
P H Y SICAL RE VIEW C VOLUME 20, NUMBER 2 AUG U ST 1979
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A common approximation in atomic, molecular, and nuclear rearrangement processes is to neglect n-body
breakup contributions (n ) 3) by replacing the full wave function by (sums of) product wave functions, each
of which is related to a specific asymptotic arrangement channel. We test this bound-state approximation in a
simple three-body model of nuclear stripping by comparing bound-state approximation calculations with exact
and distorted-wave Born-approximation-type calculations. Calculated are the stripping and elastic amplitudes
and cross sections for deuteron energies E„= 1.78, 6.7, 11.2, and 15.12 MeV. The bound-state
approximation is best below the breakup threshold (EzU ——2.225 MeV), where it provides an excellent fit in
the forward direction and a qualitative fit over the whole angular range. For Ed ——6.7 MeV the breakup
cross section is still very small; however, the intermediate continuum states already play an important role
and the bound-state approximation becomes quite poor. At this energy 'the distorted-wave Born
approximat'ion-type calculation, which is based on exact elastic wave functions and therefore accounts partly
for the continuum, is still quite good. For the two higher energies both continuum and multistep effects
appear to be very important, rendering both distorted-wave Born approximation and bound-state
approximation poor approximations outside the forward region. The qualitative features of the elastic cross
sections are explained in terms of the momentum dependence of the bound-state wave functions and two-body
T matrices.

NUCLEAR- REACTIONS Quality of DWBA and bound-state approximations;
Three-body methods; Model (d, p) calculations at E&

——1.7—15 MeV; Multistep
effects

I. INTRODUCTION

Collision processes of atomic, ' molecular, ' and
nuclear' nature have traditionally been analyzed in
terms of quasi two-body formulations, even if re-
arrangement processes between the colliding par-
ticles were considered. A quasi two-body formu-
lation can be invoked by retaining only channels
with two fragments, and by including only bound
states of those fragments in the calculations.
Such a bound-state approximation (BSA) can be
implemented in a wave function formulation by
replacing the full wave function by a suln of pro-
duct wave functions each corresponding to an as-
ymptotic two-body arrangement channel, or al-
ternatively into a T-matrix formulation by keeping
only the two-body contributions in the spectral
representation of the Green's functions.

The BSA for transfer processes is often supple-
mented by a first-order approximation. Depend-
ing on the specific stage at which this approxima-
tion is introduced one can obtain plane-wave and
distorted-wave (DWBA) amplitudes. The dis-
torted-wave Born approximation' (DWBA) has
gained great popularity in the description of direct
nuclear reactions and has been very useful in

explaining much, though not all, experimental
data. %'e should caution, however, that such suc-
cess does not necessarily imply that the approxi-
mations made are valid ones; use of effective
potentials can compensate for many of the short-
comings of the approximations and may obscure
the important features of the reaction. This is
particularly clear at intermediate energies, where
both the DWBA and more fundamental approaches
based on multiple scattering theory are used.
Only approximations made in the latter approach
can be tested unambiguously.

If one wants to estimate the validity of the BSA,
one can do so by computing certain effects of the
continuum (i.e., n-body effects with n ~ 3), for ex-
ample, by extending the wave function space or the
spectral representation of the Green's function to
include continuum components. However, lacking
an exact result, one is still left uncertain about
the full importance of the continuum, the role of
multistep processes, and possible cancellations
between either of these effects.

A much cleaner analysis is possible if one
studies a system which can be solved exactly,
and also allows the use of various approximations
which are standard in realistic nuclear reaction
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studies. The Mitra three-body model' of nuclear
stripping reactions provides such a, framework.
Admittedly this model is too simplified for a real-
istic description of most direct reactions, s ince
it allows only real, separable S-wave interactions
between the particles. However, it does contain
the essential features of rearrangement processes,
and it does admit exact solutions and solutions of
plane- wave and distorted-wave type. Therefore,
this model has been used by several authors'-'
to study approximations, and to study the validity
of a three-body description of stripping for its
own sake. Although these studies have provided
insight into the quality and some overall features
of the PWBA and the DWBA, they have not allowed
a fully satisfactory separation of the effects of
different approximations.

In the present paper we discuss new calculations
with the BSA. Since these calculations go beyond
the first-order Born approximation, they give
insight into the role of multistep effects proceeding
via intermediate two-fragment channels. There
has been much interest in such multistep effects
in direct nuclear reactions recently, ' but in none
of these studies were exact and approximate re-
sults compared. In the present paper we do pre-
sent comparisons between the exact and the BSA
calculations, which will allow us to disentangle
continuum and multistep effects. Using unitarity
considerations we are also able to distinguish be-
tween real and virtual (or intermediate) continuum
effects.

We start this paper with a brief review of the
reaction model. The scattering equations are de-
rived from the general channel coupling array
approach to n-body scattering. ' " They are re-
duced using the identity of proton and neutron in
the model. In first order these equations give rise
to the PWIA (plane-wave impulse approximation)
for the elastic scattering amplitude, and to the
PWBA for the transfer amplitude.

In Sec. III we present the results for elastic and
stripping cross sections. We explain the qualita-
tive features of the elastic cross section through
an analysis of the PWIA and also discuss the
unitarity properties of amplitudes and cross sec-
tions. We analyze these results and present con-
clusions concerning the validity of bound-state
and low-order approximations in rearrangment
scattering. Some comments are made on the ap-
plicability of these results for more realistic de-
scriptions of the rearrangement processes.

II. REACTION MODEL AND T-MATRIX EQUATIONS

If one neglects the internal structure of the tar-
get nucleus, then deuteron stripping reduces bas-

ically to a three-body process. By making the
further assumptions that the two-body interactions
are separable, that the proton and neutron are
identical particles, and that the nucleus has in-
finite mass, one arrives at the Mitra model of
stripping. ' This model was employed by Shanley
and Aaron' to study the validity of the three-body
approach and of various approximations (notably
the DWBA) used in standard direct reaction anal-
ysis. Bouldin and Levin' used the same model
with slightly different parameters but also included
the -heavy-particle exchange diagram. A some-
what different set of calculations was performed
by Heiner and Jaffe, ' who used different neutron
and proton binding energies (as is the case in
heavier nuclei), and also included an approxima-
tion to the Coulomb interaction between proton and
target nucleus. They performed DWBA calcula-
tions using the exact elastic wave functions in the
DWBA matrix elements. Similar "exact" DWBA
matrix elements were calculated by Bouldin and
Levin' and will be shown here for comparison.

The three particles in the problem are the two
nucleons n and p, and the target nucleus A. The
particles interact via separable S-wave potentials

(p IV"'~p') =-&,a,(p)a,(p')

with Yamaguchi form factors"

g, (p) =(P'+ P.') ' (2)

The proton-neutron interaction V" ', which has
P, =1.45 fm-', will support one bound state with
energy &, =2.225 MeV, so chosen to fit the deuter-
on. The interactions of the nucleus A with the
proton (V~') and the neutron (Ve') are identical
and have a range parameter p, =1.06 fm-'. The
binding energy E, =3.3 MeV. The strength param-
eters X~ are fixed by P~ and the binding energy.

The main motivation for this study is to test the
BSA. Since this approximation is easily imple-
mented within the channel coupling array (CCA)
equations, "even if more than three arrangement
channels are present, it is of interest to see how
the Mitra equations can be derived starting from
these CCA equations. We start from the CCA
equations in the form"

T qW'Vq+QW'(V 'G T q i k 1 2 3

where V~=+,»V'" is a sum of two-particle inter-
actions between the fragments in channel k, and
8', , is the channel coupling array satisfying
Q, W, , =1. The channel coupling array is further
restricted by the requirement of connectivity. In
order to get the Mitra equations we use the Fad-
deev-Lovelace choice" for W W, ,

V'"'-=W V'"
=5,~V'"', so that W;,V~=V "(1—5;,) —= V'"5;„This.
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yields T„=V"'(G,T„+PG,T„P), (5)

T,„=V'"5,.„+gV "5, G T „i, m, &=1,2, 3. (4)

These equations are now simplified by using the
identity of the nucleons, i.e., by using PT»P =T»
and PT]yP T]] whereP isthepermutation operator
for particles 2 and 3. One obtains

T„=V@'(1+G,T„+PG T,P) .
For separable potentials these equations can be
rewritten in terms of the elastic and stripping
amplitudes defined by

A,,(k, , k„E+i~) = d p,. d p, l*, (p;)(p;k; IT;,(E+i~) [pp, )4,(p,), (7)

where y,. is the bound-state wave function of pair i. The resulting equations are on-shell equivalent to the
three-body Amado equations" for two identical particles and a structureless nucleus. Off-shell the equa-
tions differ because the inhomogeneous term in Eq. (6) does not depend on energy.

In the bound-state approximation G,. is replaced by'~

G;= dk kg, E —~; 2M/+&; kg $

The scattering equations (5) and (6) now acquire the simple form

A„(k„k;E i+a) =-2z,a„dkg, (—,k, —k)Q, (k, —k), , — A„(k, k, ;E), (9a)

A»(k„k, ; Ei+e) = —X,a,g, (k, —k, )P, (k, ——,
'

k, )

—X a,p2(k ) dkg2(k) ~~ . A2, (k, k;E),
2+

(9b)

where a, = f d q &f&(q) ,g(q) ,. W.e have used units in
which the masses are dimensionless. Thus the re-
duced masses M, and M, (=M, ) equal 2 and 1, re-
spectively. After expanding A, &(k, , k&, E) into par-
tial waves, we obtain uncoupled equations for all
partial waves. The last term in (9b) represents
the transfer of the infinite mass particle A; it
only contributes for S-wave scattering. Note that
similar BSA's can be made in the Amado equations,
The resulting equations differ slightly from Eqs.
(9a) and (9b) because the approximation is made
for the propagator r, (r, =g, 'T'2'g, ', where T"'
is the two-body T matrix for pair 2) and not for
the Green's function. For the three-nucleon sys-
tem it has been shown in the context of dispersion
relations" that continuum terms are necessary so
that the BSA or pole approximation to the propaga-
tor is not satisfactory. Similar conclusions have
been obtained for the four-nucleon system" using
a simple generalized Amado model.

Instead of the set Eq. (9) one can also use wave
function equations, although these are numerically
less convenient. The DWBA results quoted in the
next section were determined' using exact dis-
torted waves (i.e., the projection of the exact
elastic wave functions onto the ground state) in the
computation of the DWBA-matrix element of strip-

ping. In normal reaction calculations exact elastic
distorted waves are not available, and the elastic
wave functions are generated by phenomenological
optical potentials. In a similar fashion Shanley
and Aaron' compute DWBA-matrix elements using
Woods-Saxon-type optical potentials fitted to the
exact cross sections.

III. RESULTS

In Figs. 1-4 we show the results for the elastic
cross sections. The differential cross section
has a very simple structure due to the absence
of strong surface absorption in the model. The
BSA calculations are very good in the forward
direction, but become inc reas ingly bad for highe r
energies and larger angles. Since the difference
of the exact and BSA calculations reflects the im-
portance of the continuum, we can conclude that
the role of the continuum is very important ex-
cept for the forward region.

The good agreement of BSA and exact calcula-
tions for the forward direction requires further
explanation. In lowest order, the exact elastic
scattering amplitude is identical to the plane-wave
impulse approximation (PWIA) given by
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FIG. 1. Elastic differential cross section for d+A
scattering at 1.78 MeV. The maximum number of par-
tial waves included in the calculation (I,„) is 7.
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(k 'P, if '(E —kp) i(f&,%),

where k& is the proton kinetic energy operator.
Because of the separable form of the potential the
two-body 7 matrix factorizes; hence the PODIA

FIG. 3. Same as Fig. 1 with E&=11.2 MeV.

graph can be represented by the diagram in Fig.
5. The S-wave nucleon-nucleon and nucleon-nu-
cleus wave functions both peak at zero relative
momentum. This knowledge is essential for ex-
plaining the gross features of the cross sections.
First we consider forward scattering, i.e., k=2'.
The wave function part of the integrand in Eq. (9a)
has the form
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FIG. 2. Same as Fig. 1 with E&
——6.7 MeV. FIG. 4. Same as Fig. 1 with Ez ——15.12 MeV.
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FIG. 5. Diagrammatic representation of the lowest-
order elastic d+A graph.

g, (k/2 —k»)P, (k —k")g, (% —k")P, (k/2 —k") .
This function peaks for k" =k '*2 k/2. Quantita-
tively we find that y in k '" =yk takes on the values
0.64, 0.63, 0.62, and 0.61 at the four energies (in
increasing order). We expect that the distance of
this k '" from the on-shell value of k, given by
k"= [2(E+t,)]'~', is a good quantitative measure
for the correctness of the BSA, since this approxi-
mation is exact near the bound-state pole
k' =2(E+c,). Therefore we have calculated the
expression &E =E+e, —[(k '*)'/2]. As E runs
through the four bombarding energies, &E takes
the following values: 1.39, 4.14, 6.26, and 8.09
MeV [see Fig. 6(a)]. Clearly, when we increase
the energy of the deuteron, the importance of the
on-shell region becomes smaller, and thus we ex-
pect the BSA to become worse. We also see that
the deterioration of the BSA with increasing energy
is not due to the necessity that bound-state scat-
tering only can proceed via high-momentum com-
ponents in the nucleon-nucleus wave function; the
product of the form factors g, (k" —k)g, (k" —k')
which carries the momentum dependence of the
wave 'function also occurs in the continuum con-
tribution. The decrease in importance of bound-
state scattering for higher energies can be ex-
plained by the fact that the nucleons in the deuteron
prefer to leave the deuteron with equal amounts
of momentum, which means that only part of the
original kinetic energy is carried away by the
nucleon. The remaining energy is converted into
the internal energy of the nucleon-nucleus system,
which therefore is less likely to be in a bound
state.

One can also approach the situation from the
opposite direction. We can investigate which mo-
mentum components in the deuteron wave function
emphasize bound-state scattering. We simply
determine the on-shell momentum in the inter-
mediate state k"= [2(E + e,)]'~', and from this the
corresponding relative momentum q= —,'k- k" in the
deuteron wave function. Again we can assume k
and %" to be parallel, and we find for the four
energies (in increasing order) q =0.16, 0.21, 0.25,
and 0.28 fm ' (compared with relative momenta
g =0.06 0.10 0.12 and 0.13 fm at k» k™x)

.6-
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FIG. 6. AE and q are measures of the importance of
the on-shell region (where the BSA is exact) in the inte-
gral for the PWIA graph in Fig. 5. &E is the difference
of two kinetic energies: one corresponding to a maxi-
malization of the integrand (k' = k "'), and one corre-
sponding to the on-shell region (k" =k""). q is the mo-
mentum of the deuteron wave function corresponding to
the on-energy-shell intermediate state.

This analysis also shows that bound-state scatter-
ing becomes less likely with increasing energy as
higher-momentum components in the deuteron
wave function are involved at higher energy.

Having explained the behavior at forward angles
with increasing energy, we will now try to explain
the poorness of the BSA at intermediate and back-
ward angles, especially at higher energies. The
conditions for k ~ are slightly different here be-
cause k4 k'. From symmetry arguments we ex-
pect that k™x=y(k+ k')/2, where again y ~ —,'. Set-
ting 0 =90' we find that the'distance to the bound-
state pole n.E =E+ e, —[(k '")'/2] is now 2.1, 5.0,
7.6, and 9.8 MeV, respectively [see Fig. 6(b)].
These values are considerably larger than the cor-
responding values at forward angles. We can again
invert the argument and determine the relative
momenta in the deuteron wave function which em-
phasize bound-state scattering in the intermediate
state. We find q=0.27, 0.43, 0.55, and 0.63 fm-'
(compared to q =0.15, 0.30, 0.38, and 0.45 fm '
at k =k '*). Both analyses show that at 8 =90'
scattering via the two-body intermediate state is
less likely than at forward angles. In more phy-
sical terms we can characterize the situation at
90' as follows: Only high-momentum components
in the deuteron wave function lead to bound-state
scattering, and since the nucleons prefer to emerge
from the deuteron with equal amounts of moment-'
um, bound-state scattering is less likely to happen
than at forward angles. Most of the time the inter-
mediate nucleon-nucleus system is expected to
have a fairly large internal energy because the
nucleon absorbs only part of the kinetic energy
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carried by the original deuteron (even less than
in the forward case), whereas the nucleon-nucleus
system cannot absorb any kinetic energy at all.

The explanation for the poorness of the BSA at
large angles was based on the increase in 4E on
going from g =0 to 90', or on the increase of the
momentum transfer q—corresponding to on-shell
scattering —from 8 =0' to 90 . Quantitatively we
find that the increase in q is of the order of 70%%u,

for E„=1.78 MeV and more than 100& for the other
energies. %e thus expect that the scattering at
larger angles will be better represented by the
BSA at E~ =1.78 MeV than at the other energies.
This is indeed what is observed in the cross sec-
tions Figs. 1-4.

One may question whether the momentum-energy
considerations also will apply in the usual scatter-
ing situation where there is a lot of surface ab-
sorption by the nucleus (Shanley and Aaron' indi-
cate that such absorption is weak in the present
reaction model). Since surface absorption is
presumably related to the existence of many dif-
ferent reaction channels in the usual nuclear reac-
tion process, one usually relies on effective opti-
cal potentials to describe the absorption. Because
the effective potentials are manifestations of the
complex many-body structure of the system, it
is unclear how they should be used in a three-body
coupled channel model. If one circumvents the
many-body nature (n~ 4) of the problem, one can
introduce optical potentials in a straightforward
way, but then one observes a large sensitivity to
this potential if one makes a bound-state approxi-
mation. ' Pending an exact calculation of contin-
uum effects of more realistic scattering processes,
we will have to rely on the understanding obtained
for the simpler reaction model. Therefore it is
reasonable to assume that in general the BSA is a
fair approximation for the forward direction, but
becomes poor for the energies above the breakup
threshold and at larger angles. These limitations
should be kept in mind in calculating multistep
effects via the BSA, as is done for example in the
CRC (coupled reaction channel) approach. In a
previous paper we have shown that multistep effects
(i.e., higher-order rearrangement effects) are
unrealistically small if calculated within the BSA.'
Another question is whether the previous moment-
um considerations also apply for non-S-wave
transfer. In this case higher-momentum com-
ponents are important inthebound-statewave func-
tion, so that the situation might be slightly more
favorable for the BSA.

The stripping cross sections are shown in Figs.
7-10. Part of these results have already been dis-
cussed m a previous letter. " The forward peaking
in this cross section can be attributed to the nature
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FIG. 7. Differential cross section for the stripping
process A(d, P)B at 1.78 MeV, . exact -----BSA.
——-DWBA.

10
3

2
10

I I I I I I I I I I I

Model (d, p) scattering

E~ = 6.7 MeV

l~ =9

1
Et

10

C3

0
10

d

tp-
0 50 100

scattering angle 8, (deg. )
150

FIG. 8. Same as Fig. 7 for E+——6.7 MeV.

of the first-order exchange term in Eq. (9b) which
has the energy denominator L(-k, + —,'%, )'+&, ] '.
However, we also know that the plane-wave Born
approximation, which only takes into account this
pole term, strongly overestimates the forward
peak." In standard DWBA analyses of stripping
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importance of continuum effects for the exact cal-
culations, whereas they are an overall measure
of the breaking of time-reversal invariance in the
BSA.

With the exception of a few incidental cases the
breaking of time-reversal invariance in the BSA
as reflected in the difference between q, and q, is
quite small. Most absorption is found in the l =0
and l =2 waves. The absorption for l =1 in the BSA
at higher energies is much larger than in the ex-
act case despite the absence of the continuum.

From these results we draw the following con-
clusions. First, and not unexpectedly, the contin-
uum effects become increasingly important with
higher energies. For energies close to breakup
(i.e., 6.7 MeV) the contribution of real breakup
(proportional to qI —qI) is quite small. Interme-
diate breakup effects, however, are already quite
important as the BSA is not very good at 6.7 MeV.
For 11.2 and 15.12 MeV the contribution of the real
continuum is quite large. This means for example
that a dispersion calculation based on two-body
unitarity [Eq. (10)] would still be successful for
E~ =6.7, but would probably be poor for higher
energies. The continuum effects being so import-
ant at higher energies, we do not expect that the
BSA is a good approximation at those energies.
This is confirmed by Figs. 9 and 10. We still
can get a lot of absorption in the BSA (cf. l =1);
apparently the absence of the continuum in the
BSA is made up partly by a stronger effective
bound-state coupling so that the loss of flux to the
p-nucleus channel is considerable. As the DWBA
calculation provides better. fits for higher energies
than the BSA, we conclude that continuum effects
are more important than the BSA-rescattering
corrections at these energies.

Although an optical potential may reproduce part
of the absorption of the continuum we see that even
with the best (i.e., exact) choice for the distorted
wave one does not obtain very good agreement to
the (exact) cross section at higher angles and ener-
gies. This should caution experimentalists in
'trusting their DWBA beyond the forward scattering
region.

IV. SUMMARY
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We have shown within a three-body reaction
model that a large portion of the coupling of dif-
ferent arrangement channels occurs via the con-
tinuum through both virtual and real breakup, es-
pecially at higher energies and larger angles.
Thus if one wants to understand multistep correc-
tions for a large angular range one should not re-
sort to the bound-state approximation (BSA). On
the other hand, if one wants to use a three-body
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model in order to include the continuum, then the
introduction of phenomenological optical potentials
leads to various problems. In particular, one has
to account for the fact that the coupling effects
are large, so that a considerable renormalization
of the phenomenological optical potential seems
necessary. " In practice this requires performing
a new search for optical model parameters in a
strong coupling theory wherein the continuum pro-
vides the strong coupling between different ar-
rangement channels. The agreement of the BSA
with exact results in the forward direction is

gratifying because we know that the PWBA is a
very poor approximation at forward angles. Clear-
ly the rescattering terms in the BSA give a signi-
ficant and realistic reduction of the forward peak
present in the PWBA. As the forward region pro-
vides important nuclear structure information
(spectroscopic factors) the BSA appears to be a
useful tool in this region.
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