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Angular distribution theory for particle-capture-y reactions
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Legendre polynomial coefficients are derived and compared with the results of other authors for the angular
distributions encountered in gamma reactions initiated by the capture of vector or tensor polarized or
unpolarized particles of arbitrary spin. Attention is given to phase conventions and the consequences of using
different angular momentum coupling schemes. Results are given for both the channel spin and the total-j
representations. Correction factors for use with other author s results are included. Some potentially useful
sum rules are deduced and illustrated.

NUCLEAR REACTIONS Rederived expressions for y ray angular distributions
resulting from capture of vector or tensor polarized and unpolarized particles

of arbitrary spin. Compared with previously published results.

INTRODUCTION

The 1954 work of Huby' and the less well known
earlier observation of Coester' focused attention
on the time reversal properties of S matrix ele-
ments. Since then several authors have included
these considerations in descriptions of photon
reactions. Devons and Qoldfarb, ' Ferguson, 4

Rybicki, Tamura, and Satchler' and Debenham and
Satchler' treat particle-y angular correlations.
The latter two references are extensions of the
work of Rose and Brink' who focused on the im-
portant question of phase conventions, e.g. , signs
of multipolarity mixing ratios for y ray angular
distributions. Baldin, Goldanskii, and Hosental
and Welton' examine two-body reactions where
either the initial or the final state or both involve
a photon. Baldin et a/. ' give results for the un-
polarized angular distribution and for the outgoing
particle (vector) polarization distribution. Welton'
gives completely general results for all possible
outgoing tensor moments in terms of all possible
incoming tensor moments. Perhaps the less gen-
eral results of Baldin et al. are easier to under-
stand than those of Welton. Whatever the reason,
the Baldin et a/ results are more popular as is
evidenced by the fact that the review by Firk"
and the recent works of Kabachnik and Razuvaev, "
of UJnricht et a/. ,"Rnd of L3szewski and Holt" all
use the Baldin et a/. results. Laszewski Rnd Holt"
pre, sent tables of numerical coefficients of an as-
s::ciated Legendre polynomial expansion of the
pc;larization distribution by evaluating the Baldin
et al. equations. These tables supplement the

tables of Carr and Baglin" that give the coefficients
of the standard Legendre polynomial expansion of
the unpolarized angular distribution.

Since tebles are easier to use than the original
equations, their use can be expected to increase.
In a field that has been beset with errors and re-
sults almost defying comparison, e.g. , because of
incompletely specified information (as noted in
Ref. 7), we felt it worthwhile to attempt a rede-
rivation of the results of Refs. 8 and 9 in an effort
to establish some confidence in results already in
use or to correct existing results before their use
continues. Since existing references rarely com-
pare their results or give much attention to phase
questions and angular momentum coupling order
considerations, our second objective is to improve
this situation.

NOTATIONS AND CHOICE OF AXES

The well-known differential cross section ex-
pression for a polarized incident spin —, beam is

o(g, P) =o„(e)[1+p X(0)],

where p is the polarization, X(9) the analyzing
power vector, and o„(8) the unpolarized cross sec-
tion.

We choose the following right-handed set of
Rxes;

g Rlo g i„~k,„t Rnd ~ Rlong k

This choice of axes allows Eg. (1) to be rewritten
RS

o(e, y) = o„(e)[1+pP, (e)].

20 1979 The American Physical Society



R. G. SEYLER AND H. R. WELLER 20

If the pole, rization of an arbitrary spin beam is
described by tensor moments t~„ the analog of
Eq. (1) becomes

(4)

a(x, 1.)c, (6)

where a is the spin of the target, x the spin of the
projectile which carries orbital angular momentum
l, b the spin of the gamma emitting (compound)
state, I. the multipolarity and P the mode (1 =elec-
tric, 0 =magnetic) of the gamma ray, and c is the
spin of residual nuclear state after the gamma
emission.

We adopt the notation x =-(2x+1)'/' and define a
set of Legendre polynomial coefficients by the
equation

o„(8)= (-,'%)'x 'a-'pa+, (cos8),

where %. is the usual reduced wavelength of the
incident beam. C learly

o„(8)dn=(2X)'x 'a-'47/a, -.
~

~

~

An alternative form of Eq. (7) is

a„(e) =A, () +pa, p, (c()se)),
&0

(6)

where the T,",[=(-1)'T„,like spherical harmonics]
are the analyzing (power) tensors. Parity con-
servation and Eq. (2) imply T» =0, T» imaginary
and T„real, so for a polarized beam of unit spin

o(8, y) = o„(8)[1+ ,'P, A, (8)-+ t„T„(8)
+ 2 Ret»T»(8)+ 2 Ret»T»(8)] . (5)

We consider an x capture-y reaction whose angular
momenta are specified by the form

7(„7/, (-1)' = 7(,(-1)~'i'" (13)

where the ~'s are the intrinsic parities of the part-
icles having the angular momenta labeled by the
subscripts. Multiplying this equation by its primed
version leads to another statement of parity con-
se rvation

( 1 )
i+i'

(
1)L+P+L'+P' (14)

References 8 and 9 follow the above convention of
P values but some authors, e.g. , Ref. '7, inter-
change the electric and magnetic values, which
leaves Eq. (14) unchanged but changes the sign of
the right side of Eq. (13). The derivation of the
coefficient of a Legendre polynomial of order k
reveals a restriction on k such that (-1)~ is equal
to Eq. (14) (this would not hold if we were calculat-
ing the circular polarization of the y ray). This
parity restriction is included in all the expressions
for a~, b„.. . , e~ by defining and using the empty
bracket symbol

endre polynomial P~~ used here is the usual one,
which is sometimes referred to as being unnor-
malized and is related to the normalized asso-
ciated Legendre polynomial P~~ by the following
equation

PM (2~)l /2e-(Mary' (8y)
N~O

= ( 1)i/2- / J[(f M)t /(f, +M)( ]'/2P~. (12)

This equation is as given on page 219 of Baldin
et al.' Unfortunately Laszewski and Holt" when

quoting other results of Ref. 8, give this equation
with the factor (-1)"omitted. Thus for M=1 (the
polarization distribution) the use of the Laszewski
and Holt equation for converting the Baldin et al.
results from P~ to P~ coefficients would introduce '

a change of sign. We return to this point later.
Parity conservation implies that

where
[ ]

—) [1 + ( 1)L+/P+L'+P'+))] (15)
a), = a), /a

A =(-'a)'x-'a 'a (10)

For a beam of arbitrary spin polarized with mo-
ments of rank &2 we define the associated Legendre
polynomial coefficients b~, c~, d„and e~ by. the
equation,

which clearly vanishes for nonallowed k and equals
unity for allowed k values. For a given pair of
multipoles LP and L'p', k will be only even or only
Odd.

CHANNEL SPIN REPRESENTATION

o(8, y) =(—,'g)'x 'a-'g(a j,+b, P'p, +c P t„

+ d+'@et„+e„P'„Ret») . (11)
I

Here we adopt the following coupling order:

x+a=s,
l+s=b,
L+c =b.

(16a)

(16b)

(16c)

The analyzing tensors can be expressed in terms
of the coefficients by comparing Eqs. (5) and (11),
e.g. , T»(8) =Q„c+~~,a+» The associa.ted Leg- (16d).

One other equation which is invariably followed in
constructing the vector potential is

l, +1=L,
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where 1„ is the (unobservable) photon "orbital"-
angular momentum and the unit vector is its "spin."

Having announced by Eq. (16) the coupling order
we feel justified in abbreviating the (reduced)
transition matrix elements and write

R -=(PL(c)bw I iR i il(xa)s bv),

Also for brevity we shall use the channel label t
to represent the set of quantum numbers (PLblsj

Ne cannot overemphasize how important it is to
know the complete coupling scheme which leads to
a particular set of equations for the physical ob-
servables in terms of, say, collision matrix ele-
ments. Another author using another coupling
scheme may deduce a different, but equally valid,
set of equations containing some unknown collision
matrix elements to be determined by fitting data.
The two sets of collision matrix elements can be
related by simple phase factors which although
different for different channels can easily be cal-
culated if the coupling schemes are known. Ad-
mittedly it is sometimes far from a simple task
to discover the complete coupling scheme. The
author may not give all the equations or worse he

may give some of them incorrectly. Reference 8

on page 178 gives four equations, where one equa-
tion (in our notation) is the same as Eq. (16a), but

the other three equations all have the order of
terms switched on the left side compared to Eqs.
(16b)-(16d). One might well conclude that a very
different coupling scheme was employed in Ref. 8,
but upon much closer inspection of the derivation
it appears that the coupling scheme actually used
was in fact that of Eqs. (16). Fortunately for com-
parison purposes Ref. 9 also chooses the Eq. (16)
coupling order. On the other hand, Refs. 3 and 4
use the opposite order for Eqs. (16b) and (16c).
Using Eq. (16b) with the opposite order will introduce
into all I.egendre polynomial coefficient sums a
factor (-1)' ' "-'"'-' and Eq. (16c) used in opposite
order will introduce a factor (-1)~ z '~ ~. The
combination would reduce to a factor (-I)'-'"~'&.
For the unpolarized beam (a,) case, s =s' and the
factor would simplify to (-1)~'~ as is easily veri-
fied by comparing final expressions in Ref. 3 or 4
with ours.

Phase factor differences in two treatments may
also arise from another source, related to the
choice of phase of the vector potential (serving as
the photon wave function). Let the vectors A~~(e)
and A~„(m} designate, respectively, the electric
and magnetic multipole components of the trans-
verse vector potential [e.g. , Eq. (3.6} of Ref. 7].
The vector wave equation requires that the curl

of one multipole be proportional to the other multi-
plied by the wave number v but leaves a sign un-
dete rmined

V && X~„(e or m) =+xX~„(m or e) . (17)

References 7, 15, and 16 define A~„(e) and A~~(m)
such that the + sign applies in Eq. (17). Devons
and Goldfarb' evaluate the Racah parameter of
radiation for mixed multipoles and their result
[their Eq. (14.14)] reads

C~(LL') =a(4m) 'LL'(-1)~ '(L1, L' —1 ~k0)[ ],
(18)

where the last bracket is defined by Eq. (15). The
+ choice in this equation is the same choice as in
Eq. (17). Reference 4 adopts the + sign in Eq.
(18), as we shall, which means that E2/Ml y mix-
ing ratios will have the opposite sign to those of
anyone who, in effect, chose the —sign in Eq. (18),
such as, e.g. , Biedenharn and Rose." The X«(m)
or magnetic multipole expressions given by Eq.
(3.6) of Ref. 7, Eq. (3.36a) of Ref. 16, Eq. (181) of
Ref. 9, and Eq. (33.5) of Ref. 8 all agree. For
the electric multipole Refs. 7 and 16 agree but are
opposite in sign to Refs. 8 and 9, allowing for
correction of obvious typographical errors in each
of the latter (i.e., deleting v 2 in Eq. (182) of Ref.
9 and interchanging vg and gg+ 1 in Ref. 8). In an
effort to combine the electric and magnetic multi-
pole equations into one equation, Ref. 8 in Eq.
(33.6), and Ref. 9, in a corrected version of its
Eq. (184) [with 2 ' ' replaced by (—1)~"2' ', to be
consistent with Eqs. (181) and (182)], present the
following factor

(l„~p) = —(-1)~&2(L —1, 11
~
l„0)—,'(1+ (-1)~'~-'~).

(19)
This factor, which is exactly unity for the magnet-
ic (p =0) case, corresponds to choosing the —sign
in Eqs. (17) and (18). For p =1, Ref. 16 and indi-
rectly Refs. 7 and 15 use a sign opposite to that
of Eq. (19), or in other words do not include the

(-1), which implies a choice of the + sign in Eqs.
(17) and (18). We would thus expect Refs. 8 and 9
to have a missing factor (-l)~'~ in their final cross
sections, "which suggests that (intentionally or
not) both authors dropped the factor (-l)~ and
thereby adopted the + sign in Eqs. (17) and (18).
In summary, in spite of indications of opposite in-
tentions the use of the + sign in Eqs. (17) and (18)
now seems to be standard practice.

Another point concerning these sign choices is
that even if two authors choose the same, say +,
sign in Eqs. (17) and (18) they could do so in differ-
ent fashions. For example, when Refs. 3 and 4 use
the + sign in Eqs. (17) and (18) they actually intro-
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duce an additional minus sign in both X~„(e) and
P „(m) or equivalently eliminate the factor -(—1)b
from Eq. (19). This. choice, which amounts to
multiplying the photon wave function by (-1), has
absolutely no effect on the equations for physical
observables as one would expect. For this sign
choice to be important, one would need a model

capable of calculating particle and photon collision
matrix elements, which were related by a version
of Eq. (19).

Employing the statistical-tensor-efficiency-tens-
or approach of Refs. 3 and 4 the following expres-
sions for the I,egendre coefficients in the channel
spin representation were derived

a „=g (-1)' '"[ ] ll 'LL 'b 'b "(l0 l '0
I k0) W(l bl 'b ', s k) (L1,L ' —1

~

kO) W(Lb I. 'b ', ck) ReRR '*, (20)

e.g., ao =+~,b' ~R ~'. The sum over t and t' means over pp'LL'bb'll's and s' (but here s'=s):

b =,,Q [ ]ss 'l l'LL 'b'b @(-1)s-""-b-"'(10,l '0
~

k0)" [(x+1)k(k+1)]"' «.

x W(xsxs', a1)(I.1,L' —1 ~k0)W(LbL'b', ck)X(lsb; l's'b', klk) Re(iRR'*).

The other three coefficients involve several common terms, so we define

F(k, k, ) =-2xk,g[ ]ss'l l'LL 'b'b "(-1)'-""-'-"'"(l0,l'0 (k,0)W(xsxs', a2)

(21)

x (L1,L' —1 ~k0)W(LbL'b', ck)X(lsb„l's'b', k,2k)[ JReRR'*. (22)

In terms of this F we find .

c» =g(k,0, 20 lk0)F(k, k,),

d„=
[ (,„,„Q(k,0, 21 ~kl)F(k, k, ),

l

(23)

(24)

dP = a„„„(S,),„
++u

) yx y ) xy

Kyb 'x'a'
Cs

1 xr s I sr
x&

(28)

2

[(k —1)k(k+ 1)(k+ 2)y
sb Z (k~0& 22 Ik2)F(k~ k

Parity conservation implies (-1) =(-1)». There-
fore k, in the above sums equals k and k+2 only.

Baldin eI; al.' give an expression for the differ-
ential polarizationdP/dQ, which can be related to
the above coefficient b„Equatio. n (33.11) of Ref.
8 states in our notation

dP xx+1 ' 'x
— -„- =(-,'a„)',' +Re(iR*R')b(ktt')P'„c t t'&

(26)

where the symbol b(ktt') introduced by Laszewski
and Holt" represents

b(ktt') =(-1)'*""'"b"-ss'I I 'LL-'5'b"

x (l0, l '0
~

kO) (L —1,L '1
~

k0) W(xsxs ', al)

x W(LbL'b', ck)X(bls; b'l's'; kkl)[ ] . (2V)

If we write

we deduce upon comparing Eqs. (26) and (28) and
using the Baldin et al. definition of P~ [our Eq.
(12)1,

3Wxxk=
[( I)k(k 1)] I R (RR *)b(kt ) ~ (2

b.

Equation (29) (the Baldin et al. result) differs from
Eq. (21) (our result) by the phase factor

( 1)b b'+ +t-ls-' 1s-+

( 1)
»+ t+s+b'+l ~ +s'+»+»+1 (30)

which is precisely the phase factor that results
upon interchanging any two rows (or columns) of
the 9-j symbol. Inclusion of this factor in Eq. (27)
would bring Eqs. (29) and (21) into agreement. We
have compared our results to those of Welton' and
find a difference of a factor (-1)'. A preliminary
result of a comparison of.Welton's starting equa-
tion [expressed in terms of magnetic sums, i.e.,
a corrected version of his Eq. (200)] with his final
equation (the result of much Racah algebra) con-
firms (in the special test case) the (-1)' error in
his fina, l result and thus le'nds plausibility to our
results. In summary we believe the results of
Baldin et al. for a» are correct (thus the tables of
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j-j COUPLING REPRESENTATION

As an alternative to the channel spin coupling to
Eqs. (16a) and (16b) we can couple as follows

l+s =j, (31a)

Carr and Baglin" are correct) but for b, are in
error by the factor f of Eq. (30). The results of
Laszewski and Holt for b, (they considered only
the case where x = —,') are in error by the factor -f,
where the minus sign takes into account their
version of Eq. (12).

j+ a =b. (31b)

The photon coupling is as before in Eqs. (16c) and
(16d). Now letting

R =—(pL(c)bv
I IR I

I(")j"'&
and t =IPLblj ) we can either convert our channel
spin results using

Il(xa)sb& =adjs W(lxba;j s) I(lx)jab) (32)

or start from fundamentals as we did in the channel
spin ca.se. We find

a = g(-1)' '" "' '/ /'j j 'll'LL'b b' (lO, l'0 Ik0)W(ljlj'' xk)[ ]
tt

x (L1,L' —1 IkO)W(j bj 'b'; ak)W(LbL'b', ck) Re(RR'*) .
Again, of course, a, =g,b'IR I'.

b = ' ' 'l l 'LL'b'b "(-1)'-'""-'[]" [(x+1)k(k+1)]'" „

(33)

Defining

x (lO, l'0 IkO)W(j bj 'b', ak)(I 1,L' —1 I k0) W(LbL'b', ck)X(lxj;l'xj', klk) Re(iRR'*).

(34)

G(k, k, ) = 2xk/g jj 'l l'LL'b'b "(-1)''"" / [ ](l0, f'0 Ik 0)

&& W(jbj 'b', ak)(L1, L'- 1. Ik0)W(LbL'b', ck)glxj; l'xj ', k,2k) Re(RR'*), (35)

we obtain

c„= k,0, 20 k0 G' k, k»
I

, ,~ /» Q (k,0, 21
I
k1)G(k, k,),

(36)

(37)

g b'b "X(Lcb;L'cb ', kOk)X(Lcb; L 'cb '; k1k),
bb'

which vanishes. Likewise, for c„d„and e~,

0

2

[(k —1)k(k+ 1)(k+2)J' "~
(38)

For x = —,
' these expressions for a~ and b, agree

with results of Glavish. " This agreement of the

j jcoupling resu-lts [Eqs. (33) and (34)] lends sup-
port to the correctness of our channel spin results
[Eqs. (20) and (21)], since the former are easily
obtained from the latter by using Eq. (32).

RESTRICTED SUM RULES

Let us consider a. very special case where R and
8' are independent of b and where l =L, l' =I.',
and s = s ' ~c. For this case it is easy to see that
a» is proportional to (lO, l'0 Ik0)(l1, l' —1 Ik0) and
therefore that Q»„„a»=P„«a»=0. Similarly b,
is found to involve

We note that the unmodified results of Welton would
satisfy the equation b~ =0, but the unmodified re-
sults of Baldin et al. would not.

An example will illustrate the usefulness of these
results for checking coefficients of RR' combina-
tions which fail to satisfy the conditions of this
highly special case. We present the results for
a» and b» for the case»+1- (E1 or E2)+ ~, where
it will suffice to ignore one of the possible s values
(s =-,') and thus have s =s'=c. For an s-wave final
state this ought to be a good approximation, but
tha. t is not our concern here. Thus

~0 2Ry y /g + 4RQ 3/Q + 4R„/, '+ 6R, /

where R =Rufbe
~»

+ 2R~ 3/~ + 3.42R~ 5/q

z s /3R& z /»C'+ 1 72Ra 5/»Ra 3/aC ~

& =-3.42R~5/~' —13.72R, / & / C,
where each C (all different) is defined such that
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RR'C=—RR'cos(&f —&f&'), and

1 - 2 3/2 1 1/2 ' R23/2R1 3/2

+ 12.48Ra, )aR„),C,
a, =-6.92R»/2R»/2C -8.32R23/2R1 3/, C

—5.54R„/,R, , /, C,
141 R23/2 11/2 ' 23/2 13/2

+ 2.08R2 5/2R, 3/2S,

b2 —-0.66R13/2R» /2S + 0.4 (IR2 5/2R2 3/2S,

3 ' R2 5/2R1 1/2 ' R23/2 1 3/2

—0.15R2 5/2 R1 3/2 S,
b4 —-1.14R2 5/2R

Now let us imagine the R~, to be independent of
b, i.e., R»=R~ only. Then since l =L and l'=L'
and s =s'=c, the special case conditions are satis-
fied and the special results can be applied. Notice
how for k odd the b„=0 result serves as a very
useful check on the numerical coefficients, e.g. ,

for b, we find -1.16 —0.92+2.08 =0. For k even,
the S factors in b, vanish and thus b~=0 is not
helpful here. For both even and odd k the Qa„=0
result is a useful check. In fact it is easy to see
that for even k, pa~ =0 for each L value separately.

Finally, we note once again that the published
"Tables of Differential Polarization Coefficients""
must be multiplied by the phase factor given in
Eq. (30). In the notation of the tables of Ref. 13,
this additional phase is

f irs t ~second

Furthermore, if the results are to be written in
terms of P'„(x) rather than P'„(x), the equation
which relates the two, given on page 309 of Ref.
13, must be multiplied by a minus sign.

The authors gratefully acknowledge the assist-
ance of Mr. Robert Brown in writing the computer
codes used to check our results. We also wish to
thank Dr. T. A. Welton for his critical review of
the manuscript and Dr. S. A. %ender and Dr.
N. R. Roberson for useful discussions.

*On leave of absence from University of Florida,
Gainesville, Florida 32601.

R. Huby, Proc. Phys. Soc. (London) 67A, 1103 (1954}.
2F. Coester, Phys. Rev. 84, 1259 (1951).
3S. Devons and L. J. B. Goldfarb, in Handbuch der Phy-

sik, edited by S. Flugge (Springer, Berlin, 1957), Vol.
42, p. 362.

4A. J. Ferguson, Angular Correlation Methods in Gam-
ma-Ray Spectroscopy (North-Holland, Amsterdam
1965).

~F. Rybicki, T. Tamura, and G. R. Satchler, Nucl. Phys.
A146, 659 (1970).

6A. A. Debenham and G. R. Satchler, Part. Nucl. 3, 117
(1972); B. G. Seyler, in Proceedinf, s of the Fourth In-
ternational Symposium on Polarization Phenomena in
Nuclear Reactions, edited by W. Griiebler and V. K5nig
(Birkhauser, Zurich, 1976), p. 397.

~H. J. Bose and D. M. Brink, Rev. Mod. Phys. 39, 306
(1967).

A. M. Baldin, V. I. Goldanskii, and I. L. Rosental,
Einematics of Nuclear Reactions (Oxford Univ. Press,
London, 1961).

T. A. Welton, in Fast Neutron Physics, edited by J. B.
Marion and J. L. Fowler (Interscience, New York,
1963), Vol. II, p. 1317.

~OF. W. Firk, Annu. Rev. Nuc]. . Sci. 20, 39 (1970).
N. M. Kabachnik and V. N. Razuvaev, Phys. Lett. 61B,
420 (1976).

~2J. Ulbricht, W. Arnold, H. Berg, E. Huttel, H. H.
Krause, and G. Clausnitzer, Nucl. Phys. A287, 220
(1977).

~3R. M. Laszewski and R. J. Holt, At. Data Nuc]. . Data
Tables 19, 305 (1977).

~4R. W. Carr and J. E. E. Baglin, Nucl. Data Tables
A10, 143 (1971).

~~D. M. Brink and G. R. Satchler, Angular Momentum
(Oxford Univ. Press, London, 1962).

~6A. M. Lane and R. G. Thomas, Bev. Mod. Phys. 30,
257 (1958).

~TL. C. Biedenharn and M. E. Rose, Rev. Mod. Phys. 25,
729 (1953).
More precisely, one cannot really tell whether or not
Welton dropped the (—1)&+, since his final result is
inconsistent with his starting point by a factor
(—l}~&+~2 if the (-1) e was included at the start and by
a factor (-1)~+~ if not [the rank of the y polarization
q is zero in our work, so the latter factor reduces to

H. F. Glavish, private communication.


