the 7rX amplitude and the sign of the m ~yy
amplitude. Our results suggest that this reaction is not a practicable way to distinguish between different
models of the off-mass-shell amplitude, but that a reasonably accurate experiment could determine the sign

of the m decay amplitude.

NUCLEAR REACTIONS P (z, ~)n,. inf light capture; T,~a 100 MeV; chiral
Lagrangian model; calculated 0(8); two photon detection. Studied effects of

off-mass-shell zN amplitude and sign of z —pp amplitude.

I, INTRODUCTION

Recent experiments have detected, for the first
time, the simultaneous emission of two photons in
the capture of negative pions by nuclei. ' Further
experiments are in progress or are being planned.
The nuclear (z, 2y) process is interesting for sev-
eral reasons. As first discussed by Ericson and

Wilkin, ' this reaction can serve as a means to
probe the pion content of the nucleus, and it can
provide a means to study n-nucleon interactions
and pion propagation in the nuclear medium.
Barshay~ has shown further that, with appropriate
kinematics, this n-capture process can provide a
definite signal for the presence of a pion conden-
sate in a nucleus.

ln order to use effectively the (m, 2y) reaction
to study these various nuclear effects it is es-
sential to have an accurate model description of
the single-nucleon reaction m p -yyn. Given the
success of a chiral-invariant Lagrangian model
for pion photoproduction, ' it is natural to general-
ize this approach to the 2y process. We do this in
the present work and derive an expression for the
two-photon amplitude which is very similar to that
obtained by Lapidus and Musakhanov, ' who fol-
lowed the method of Low' and Adler and Dothan'
to derive a low-energy theorem for this reaction.
The two-photon amplitude has also been studied
recently by Beder, ' who has considered the effects
of the 6 resonance in intermediate states.

Aside from its importance in the analysis of the
nuclear(w, 2y) reac, tion, the single-nucleon pro
cess is of considerable interest in its own right.
One of the diagrams which contributes to the pro-
cess in the lowest order of e is the virtual charge
exchange m -"n "

yy, shown is diagram 10 in

la Ib

10

FIG. 1. The tree diagrams for 7t p —gyes which
follow from the chiral Lagrangian of Eq. (1). The open
circle in diagram 10 represents the pion-nucleon scat-
tering amplitude; the tree diagrams for this amplitude
are shown in Fig. 2.

Fig. 1. The evaluation of this diagram requires
the isoantisymmetric part of the wN amplitude with
one pion off the mass shell and a knowledge of the
sign of the n yy amplitude. Both of these factors
are of keen theoretical. interest. In the literature
there are now several theories of the off-mass-
shell nN amplitude. ' '2 They tend to differ in dy-
namical assumptions and, consequently, lead to
different predictions for the variation of the ampli-
tude as apion goes off-shell. Anexperimental study
of a process sensitive to the off-shell amplitude
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could differentiate between these various models;
the(w, 2y) process seems to be a possible candi-
date for such a study. The sign of the m -yy am-
plitude is of interest owing to the work of Adler, "
who has shown that the sign depends on the charges
and axial couplings of the elementary fermions
(quarks) .Knowledge of the sign and magnitude of
the m -yy amplitude provides a way of choosing
between different models of the elementary par-
ticles, as noted by-Okubo. ' The relative sign be-
tween the z decay amplitude and the gN coupling
constant has previously been determined by Okubo"
from analyses of the Compton scattering of a pro-
ton and the radiative pion decay z'-e'vy, and by
Gilman" from the experimentally observed con-
structive interference between the amplitude for
the Primakoff effect and the other amplitudes in-
volved in g' photoproduction. Furthermore,
Lapidus and Musakhanov have shown that it is also
possible to determine the sign of the two-photon
decay amplitude by measuring the neutron energy
spectrum in w p-yyn.

The recent (w, 2y) experiments' detect only the
final state y's which result from the capture of
stopped pions on ' C. The reaction occurs with
both 1s- and 2p-state pions; because of the latter,
momentum dependent terms in the amplitude must
be included when computing the branching ratio for

- this process, as discussed by Roberson et ai.' The
complete amplitude for n p -yyn presented below
in Sec. III can be used in the impulse approxima-
tion to compute the branching ratio and thereby im-
prove upon the estimates of Ericson and Wilkin. '
In the present work, however, we study only the
single-nucleon reaction with the pion captured in
flight. As in the nuclear experiments we assume
that .-.nly the y's are observed, and we examine the
questions of whether such an experiment can be
used to differentiate between various models of the
off-mass-shell pion-nucleon amplitude or deter-
mine the sign of the amplitude for I -yy decay.

L =L.~~+ Ly ~~+ Ly ~~+ Ly .~+ Ly y ..+ L
y y

L ~» „= (Nysyq &N) 8"w

+ Nyq7'N (8"w &&w),
7r

L „wN=&e
" &2Ny, p(7 w +&+w+)N,

L„zw = eA"-N[ , (1+—w,)]y&N

-eF"" ' kg&, —, 1+v,

+ "-Nrr„„f-,'(1 —~,)jlVI,
-

Iq„=ieA"tie'(s„w )- (s„w')w j,
Ly y7f 7r

= e ApA m+m

L„» = .' e'Z-~„»„(a~A")(s "A')w, .

z„=a, +x, (-,' )(1—™,)sr+", (2)

describe the P decay of the nucleon. It follows that

8"~m 7).

21lff~ g»
(3)

With" g, =12.8, we have f~=0.761.
The n' decay constant F is determined, except

for sign, from the experimental width F,o for p

Our conventions are that e & 0 and the field p
=(I/W)(w, +iw, ) annihilates (creates) the w (w')
particle state. Our other conventions are generally
the same as those of Bjorken and Drell. "

To determine the value of the coupling constant
f~ we follow Peccei' and Schwinger" and require
that the chiral current constructed from L,~„,

II. CHIRAL LAGRANGIAN

4F 't 1/2

wo! m~ j (4)

To construct a chiral Lagrangian for z p-yyn
we make use of the usual chiral Lagrangian for
pion-nucleon scattering'8 and introduce a coupling
to the electromagnetic field by the minimal substi-
tution. 'This procedure guarantees that the four-
vector potential, A„, is coupled to a conserved
current, and it therefore preserves gauge invari-
ance. We add terms to the Lagrangian that de-
scribe phenomenologically the interaction of the
electromagnetic field with the nucleon magnetic
moments and the wo-yy decay. Our interaction
Lagrangian is then

m„=139.57 MeV, m„0=0.96697 m

M=6.7273 m~,

a = e'/4w = 1/137.036,

gp = 1.7928, g„=-1.9130.

(5)

=~3.88 &10 'm„'
with' I,o =7.95 eV. (Hermiticitlj' of the i,agrangian
requires that E be real. ) For completeness we re-
cord here the numerical values of other coupling
constants and parameters used":
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Additional terms can be added to the Lagrangian
to phenomenologically describe the effects of the
nucleon resonances. The g(1232) resonance is ex-
pected to be the most important at the energies we
consider. However, at present, there is simply no
consistent Lagrangian field theory of spin- —,

' par-
ticles'; certain anticommutators which appear in
the theory of a quantized, spin- —,

' field are neces-
sarily incompatible with a positive-definite metric.
Even if one ignores this difficulty, questions of

double counting arising from the simultaneous in-
clusion of both the nucleon and the ~ pole terms
still must be dealt with. For these reasons we
have not included the nucleon resonances in our
Lagrangian. Beder' has estimated the size of the
& intermediate state diagrams in p p -gyes using a
particular model and has found that near threshold
the total b, amplitude is +7% of the amplitude cor-
responding to diagram I 'of Fig. 1.

III. REACTION AMPLITUDE

In Fig. 1 we show the tree diagrams for n p-yyn. " The reaction amplitudes for these diagrams are ob-
tained from our Lagrangian by the usual procedure. Writing the 8-matrix element with invariantly normal-
ized states as

) 9
S=(2~)'t) (p +q —p' —k' —k) ~ ' (4~+)e„'~„p M,""+M»

i=& J
(6)

we have

2M q„(2 q- k)"(2q- 2k —k')'
M,")'= u'y, u, , „,-g""+. . . +(y, , k —v, k'),

p ~ p ~ ppg (q-k) -m„ (7a)

(7b)

ig„„q p'+/+M . g„„~, p+)tI+M
2M & (p'+k)'-M 2M ( (p+q)

(7c)

i&„)))) if'+$™p k~™
2M ~ ( '+0)'-M' ' [ —k')*-I'- 2M ) (7d)

(7e)

(7f)

p
(7g)

(7h)

(2q- k')"
q- k' —tn

(7i)

( ) 8 EE~gff„E E' k k

q —Pl&0 +ZVE~OI ~0
(7i)
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Several remarks are required concerning the last
expression. %'e have modified the m propagator
to reflect the finite width by the replacement m, o-m, o —

& iF „0. T, ' denotes the isoantisymmetric,
off- mass-shell w~ scattering amplitude. We write
this in the fogm

«» st2= ~3 (uzi +ps)

2

24&&m M (1+ m /M)(1-m /2M)

= -0.047m„', (12)

To&
& = u(p') [A& '(s, t, u) + )B& &(s, f, u) ju(P), ( )

ural/2 3 (ull 31)

with s = ( p+ q) ', t = (p'- p) ', and u = (p' —q) '. The
contributions to the isospin-odd invariant ampli-
tudes A' ' and B' ' coming from our effective
Lagrangian can best be separated into two parts.
The nucleon exchange diagrams of Figs. 2(a) and
2(b) give

(9a)

g( ) ]-g( )
4M' 16m'~.

2ppl 3 2

x ~™-+4f
M'(4M' —m, ')

=-0.041m, '. (13)

while the contact diagram [Fig. 2(c)j yields

Previous calculations"'" of the scattering volumes
have included, in various ways, contributions of
the 6(1232). With such additions reasonable agree-
ment with other determinations of the scattering
volumes has been achieved. For example, by in-
cluding ~ pole diagrams evaluated according to the
Lagrangian model of Peccei,"we find

&(-) = 0.082~,-', (14a)

@( ) 2 0 (10b) g~(,)~, ——-0.075m „',
The s-wave scattering length a~ '= —,

'
(a, —a, ) im-

plied by these amplitudes is

( )
(A& &+m„B& '),2,

4&&(1+ m, /M)

4w(1+ m„/M) 4M'(4M' —m, ') m„&

= 0.08&~„-'.

This number is in good agreement with the scat-
tering lengths obtained by fits to the data. 2' '4 The
predictions of our Lagrangian for the p-wave scat-
tering volumes, however, are poor. The scattering
volumes are given by"

I
/

/
/

/
/

/
/

FIG. 2. The tree diagrams for the pion-nucleon scat-
tering amplitude.

(14c)

These numbers are in good agreement with the re-
sults of Langbein" and the compilation of results
presented in Nagels et gl. '4

Because of the importance of the p waves to the
charge-exchange amplitude (even near threshold)
and the quality of agreement with the accepted val-
ues of the scattering volumes when A pole terms
are included according to the model of Peccei, we
include the ~ contributions to the invariant ampli-
tudes in our (», 2y) calculations. Following Peccei,
the contributions of the 4 pole terms to the invari-
ant amplitudes are

I&' o!(s, t) o.(u, t)
3m, s —(M~ —i—,'I'~)' u —(M~ —i-', I'J') '

(15a)

P(s, f) P(u, f)-( .— —. .)' -( .——.
' .)')

(15b)

where
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o(s, t) =8(M~+M)(t- 2m, '-) + (4M~+ 6M)(s-M')

+ [s' —s(M' —4m, ') —4m, '(M' —m,'}]

+, [3s —s(7M' —8m„')+4(M' —m, ')'],

x is the cosine of the c.m. scattering angle, PI(x)
is the first derivative of the conventionally nor-
malized Legendre polynomial, and f» is the par-
tial-wave amplitude in the state of parity -(-1)'
and total angular momentum j = $a & which is re-
lated to phase shifts by

(16a)

P(s, t) =2(s -M') + 8(t —m, ') -M(8M~+ 12M)

8M
+ (s —2M'+ 2m, ')

+, [s' —s(3M' —4m, ') +4(M' —m„')'] .

(16b)

(20)

For the nN amplitude with one pion off the mass
shell these expressions must be suitably modified.
We let 1, (I,) denote the c.m. momentum for the vN
state with the on-shell !off-shell) pion, and define
the nucleon energies E, = (M'+ l, ')'i'. In terms of
the Lorentz scalars s, t, and u, defined earlier,

X/2

ii, i
= —,

' s ——,'(M'+m, ')+ (M' —m, '}'

The wN~ coupling constant lg is determined from
the & width by

4 p'(E+ M)
3v M~m~

X/2

(I, i
= —(3M'+m ' —t- u)'-M'

4s

I ~ 1, = 2 t-M +E,E~ .

(21a)

(21b)

(21c)

with E (p) the energy (momentum) of the nucleon
in the a rest frame. Using" I"~=115 MeV and Mf,
=1232 MeV gives h.

' =0.293. In our chiral Lagran-
gian model we have for the invariant amplitudes

'The A. and. B amplitudes with an off-shell pion be-
come2'

4v(W+M)
[(E +M)(E +M))"'

x(f( '(l„ l, )

(17b)

o illustrate the sensitivity of the m p-yyz re-
action to the virtual charge-exchange diagram in
general and to the model for the off-shell nN am-
plitude in particular, we have carried out calcula-
tions using a different evaluation of the invariant
amplitudes. For the physical nN amplitude, A and
B have the familiar partial-wave expansions"

B( «) 47T

[(E,+M)(E2+M)]'f2

xf' '(l l)+ ' ' f' '( l))

(22b)

Z(-) « ~'~ (-)
q

~ ~ (-)
q

f, and f, are now expressed in terms of the two
variable partial-wave amplitudes f„(I„I,), where

(23)

~( ) —4p ( )~+ ( )q (18b)

(19a)

where E =(M'+q')'t' is the energy of the nucleon
in the c.m. system and

in the normal fashion. For the s waves we use the
off-shell partial-wave amplitudes constructed by
Banerjee and Cammarata" from the nonlinear Low
equation. On-shell these amplitudes agree well
over the elastic scattering region with the phase
shifts of Carter, Bugg, and Carter. " 'The ampli-
tudes imply an isospin-odd s-wave scattering length

g~( )=0.079m~ '. (24)

(19b) For the half-off-mass-shell P-wave amplitudes we
use the factorable form"
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(Pll& P13 i Bit 33

The form factor p(l) is parametrized as

g (l) = (I + —,)

(25)

(28)

termine the sign of the amplitude for the two-pho-
ton decay of the m and the behavior of the mN

charge-exchange amplitude as one pion goes off the
mass shell. In regard to the latter, several re-
sults follow immediately from a study of the virtual
charge-exchange amplitude of Eq. (7j). First we
note that the squared four-momentum of the n can
be expressed in terms of the photon variables as

ap 'g, = -0.074m

a —,] =-0.006m

(27a)

(27b)

with p. =8m„as in Ref. 11. The on-shell p-wave
amplitudes are constructed using the fits to the p-
wave phase shifts developed by Salomon. " These
imply

q" =2~&v'(1 —cose) . (28)

Energy-momentum conservation implies that, in
the lab frame, the energies of the photons are re-
lated by

IV. NUMERICAL RESULTS

W' -M' —q' + 2+(q cos $ —W)
2[W —qcos]' —&u(1 —cos8)] (29)

All of our calculations of w p-yyn have been for
the lab frame, in which the target proton is at
rest. We assume that the momentum vector of the
incident pion is directed toward the positive z axis
and that the proton is at the origin of coordinates.
The various angular variables for the photons are
defined in Fig. 3.

As mentioned in the Introduction, our numerical
study is for an experiment in which only the final
state photons are detected, and we have explored
the feasibility of using such an experiment to de-

where q is the three-momentum of the m and W
=M+(m, '+q')'~'. These equations show that for
fixed W, $, and ]', the w' is farthest from the mass
shell for 0=0 or 180'. However, the structure of
the m'-yy vertex factor is such that it tends to
suppress the virtual charge-exchange amplitude as
the m' goes off-shell with small 8. By expanding
the factor e«&, e g' k"k" into components one sees
that the n' decay vertex involves the unit vectors
for photon momentum and polarization in the form

e&&e' (k —k'). (30)

This shows that for a given polarization for each
photon, the magnitude of the vertex decreases as (9

decreases. Furthermore, if the polarizations of
the photons are not measured, there is an addition-
al suppression of diagram 10, for small g, coming
from the polarization sum

P01
(Mio i (1 —cosg) (31)

q

FIG. 3. The coordinate system used in the calcula-
tions. q is the three-momentum of the incident 7j. in
the lab. The photon three-momentum k lies always in
the x-z plane, as does the polarizationunitvector e &. e&,

e2, and k form an orthonormal set, with e 2=kxe&. The
polarization vector e

&
lies always in the k' —z plane.

e ~, e 2, and k' also form an orthonormal set with e&

1
xe'.

Our numerical work is, of course, consistent
with these observations. We find that for kinematic
configurations in which the charge-exchange pro-
cess with virtual n"s plays a non-negligible role
the cross sections are on the order of 1 pb per
MeV near threshold. Examples are shown in Fig.
4, where we display differential cross sections in
which the angles, energies, and polarizations of
the photons are measured. Curve a includes dia-
grams 1-9 of Fig. 1, curve 5 includes all 10 dia-
grams with the invariant amplitudes of Eq. (22),
while curve c shows the effect of using the chiral
Lagrangian model for the invariant amplitudes.
The two models generally give significantly differ-
ent invariant amplitudes above threshold. The
average values of the invariant amplitudes of Eq.
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FIG. 4. Differential cross sections in the lab frame
with definite polarization states for the photons. T~ is
the 7r kinetic energy in the lab. Curve a corresponds
to diagrams 1—9, curve 5 to diagrams 1-10with the in-
variant amplitudes of Eq. (22), and curve c to diagrams
1—10 with the chiral Lagrangian results for the invari-
ant amplitudes, with the E terms included. The energy
of one photon is fixed at co =71.3 MeV, while the energy
of the second photon spans the range cu'= 107.0-113.3
MeV as 6 goes from 0 to 90'. The polarization states
of the p's correspond to e& and e2 of Fig. 3.

(17) over the range 8 =0 —90' for the kinematics of
Fig. 4 are

A',„'=(-11.2 —5.6i)m, ',
B',„'=(10.9+4.9i)m, ',

(32a)

(32b)

while for the amplitudes of Eq. (22) we find

A,'„'=(-16.1 —3.9i)m, ',
B',„'=(14.3+3.2i)m, '. (33b)

he curves in Fig. 4 illustrate the numerically in-
significant effects of diagram 10 with an off-shell
pion. Hence we conclude that it is not feasible to
differentiate between even very different models of
the off-shell amplitude with experiments that de-
tect the final photons.

Figure 5 displays differential cross sections at
40 MeV incident pion kinetic energy (lab) that are
summed over photon polarizations and partially
summed over photon energies. In performing the
integration over photon energies we have assumed
that photons with energy less than o&;„=10MeV
are not detected. If one computes cross sections
summed over energy using only the diagrams of
Fig. 1 some lower limit on the photon energy must

0 I I I I I I I I

0 20 40 60 80 I 00 I 20 I 40 I 60 I 80

I I I

I5 30 45

(deg )'

I

60

e(deg)

I

75 90

FIG. 5. Differential cross sections in the lab frame
summed over photon polarizations and energies with
rum&=10 MeV. Curve a includes only diagram 1 and is
shown scaled by the factor 10. Curve b includes dia-
grams 1-10with the invariant amplitudes of Eq. (22).
The contribution of diagram 10 to curve b is negligibly
small.

be assumed, when T, &0, since several of the dia-
grams are infrared divergent. We note that if &. ;,
is increased to 20 MeV, the cross section shown as
curve b in Fig. 5 decreases by about 40/p. As il-
lustrated in this figure, the cross section obtained
using only diagram 1 is more than an order of
magnitude smaller than the one computed with all
tree diagrams.

In general, when L9&90', the integrations over
photon energy include two energies at which the
real par't of the denominator in M„vanishes. Be-
cause of the smallness of the v -yy width the inte-
grated cross sections are dominated by the virtual
charge-exchange process with the p' propagator
effectively just 1/m„oI'„o. In Fig. 6 we show cross
sections summed over photon polarizations and en-
ergies (&o =10 MeV) for an incident pion kinetic
energy of 40 MeV and with the photons detected in
the plane perpendicular to the incident beam. To
carry out the energy integrations for angles I9 such
that the real part of the denominator in Myp has a
zero in the range of integration, we factored out of
the integrals the numerator of the integrands, eval-
uated at the energy where the real part of the de-
nominator vanishes, and then performed the inte-
gration over the denominator analytically. The
left part of Fig. 6 shows the cross section for dia-
grams 1-10 for the range of g over which q"
pm, p for all photon energies. In the right part of
the figure we show the cross section computed ac-
cording to the above mentioned procedure. Over
the range of integration, q" = m, p for two different
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20—
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T7f =40 MeV — 0.2
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0 20 40 60 80 I 20 150 180
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FIG. 6. Differential cross sections in the lab frame
summed over photon polarizations and energies with
co I =10 MeV. The cross section includes diagrams
1-10with the invariant amplitudes of Eq. (22).

values of w for each value of (9 in the range 120-
180'. The cross section for these values of 0 is de-
termined entirely from the charge-exchange dia-
gram; even the interference term between dia-
grams 1-9 and 10 is negligible, since it is propor-
tional to l,o.

We now consider the feasibility of using m p
yyQ to determine the sign of the m -yy amplitude.

Clearly, we are interested in the interference be-
tween diagrams 1-9 with diagram 10. Except near
the kinematic points where q" = m„0', the magni-
tude of diagram 10 is small compared to
that of the sum of the other diagrams, and the in-
terference term is also small. Since the Lagran-
gian model we have developed becomes inaccurate
at the higher energies where effects of the, nucleon
resonances become important, we have limited our
numerical study to incident pions with kinetic ener-
gy in the lab of not more than 100 MeV (where v s
=1160 MeV). Differential cross sections at this
uppermost energy are shown in Fig. 7. Curve a
represents diagrams 1-9, while 5 includes dia-
gram 10 evaluated with the invariant amplitudes of
Eq. (22). In computing this cross section we used
the negative sign in the m -yy vertex factor of Eq.
(4). This sign is also the one we used in computing
the cross sections shown in the other figures.
Curve c of Fig. 7 shows the effect of reversing the
sign of the z decay amplitude: The cross section
decreases by, at most, 10%. At threshold, how-
ever, the effect is much greater, as shown in Fig.
8. Here we display the double differential cross
section for the two-y process divided by the total
cross section for n p-yn. The latter is given by

I.O I I I I I !

0 20 40 60 I 20 I40 160 I 8080 IOO

$'(deg)
I

60
I9 (deg)

I

?50 15 30 45 90

FIG. 7. Differential cross sections in the lab frame
summed over photon energies (cumin=10 MeV) but with
definite polarization states for the photons. The polari-
zations correspond to e~ and e 2 of Fig. 3. Curve a
represents diagrams 1—9, and curve b includes dia-
grams 1—10 with the invariant amplitudes of Eq. (22)
and with Eg, & 0. Curve c shows the effect of changing
the sign of E.

1 M (M+2m ) ~g,
v 8w(M+ m, )'m, 2M

where v is the velocity of the incident pion. 'The

2.5

O
X

m Ca 2.0

-I b"

l.5

T~ = 0 MeV

1.0 I I I I I I

0 20 40 60 80 100 120 140

8(deg)

FIG. 8. Differential cross sections in the lab frame
at T~=0 MeV normalized to the total cross section for
m p yn. Curves a and b include all diagrams; ina,
Eg &0, while in b Eg, &0. When g&140', q' =m; in the
range of integration over the photon energy. The cross
section is consequently dominated by diagram 10 and is
similar to the one shown in Fig. 6.
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magnitude of these cross sections suggests that the
sign of the m decay amplitude can be determined
from experiments which detect the final photons.

In their paper on n p-yyn, Lapidus and Musak-
hanov' suggested that the sign of the n' amplitude
could be determined by a measurement of the
neutron spectrum when pions were captured at
rest. For completeness, we show in Fig. 9 the
cross section, for both signs of I', for detection of
the final neutron, again normalized with the one-y
process. The large cross section at the neutron
kinetic energy' T„=600 keV results from the van-
ishing of q" -m„p' in diagram 10. Because of the
order of magnitude difference between curves a
and b (which differ in the sign of Il), it is clear that
a measurement of the neutron spectrum can also
determine the sign of the n' decay amplitude.

IO'

IO-'

IO
I

IO

T71 =0 MeV

V. SUMMARY AND CONCLUSIONS

In analogy with the work of Peccei' on pion photo-
production, we have constructed a chiral Lagran-
gian model for w p-yyn. Our evaluation of the tree
diagrams for this process leads to a reaction am-
plitude which is similar to the one derived by Lapi-
dus and Musakhanov' using a low-energy theorem.

The main diagram of interest in our study de-
scribes the charge-exchange process g —virtual
s yy. 'This diagram involves directly the sign of
the m -yy decay amplitude and the pion-nucleon
amplitude with one pion off the mass shell. Our
numerical work has been based on an assumed ex-
periment in which only the final-state y's are de-
tected, and we have explored the feasibility of us-
ing such an experiment to (1) differentiate between
different models of the. off-mass-shell mÃ ampli-
tude, and (2) determine the sign of the mo-yy am-
plitude.

Our principal conclusions, are that (1) only in an
experiment in which the polarizations and energies
of the y's are measured can the contribution of the
virtual charge-exchange process be large relative
to the bremsstrahlung terms when g»p & 0.97%i»',

(2) this reaction is not a practicable way to disting-
uish between different models of the off-mass-
shell amplitude since cross sections are -1 pb/

IO-4

I I I I I I I I

IOO 200 500 .400 500 600 700 800 900 I 000
Tn(kev}

FIG. 9. Differential cross sections in the lab at T»
= 0 MeV for detecting the final neutron. E„=T„+I,
where T„ is the neutron's kinetic energy. Curves a and
5 include all diagrams; in a, Fg» & 0, while in b, Fg»
&p.

MeV for kinematic configurations in which the
charge-exchange process with virtual m"s plays a
non-negligible role; and (3) a reasonably accurate
experiment could determine the sign of.the p de-
cay amplitude.
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