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The set of coupled hnear second-order differential equations which has to be solved for quanturn-
mechanical calculations of inelastic scattering processes with multiple excitation can be rewritten as an
equivalent set of coupled first-order integral equations. When Airy functions are used as piecewise analytic
reference solutions, it makes it possible to evaluate analytically the integrals that arise in the set of integral
equations. This set can be solved iteratively with a considerable reduction of computation time in cases of
heavy ion scattering, when compared to quantum-mechanical coupled-channel calculations of the
conventional type. The efficiency of two iteration schemes, an inward-outward and a perturbative one, has
been investigated for some test cases dealing with multiple Coulomb excitation of "U by Kr and Pb. It
turns out that, for heavy ion scattering, only the inward-outward iteration scheme has a practical
importance. Finally, the excitation probabilities for "'U, Coulomb excited by 385 MeV Kr up to I = 24'',
are shown for a reduced E2 transition matrix element of 3.5 eb and they are compared with the excitation
probabilities calculated according to the semiclassical theory.

NUCLEAR REACTIONS Solving coupled equations by iteration; quantum mech-
anically calt.ulated excitation probabilities for heavy ion multiple Coulomb

excitation.

I. INTRODUCTION

For collisions between heavy ions, the asymptotic
de Broglie wavelength associated with the relative
motion is very short as compared to the long range
of the strong Coulomb interaction. In general also
many open channels are involved to a significant
extent. In heavy ion multiple Coulomb excitation,
the rotational bands of a deformed target nucleus
can be excited up to I ~20k. The analysis of such
excitations can be performed according to the
semiclassical theory, in which the inQuenee of the
energy transfer and the change in orbital angular
momentum during the collision are neglected in
principle. ' However, for an accurate analysis of
the excitations of the high-spin states, or a study
of the deviations with respect to semiclassical
theories in more general circumstances, ' it is
advisable to have the disposal of fully quantum-
mechanical calculations of the cross sections.
These coupled-channel calculations of conventional
type are not feasible yet, due to the tremendous
amount of computation time needed. An attempt
has been made to find a solution to this problem
by investigating the application of a method for
solving systems of coupled linear second-order
differential equations by iteration.

The efficiency of this method, as in Gordon's
method, ' depends upon the possibility to divide
the integration range into intervals which are suf-
ficiently small to approximate the potential by
some more simply varying reference potential
but which, on the other hand, contains a sufficient-

ly large number of de Broglie wavelengths. For
heavy ion collisions, both conditions are fulfilled.
A further element of the method is the decompos-
ition of the partial wave radial solution into regular
and outgoing components. This means that the so-.
lution in, e.g., the classically allowed region is
written as a linear combination of two rapidly os-
cillating base functions with more or less slowly
varying amplitudes. The chosen reference poten-
tial allows these base functions to be expressed in
terms of piecewise analytic reference solutions.
Taking the reference potential over the interval as
a linear one, these reference solutions are given
by Airy functioris. '

The Schrodinger equation for the partial wave
radial solution is rewritten in an integral form
which leads to a system of coupled first-order
integral equations for the amplitudes. These amp-
litudes are obtained by means of an iteration pro-
cedure. Two iteration schemes, an inward-out-
ward' ' and a perturbative one, ' have been investi-
gated. When compared to previous applications of
these iteration schemes, the advantage of the new
method is that the integrais are evaluated analyti-
cally.

Although the results are presented for some
Coulomb excitation inelastic scattering problems,
it is possible in principle to include the influence
of a nuclear interaction. Inelastic heavy ion scat-
tering cases involving an optical potential are now
being investigated.

In the next section, a concise formulation is
given for the quantum-mechanical theory of in-
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elastic scattering as applied to multiple Coulomb
excitation. In Sec. III, the calculation procedure
is discussed and the two iteration schemes are de-
scribed. In Sec. IV the results of the study that
considers the above-mentioned amplitudes is pre-
sented, plus the scattering matrix elements for the
heavy ion multiple Coulomb excitation of '"U by
385 MeV Kr and 1000 MeV Pb. Both iteration
schemes are illustrated by figures and a table
which show the rate of convergence and the ac-
curacy achieved. In Sec. V, the excitation prob-
abilities for '"U, Coulomb excited by 385 MeV Kr
up to I= 245, is shown for a reduced E2 transition
matrix element of 3.5 eb and is compared with re-
sults from the semiclassical theory with energy-
symmetrized classical orbits. ' In the last section
some conclusions are drawn.

II. CONCISE QUANTUM-MECHANICAL FORMULATION

OF INELASTIC SCATTERING

In general, the quantum-mechanical description
of inelastic scattering leads to a set of coupled
second-order differential equations of the partial
wave radial functions gr, of the following form:

d', 2qr Irr l (1+1),,
)

= P V, i. r r. (r ) q, ...(~), (2.1)

2p Z Z28
2k I

(2.2)

where p. is the reduced mass, while Z, and Z,
represent the charge numbers of the projectile
and target nucleus, respectively. The coupling
potential for the special case of multiple Coulomb
excitation is given by'

for a spinless projectile. Here J, l, and I denote
the total angular momentum, the orbital angular
momentum, and the spin of the target nucleus with
excitation energy ~~, respectively. The total ang-
ular momentum J, its projection on the z axis and
the parity are good quantum numbers. The wave
number k, and Sommerfeld parameter q, are given
by

(2.2)

6'r"""„„IIi(nr Irr &) 5rr, 5r i',

- 1/2
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The ingoing and outgoing Coulomb waves H, and
II', , respectively, are given by ,I'I=( G+iE, ), in
terms of the well-known regular and irregular
Coulomb wave functions F, and 6, . The indices
Ip l p correspond to an ingoing wave in the en-
trance channel for I=I, and l lp.

The dimension N of the set (2.1) is determined
largely by the maximum value I,„of the target

where (I' ()M (EX) ~( I) denotes the reduced matrix
element of the electric 2 -pole moment of the tar-
get.

To obtain the solutions for err, (x), two boundary
conditions have to be fulfilled. At the origin, they
must vanish and for large distances they must be
related to an ingoing partial wave in the entrance
channel plus outgoing partial waves in all relevant
exit channels. The precise asymptotic form de.-
fines a scattering matrix. We follow Alder and
Winther's convention' for defining an R matrix by
the following asymptotic condition:

l

spin. Considering the excitation of a ground state
rotational band with spin sequence 0', 2', 4', . . . ,I,„, N is given by

N=g (I„+1). (2.5)

This means that for I,„=20, N becomes 121 and
for even higher values of I,„, N assumes huge
values. In conventional coupled-channel calcula-
tions, the set (2.1) has to be solved N times for
each J' value in order to satisfy the boundary con-
ditions. Especially for large systems this is time
consuming. In addition, this procedure generates
R-matrix elements which form a complete NxN
matrix. However, in the nuclear physics context
of a case with a zero-spin ground state, only one
column of this matrix is needed, namely those
elements which connect the ground state entrance
channel to all the experimentally relevant exit
channels. This is the motivation to study iteration
methods for which the solutions err, (r) are obtained
directly without the need for solving the set (2.1)
N times.

The scattering amplitudes are expressed in
terms of the R-matrix elements'
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(2.6)

in which o, is the Coulomb phase shift

o, (q) =argI" (1+1+i') .
From the scattering amplitudes it is easy to calculate the cross section for state I

do'I ( 8) 1 kg
dg 2I +1 k Zr f1 3E IN0+ Io MOM

and other observable quantities. The excitation probability, for instance, is given by

(2.7)

(2.8)

d&z
0

where a~ is the Rutherford cross section.

(2.9)

III. THE CALCULATION PROCEDURE

The Schrodinger equation (2.1) is rewritten in the more convenient form

, +k, '-U„.(r.) y, (~) = gU„.(~) q,.(~),

jest

and the boundary condition (2.4) as

k u

I

(3.1)

(3.2)

The superscript and subscript k denotes the entrance channel.
When considering some interval of the integration range with its midpoint at radius P and expanding the

potential function in a Taylor series, the equation is the following:

(3.3)

Subsequently, introducing an average value for the components of the first derivatives at the left-hand
side,

( )
dU;;(&)~ ~ (r f)' d'U, , (r)

2 d& |t;(~)
r=r

or, in more convenient notation,

(x P)" d"U-;;(&)
!j~j - m=o

(3.4)

where U, ,- is introduced as the average value of
the diagonal potential for the interval. The poten-
tial form at the left-hand side is the reference
potential. The reason for introducing an average
value of the first derivatives will become clear

later in this paper.
If the right-hand side of Eq. (3.5) is replaced by

zero, each of the resulting decoupled equations has
two linearly independent solutions:
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1. The regular solution G,.(r). It is defined to
vanish at the origin and by the asymptotic form

G,(r). [H, (q,.; k,.r) -R', H',.(q„k,.r)] .

(3.6a)

with the constants

III„(r)
Q =

P, ,{r)
d V,„(~)/d~ ~ „-„

(3.6)

2. The irregular outgoing wave solution G',.(r).
This is defined by the asymptotic form

(3.6b)

/

G, (r) =Ai [n(p, +x).] a,. + Bi [o.(p,. + x)] 5, (3.7a)

and

G', (&) =Ai [n(P;+ &)]c;. + Bi [n(P, + &)]b;, (3.7b)

G',.(r) ~ H',.(q,.; y, r) ..1

Owing to the special form of the left-hand side
of Eq. (3.5), the solutions (3.6) can be expressed
in terms of Airy functions which can be efficiently
evaluated numerically, as shown by Gordon'

G, (~, r. ') = G, (~,) G', (r. ,) . . (3 9)

where r& and r, are the smaller and the larger
values of ~ and x', respectively.

With an ingoing wave in the entrance channel k,
the coupled differential Eq. (3.5) can be written
as a set of N coupled integral equations

The constant coefficients a„b,. and a', , b', are de-
termined by conditions of continuity at the interval
boundaries.

Now the Green's function which belongs to the
coupled differential Eq. (3.5) can be introduced;
it is regular at the origin and has an outgoing wave
asymptotic form of

N N

g",(r) = G, (r) 6,»
——. .G',. (~') Q W „(r')g,'(r') d.r' G' (~-) G,.(~') PW, (~') g»(r') d~'

j 1

Equivalently,

q",(r) = G, (r) c-,(r) G',. (r) c', (r),
with the boundary conditions

(3.10a)

(3.10b)

(3.11a)

and

c', (0) =O. (3.11b)

In practice, however, instead of Eq. (3.11b) the approximate condition

(3.11c)
0 N

c,(ro) =
G. ,(r') QW, &(r') (~»(x').Ch' =0

0

is used for a relatively small r„ in order to prevent the set of integral equations becoming singular.
The choice of F0 is very important. It must be neither too small nor too large. Of course, the R-matrix

elements have to be independent of the actual value of x0. In Sec. IV this subtle point is discussed in more
detail. The asymptotic value of the outgoing coefficients c', (r) are related to the R-matrix elements

c', (~) =R„R',6,» . - (3.12)

The set of coupled integral equations (3.10) can be solved by iteration. We have concentrated our invest-
igation on the behavior of the amplitudes c, (x) and c', (r) instead of the wave function itself. This has been
done for two iteration schemes.

A. Inward-outward iteration scheme

oo N oo N

c,(r) = —.6,» — G',.(r') QW„(r')G, (r') c;(~')dr'+ . G', (~') QW, (r')G,'(r') c,'(~')d~', . .
r j=1

(3.13a)

In this scheme, the following set of coupled integral equations for the amplitudes c,(r) and c,'(r) are con-.
sidered:

N r
c', (~) = G, (r') gW,.;(r') G&(r') c;(r')d~' — G, (~') gW„. (~') G,

'(r') c,'(r.')dr'. .
0 0

(3.13b)
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for i =1, 2, . . . , ¹ This scheme was proposed by
Alder, Roesel, and Morf and Ichimura et a).'
They used a differential form of these equations.

When solving these equations iteratively, a start
is made at infinity (in practice a few hundred or
even thousand fm), where the c,.(r) values are
known, due to the boundary condition (3.11a), but
the c,'(r) are not. However, the product G+W, ,c+
oscillates rapidly over the classically allowed
region of the integration range which tends to
nullify the contribution of the term with c,(r) Th.is
will also be apparent from some of the figures in
the next section. It is, therefore, justifiable to
take the value of these coefficients equal to zero
as a first guess. Now, a first approximation to
c;(r) can be generated by the inward integration of

I

Eq. (3.13a) from infinity to r, . The obtained values
of c;(r), together with the initial condition (3.11c),
are used in an outward integration of Eq. (3.13b)
from ro to infinity, where the term with c;(r) is
now conside red as a known inhomogeneou s func-
tion. This outward integration gives a first ap-
proximation to c;(r) with a value at infinity, which
corresponds to a first approximation of the @-
matrix elements.

The iteration procedure continues as a second
inward integration of Eq. (3.13a.) using the cal-
culated values of c;'(r) and so forth, until conver-
gence is obtained for c',. (~). In the cases tested,
only a few steps in the iteration process were
needed. .

B. Perturbative iteration scheme

The set of coupled integral equations for the amplitudes c,(r) an. d c',.(r) can a.iso be written as
N

c,(r) = —. 5,, + G', (r') g W, ,(r') [G;(r') c,(r') G,'(r'—) c,'(r') jdr. '
0 j= 1

00 N

G', (r') pW,.;(r') [G;(r') c,(r') —G,'(r') c,'(r') jd. r',
0 j=l

(3.14a)

(3.14b)c,'(r) = G, (r') Q W. „(r') [G,(r') c;(r') —G,'(r') c&(r')]dr' .

In this scheme, which was proposed by Raynal, the coupling potential W' is considered as a perturbation.
To illustrate the iteration procedure the results for the nth step of the iteration in case 0 = I are written

as

2 r
c!"'(7) = —. 5, &

+ G', (r') X!"'(.r') dr'—
0

G', (r')X&"'(r')d. r ' (3.15a.)

c+&"&(r C, (r') X&"&(r') d. r', (3.15b)

where

X&."&=W,, [c,c'," "-G', c", " ']+ QW, , [C,. c'."'-G'c'. "]++ W, , [c,. c&" ' G'. c'. " '&] (3.16a)

for i=2, 3, . . . , N and

X!"'=W„[c,c,'" "—G', c", " "]+g W„[c,c&"& —C,'. c,". "'j (3.16b)

for i=1.
The calculation of Eq. (3.15) starts with i =2,

using (3.16a) under the initial conditions

(3.17)

This component must be integrated to infinity, due
to the third term in (3.15a), before the calculation
can be continued for i =3. The iteration step ends
with the integration of the first component using
(3.16b).

We have also investigated a perturbative scheme
with the initial conditions

(3.18)

and adapted integral expressions for c&"'(r) and
c", "'(r). However, in the cases tested, the results
varied little from those obtained with the initial
conditions (3.17).

To solve Eqs. (3.13) and (3.14) we use the rel-
atively slow variation of the amplitudes c,(r) and.
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c', (r).with respect to the rapid oscillations of the
functions G,.(r) and G',.(r) in the classically allowed
region. This behavior is understood by noting that
c&(r) and c',.(r) nearly lose their r dependence on
the midpoint of an interval. This dependence is
weak as long as the difference between the true
potential and the reference potential is small.
Thus, a choice of step size has to be made so that
small variations of c,(r) and .c', (r). over an interval
can be neglected.

Assuming that in the first iteration step we have
already integrated Eq. (3.13a}, for example, from
the right up to r„and using the values of c,.(r„),
this equation yields a first-order contribution to
c,(r, ). at the "left-hand" boundary r, , provided in-
tegrals of the form

"
G, (r)(r r)"G, (r)d.r (3.19)

are determined. Expressing G,.(r) [and also G',.(r)]
in Airy functions and introducing an average value
for the first derivatives [see (3.4)] when the con-
stant e becomes independent of the channels, inte-
grals are obtained of the form

(r r) At [a(p,. + r)] Bi[n(pq+ r)]dr.
(3.20)

This type of integral can be evaluated analytically.
The analytical expressions for the integrals of
m =0, 1, 2; P,. =P& and for m =0, 1; P,. cP, were
given by Gordon, ' while the expression for m =2
and P,.WP; is given in the Appendix.

spectively. The target spin sequence is
0', 2', 4', . . . , 20' (N =121). In Fig. 1 the values
of the complex 8-matrix element, with a set of
quantum numbers and hypothetical E2 and E4 val-
ues as mentioned in the figure, are plotted with a
logarithmic radial scale in the complex plane, for
successive iteration steps of both schemes. This
figure shows as a surprising result the very rapid
convergence of the inward-outward iteration
scheme when compared to the perturbative one.
It is seen that the perturbative values jump from
one quadrant to the other while approaching the
convergence limit only after more than about thir-
teen steps. On the contrary, the inward-outward
scheme has a starting value which already nearly
coincides with the convergence limit. It appears
that for larger values of the reduced F-2 transition
matrix element, the rate of convergence for the
perturbative iteration scheme is poorer. For the
more realistic reduced E2 element of 3.5 eb, it
diverges. The inward-outward scheme needs only
a few steps to converge in this case. Therefore,
from now on we concentrate our investigation on
the inward-outward iteration scheme, using an
E2 element equal to 3.5 eb.

Figure 2 shows the behavior of the amplitudes
c(r) and c'(r}, during the first and final iteration
step, for the set of quantum numbers I~ =0, I=2,
$ p l = &00. Numerically speaking, the fourth iter-
ation step gives at least a three-figure agreement

IV. RESULTS AND DISCUSSION

In this section we present results with respect
to the amplitudes c(r), c'(r) and the 8-matrix ele-
ments for two heavy ion scattering test eases. In
these cases, the multiple Coulomb excitation of the
ground-state rotational band of a doubly even nu-
cleus with the corresponding spin sequence has
been considered. The reduced transition matrix
elements which are used were calculated according
to the simple rotational model starting from given
values of the reduced E2 and E4 matrix elements,
(2'IIM(&2) IIo') and(4'IIM(«) IIo'), respe~ti~~ly.
Before starting our investigation on the heavy ion
test cases, we made for a light ion test case' a
comparison between iteratively calculated 8 -matrix
elements and those ealculted with a conventional
coupled-channel computer program (AROSA'). It
turns out that a three- to four-figure correspon-
dence is obtained.

Multiple Coulomb excitation of Uby 385 NeV ECr. (Ref. 10)

For this case, the Sommerfeld parameter and
wave number are approximately 244 and 29, re-

Kr+ U E[ab =385M eV &211 M(E2) 110& = 2,5eb
&LIIM(E4) 110) = 0.0eb

Io=0 [o =100

I =4 I. =100
1

. 8

(h ~+) inward - outward
(0 ~+) perturbative iterat

FIG. 1. A g-matrix elexnent for a heavy ion scattering
case, plotted with a logarithmic radial scale in the com-
plex plane and calculated for successive iteration steps
according to the inward-outward iteration schexne and the
perturbative one. The convergence limit is indicated by
a cross {+). .Note the rapidity of convergence of the in-
ward-outward scheme.
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& 2 II M(E2) II 0& =3.5eb
0.60

84Kr+ 238U El ab 385MeV

0.40—

0.40

0.20

0.20—

14

-0.20-
-0.40

, -0.40-

-0.60-
inward - outward iteration

FIG. 3. The same as Fig. 2, but the imaginary parts of
c(x) and c'(r) are now plotted on a larger y scale for two
different sets of quantum numbers. The inner- and outer-
most classical turning points are indicated by arrows.

FIG. 2. This figure illustrates the inward-outward
iteration scheme for a heavy ion scattering case. The
amplitudes c(r) and c'(r) are plotted as a function of y

for the first iteration step (---) and the final one (—).
The differ'ence between the first and final iteration steps
for c(z) is visible only in the neighborhood of the classi-
cal turning points. The location of the latter is given in
Fig. 3.

with the final result. We note that the influence of
c'(r), obtained in an outward integration, on c(x)
during the next inward integration over the classi-
cally allowed region is rather weak. Only in the
region around the classical turning points of the
decoupled set of equations the difference between
the first and final iteration steps is visible in the
figure. Clearly, even one iteration step yields a
reasonable result. To study the behavior of the
amplitudes in more detail, the imaginary parts of
c(x) and c'(c) are plotted in Fig. 3 on a larger v
scale for the above-mentioned set of quantum num-
bers and, additionally, for Ip=O, I=6, l, =i=100.
Both sets, but especially the latter, suggest that
the step sizes must be chosen with care over a
limited part of the integration range outside the
turning points, due to the tendency of the ampli-
tudes to oscillate here. In connection with the
foregoing, the general behavior of the amplitudes
may be summarized as follows: They change
monotonically inside the innermost turning point
and tend to oscillate outside it before approaching

1.0—

0,5-

I I

Estab =385MeV

I

84Kr+ 238LI

i

2

ImC(r)

/

) I I
3I 4,

' I5
t

&2ll M(E2) II 0&=3.5eb
&4II M(E4) II0&=Q.Oeb

I =0 L =100

=2 l =100

rp =13.58fm

0.5—

l

t

2 ii

ImC(r )

I

I g /
/ /

I

( I

3' 4i '5

fp 12 38fm

13 14

r (fm)

17

FIG. 4. This figure shows the behavior of the imaginary
part of c(x) for two different values of the starting point
~0, plotted as a function of r for the first part of the in-
tegration range and for successive iteration steps.
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constant values in the asymptotic region.
In the previous section, it is stated that the.

starting point ~, has to be taken so that its choice
does not affect the value of the A-matrix elements
asymptotically. It seems that, on the one hind,
making f'0 too small gives rise to diverging asymp-
totic values of these elements, while on the other
hand, for large values of t', the 8-matrix elements
become dependent on r, . However, in the present
case, the margin is rather large, as can be seen
from Fig. 4. This figure shows for two different
&, values the imaginary part of c(r), which is
plotted as a function of r for the first part of the
integration range and for successive iteration
steps. The upper part of the figure corresponds
to starting values of the components P~(t') in the
solution vector of about exp(-20), while the lower
part corresponds to values of about exp(-30). It
is seen that outside the starting point the ampli-
tude for successive iteration steps changes very
rapidly; nevertheless, it converges for both x,
values to the same value at about 15.5 fm, far
inside the innermost turning point of the decoupled
set of equations. As Fig. 3 shows, this turning
point is located at 17.35 fm. The behavior of c'(r)
and the real part of c(r) are similar. In general,
such a behavior guarantees a stable iteration pro-
cess, since it means that numerically speaking the
components P",(r), due to .(3.10b), obtain a signifi-
cant value inside the innermost turning point.
Comparing the B-matrix elements at infinity for
the present two r, values, it is seen that a two-
to three-figure correspondence is obtained, illus-
trating the degree of independence on r, .

Also, a comparison is made with a conventional
coupled-channel calculation in the sense of. Sec. II.
For this, only the computer program JUPIGOR"
was available. It uses Airy functions as piecewise
analytic reference solutions too. The results are
presented in Table I. Comparing the significant
B-matrix elements, a two- to three-figure cor-
respondence is obtained, even for the high-spin
states. Calculations of the modulus give rise to
discrepancies of about one per cent. In view of the
uncertainties in experimental excitation probabil-
ities, "such an accuracy may be called satisfac-
tory. Note that there is a considerable reduction
of computation time. With our computer, the aver-
age computation time for one integration step when

solving a system of 121 coupled equations takes
about 140 sec for a conventional coupled-channel
calculation; but for the inward-outward scheme
it takes about 4.3 sec, including four iteration
steps. Every extra iteration step takes about 0.3
sec.

Finally, it should be noted that iteration schemes
based on the integral form of the Schrodinger equa-

tion, have been studied elsewhere in light particle
problems for inelRstic scattering Rs well Rs for
rearrangement. " In that study, an analysis of the
kernel eigenvalue problem was made in order to
understand the convergence properti. es. In this
study such an analysis was not made; however, it
is believed that the striking difference in conver-
gence properties of the two iteration schemes,
examined here, has to be sought in the fact that in
the inward-outward scheme, the amplitudes c(r)
and c (x) are iterated independently, while this is
not the case in the perturbative scheme.

Multiple Coulomb excitation of ' U by 1000Me V Pb

This case has been studied to investigate the
stability of the inward-outward iteration scheme
for very heavy ion multiple excitations. The Som-
merfeld parameter and wave number are now 542
and 53, respectively. The target spin sequence
chosen is 0', 2', 4', . . . , 32' (%=289). Figure 5

illustrates the behavior of the imaginary parts of
the amplitudes c(r) and c'(r) during the first and
the final iteration step, for a set of quantum num-
bers mentioned in the figure. It turns out that in
this case, -too, only a few iteration steps are need-
ed. Numerically speaking, the sixth iteration step
gives at least a three-figure agreement with the
final result. In this figure, the amplitudes are
plotted as a function of r for the region in the
neighborhood of the classical turning points, as
is done in Fig. 3 for the excitation by "Kr. Com-
paring both figures shows a similar behavior, al-
though the amplitudes in Fig. 5 have a slightly
more oscillatory dependence on the integration
variable r.

The insensitivity of the 8-matrix elements to
the starting point r, has also been investigated for
the present case. This is illustrated in Fig. 6,
where for two different ro vRlues the imaginary
part of c(x) is plotted as a function of r for the
first part of the integration range and for succes-
sive iteration steps. The upper and lower part of
the figure correspond to starting values of the
components g~(x) in the solution vector of about
exp(-20) and exp(-30), respectively. It is seen
that, as in Fig. 4, the amplitude converges for
both r, values to the same value at about 19.6 fm,
sufficiently inside the innermost turning point,
which is located at 20.64 fm. The amplitude c'(r)
and the real part of c(r) show a similar behavior.
This behavior guarantees a stable iteration pro-
cess. The degree of independence on x, is illus-
trated by comparing asymptotically the A-matrix
elements for both r, values. This comparison
shows a two- to three-figure correspondence.

It must be noted that in a similar case to that
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FIG. 5. This figure illustrates the inward-outward
iteration scheme for a very heavy ion scattering case.
The imaginary parts of the amplitudes c(r) and c'(r) are
plotted as a function of y for the first iteration step (---)
and the final one ( ). This has been done for the region
in the neighborhood of the inner- and outermost classical
turning points, which are indicated by arrows. The amp-
litudes show a slightly more oscillatory dependence on z
as compared to the amplitudes in Fig. 3.
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FIG. 6. This figure shows for the same very heavy ion
scattering case as in Fig. 5, the behavior of the imagi. -
nary part of c(r) for two different values of the starting
point yo, plotted as a function of y for the first part of
the integration range and for successive iteration steps.

illustrated in Fig. 5, but with a target spin se-
quence of 0",2', 4', . . . , 24', the inward-outward
iteration scheme does not converge. Apparently,
it can be considered as a further condition for a
stable iteration process that the coupling scheme
of the differential equations includes all experi-
mentally relevant target states.

In conclusion, the inward-outward iteration
scheme is successful and manageable even for
multiple Coulomb excitation induced by very heavy
ion collisions where it shows a rapid convergence.

V. COULOMB EXCITATION PROBABILITIES OF Kr + U

at 385 MeV

To calculate the scattering amplitudes, cross
sections, and excitation probabilities, use is made
oE some subroutines provided by the program
AROMA. However, it is necessary to adapt these
subroutines due to the large number of J values
needed in the partial-wave sums.

For the calculation of the cross sections (2.8)
and excitation probabilities (2.9), a target spin
sequence of 0', 2', 4', . . . , 24' (N= 169) and reduced

E2 and E4 transition matrix elements equal to 3.5
eb and 0.0 eb2, respectively, have been taken. The
A-matrix elements were calculated for the follow-
ing sequence: J = 0, 40, (1); 42, 100, (2); 104, 196, (4);
204, 516, (8); 532, 1332, (16). The values in paren-
theses indicate J steps. The values of the missing
A-matrix elements are obtained by interpolation.

It is well known that the number of target states,
which are coupled, is reduced at high J values. To
illustrate this behavior, in Fig. V the absolute val-
ues of some R-matrix elements are plotted against
J. These values are multiplied by the weight
(2J'+1)~', with which the R-matrix elements ap-
pear in the expression of the scattering amplitudes
(2.6). lt appears that the full set of coupled differ-
ential equations is necessary only up to a J value
equal to about 200. For higher J values the dimen-
sion of the set can be gradually decreased.

In Figs. 8(a) and 8(b) the quantum-mechanical
(QM) Coulomb excitation probabilities, calculated
in the center-of-mass system, are plotted for all
target states included as a function of the scatter-
ing angle 8. In addition, the probabilities are
plotted from calculations based upon the semi-
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FIG. 7. The absolute values of some R-matrix ele-
ments, multiplied by a weight factor, are plotted against
J for several spin states of the target.

VI. CONCLUSIONS

classical (SC) theory with energy-symmetrized
classical orbits. " Comparing both probabilities,
it is seen that, as expected, the difference be-
tween the QM and SC probabilities for the low-
spin states

I Fig. 8(a)] is small, although signifi-
cant. The difference is somewhat larger for the
other states. Looking at Fig. 8(b), it is noted that
at backward angles, the QM and SC probabilities
for I"=10' coincide. For I =12', 14', and 16'
the QM probability becomes larger than the SC
value, for I' =18' they coincide again, while for
I =20', 22, and 24' the SC probability increases
relative to the QM probability. It is observed that
the systematics of the differences between the QM
and SC excitation probabilities, depending upon the
excited target state and scattering angle, shows
up quite clearly in the present study.

to form a full set of linearly independent solutions.
Rewriting the set of coupled differential equa-

tions in integral form, transforms it into an equi-
valent set of coupled first-order integral equations.
Approximating the potential energy over a radial
interval by a, linear reference potential, makes it
possible to use Airy functions as piecewise anal-
ytic reference solutions. This opens up the possi-
bility of evaluating analytically the integrals ap-
pearing in the set of first-order integral equations.
This set can be solved iteratively which, in cases
of. heavy ion scattering, gives a considerable re-
duction of computation time as compared to the
above-mentioned coupled-channel calculations.
The efficiency of two iteration schemes, . an in-
ward-outward and a perturbative one, was ex-
amined. It appears that for heavy ion scattering
only the inward-outward scheme has practical
importance, since it converges for any realistic
value of the deformation parameters and needs
only a few iteration steps. The accuracy which
can be achieved is sufficient for practical pur-
poses. Finally, it is concluded that the piecewise
analytical approach by inward-outward iteration
enables one to describe quantum-mechanically
heavy ion scattering processes which are of in-
creasing importance. Additionally, it opens up
a favorable study procedure for heavy ion col-
lisions.
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APPENOIX

Vfe consider integrals over Airy functions of the
form

The description of a heavy ion nuclear scatter-
ing process, especially of multiple Coulomb ex-
citation, by means of a quantum-mechanical cou-
pled-channel calculation of conventional type is not
feasible at present, since the analysis involves the
solution of a very large set of coupled linear sec-
ond-order differential equations, which has to be
solved as many times as the dimension of the set

ft "&t~(p, +It)] II I ~(p, +~)]de,

where A. and & are the Airy functions or any linear
combinations of them. Integrals involving m
=0, 1, 2; P, =P, and m=0, 1; P, &P, were given by
Gordon. ' The analytical expression for the inte-
gral with I= 2 and P, &P, may also be derived:
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The same as (a), but the excitation pr b b 1't'' n pro a x x res PI are now plotted as a functi
e or e ow-spin states of the target. (b)

spin states of the tar et. The d'ffarge . e i erence between the QM and SC excitation robabi ' '
p unction of the scattering angle 6I for the hi h-e 'g-

target state and scattering angle.
exci a ion pro abilities depends upon both the excited

A A a p, +R B n 132+& d&

1
6(p p )4 (12(pl + p2) +

I 24 + 2n'(p, + p, )(p, —p,)']R + 4n'(p —p )'R')(A [n(p +R) B 'n p +R

4+,
(p ), 'L p, A' [n(p, +R)] a [n(p, +R)] —p, A [n(p, +R)] Z'[ (pn, +R)])

~[24+2 '(P, +P,)(p, —p, )']+1

x (A' [n(P, +R)] a [n(P, +R)] A[n(P, -+R)] R'[n(P, +R)]]
4

p). [8 '(P, -P,)'R](A'[ (P, R)]R'[ (P. R)]),

where the prime denotes differentiation with respect to the ar
as in (3.8).

i respec o the argument. The constant P does not contain F
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