
PHYSICAL REVIEW C VOLUME 20, NUMBER 2 AUGUST 1979

Statistical significance of spreading widths for doorway states
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The strength function constructed as the Lorentz-weighted average of the reduced widths of the Wigner-
Eisenbud R matrix (or of a reactance K matrix) is a continuous and well-defined function of energy for a
fragmented doorway state (isobaric analog resonance, fission isomer, etc.) in both weak and strong coupling.
If the half-width I of the Lorentz weighting function is chosen appropriately, this strength function itself
approximates a Lorentzian whose width is the spreading width I, of Feshbach, Kerman, and Lemmer. An
ensemble of 400 doorway systems characterized by coupling strengths ranging from strong to weak is used to
study properties of I",' and to determine the accuracy with which it can be determined for a particular
doorway by a least-squares fst to the strength function. The results of this numerical study show that (1) I,'
is a characteristic of each doorway state system, and that (2) its value can be determined from
experimentally measured resonance energies and widths with an uncertainty which is less than the
fluctuations in its value from one system to another and which decreases as the coupling strength decreases.

I
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I. INTRODUCTION

The fragmentation of a doorway state' by a re-
sidua. l interaction which brea.ks a symmetry of
the model Hamiltonian produces a distribution of
its strength among neighboring states recognizable
by the approximately Lorentzian envelope of re-
duced partial widths. ' The envelope may display
some asymmetry if the states responsible for the
fine structure have some "intrinsic" transition
strength of their own. The width of this envelope
measures the strength of the symmetry-breaking
interaction. The isobaric analog states (IAS) pro-
vide examples of considerable interest because the
spreading is produced by interactions which violate
charge symmetry. The possibility of extracting
reliable information on symmetry-breaking inter-
actions places a, high premium on a reliable means
for determining a, spreading width which is pre-
cisely and unambiguously related to the matrix
elements of the symmetry-breaking interaction.
Unfortunately much of the literature on this sub-
ject is flawed by (1) confusion between different
parameters for measuring the transition strength
of a state, ' and/or (2) failure to recognize the sig-
nificance of different averaging procedures used
to obtain a smooth (or discontinuous) function to
represent the distribution of strength. '

This paper reports an investigation of a straight-
forward method for using the reduced partial
widths from a multilevel (Wigner-Eisenbud) R-
matrix analysis of differential cross sections to
determine a spreading width I'I which is a, Lorent-
zian average of the symmetry-breaking matrix

elements to the doorway state. ' The method con-
sists of doing a least-squares fit to a strength
function (SF) which is a Lorentz-weighted average
of these widths. " The only previous application
of the method has been made. by Di Toro, ' who used
it to analyze the fine structure associated with
several isobaric analog states (IAS). The accuracy
of the procedure and the significance of the spread-
ing width have been studied by applying it to four
ensembles of 400 fine-structure (FS) patterns
each constructed by drawing level spacings from
a Wigner distribution and coupling matrix ele-
ments from a normal distribution. The results
show that

(1) a Lorentzian average of the symmetry-
breaking matrix elements to a particular doorway
state can be determined with an accuracy of better
than 10% for both "weak coupling" (I ~ &(D)) and
"strong coupling" (I'~ »(D)), and

(2) each spreading width I'l~ characterizes one
particular doorway system with its set (M,.) of
coupling matrix elements to FS states at energies
(~;).

These conclusions differ from those of Lane,
Lynn, and Moses (LLM) who also analyzed four
ensembles, each with 100 fine-structure patterns
for doorway states, which were based on the same
model as that used-in the present study. ' A care-
ful reading of their paper reveals, however, that
their results related to the determination of an
ensemble average of a spreading parameter W,
=2p(M, ')((D,) and to the determination of its stan-
dard deviation for the ensemble. The present
study will show that W, does indeed fluctuate con-
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siderably from one doorway system to another
(although the variances of LLM appear to be in er-
ror by a factor of 2). However, this has no bearing
on the accuracy with which the doorway spreading
width F~~ of Feshbach, Kerman, and Lemmer' can
be determined from the R-matrix parameters
(E~,' y~, ') of the microresonances inthe fine-struc-
ture pattern.

II. STRENGTH FUNCTION FOR DOORWAY STATES

A. (MMKP) strength function

Experimental measurements of differential
cross sections with good energy resolution have
usually peen analyzed using the multilevel R ma-
trix of Wigner-Eisenbud to obtain the resonance
energies E„and reduced partial widths y)„.'

As shown by MacDonald and Mekjian, ' and in-
dependently by Kerman and de Toledo Piza, ' the
Lorentz-weighted strength function (SF) of the re-
duced widths

'""=.g (z 'z )+r'
can be used to extract both the properties of the
underlying doorway state and the Lorentz-weighted
average of the squared matrix elements of the
symmetry-breaking or residual interaction to
fine-structure (FS) states. In the simple case of
coupling of a doorway state at energy E~ of re-
duced width yD, to FS states which have zero in-
trinsic widths, the SF is also given identically by

yo, 'I', /2v
(E —S,)2+ (r, /2)'

with an energy-dependent shift and width. " The
width is given by I ~ =F,~+2I with

(2)

Mr', (E) =21+,

B. Strength distribution

Equations (1) and (2) give the distribution of
strength measured by reduced widths of the sig-
ner-Eisenbud R matrix (or corresponding quanti-
ties for the X matrix). It can therefore be con-

and the doorway energy is ZD= ED+6.,(E), whe-re

(E- e,. )M,
'

a, (E)-Q
( ),

The SF defined by these equations, the MMKP
strength function, has several important proper-
ties, not shared by other SF defined in discussions
of fine structure associated with doorway states, '-"
which are discussed in the following subsections.

structed from experimentally determined (&~yq, ').
LLM prefer to work with the intensity

~
(4'~i) ~' of

the FS state ~i) present in the exact R-matrix
state ~4) instead of y~,'. Unfortunately, in the gen-
eral case of spreading to FS states with intrinsic
decay widths, these intensities cannot be deduced
from the experimental data. Therefore, in general
the LLM-SF cannot be constructed from experi-
mentally determined quantities, and it is only of
theoretical interest. For the case of FS states
with no intrinsic widths, studied in their paper,
y~,'=yo, ')(4'~i) (', and the intensities are propor-
tional to the reduced widths.

It should be noted that both the MMKP-SF and
that of LLM differ from the SF defined by Lane in
his analysis, "line broadening of unbound states. ""
In this section of his review Lane uses the term
"R matrix" to refer to the Kapur-Peierls repre-
sentation of the S matrix, which uses states with
complex boundary conditions and complex eigen-
values, rather than to the Wigner-Eisenbud (WE)
R matrix, which uses states with standing-wave
boundary conditions. His SF for unbound states
relates to complex poles and complex residues of
the 8 matrix rather than to the real resonance en-
ergies and rea1. reduced widths of the WE R ma-
trix. For a fragmented doorway state the energy
dependence of the S-matrix widths is qualitatively
different from that of the WE reduced widths. ' For
example, the distribution of WE reduced widths is
independent of the decay width I' of the doorway
state, whereas the 8-matrix widths follow a non-
Lorentzian envelope with a "width" equal to F + I'~.
From a practical viewpoint, the Kapur-Peierls
representation is useless for the analysis of high
resolution data on fine structure both because the
reduced widths and energies are complex, and be-
cause they are dependent and must satisfy compli-
cated unitarity constraints. " Therefore, high res-
olution experiments on doorways are analyzed
using multilevel WE R-matrix theory; the discus-
sion of line-broadening for unbound states in this
review article is therefore not applicable to the

(y~,', E~) obtained from such analyses.

C. Parametric form of MMKP-SF for fragmented doorway states

The parameter dependence of the MMKP-SF can
be rigorously established. The MMKP-SF for a
fragmented doorway state is given by Eq. (2), but
it is also identically equal to the general form of
the MMKP-SF given by Eq. (1) for any averaging
width I and any strength for the average coupling
matrix element. Equation (2) shows directly that
the MMKP-SF for a fragmented doorway approxi-
mates a Logentzian when I is increased to a value
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become nearly constant over an energy interval
centered near the doorway. When this occurs
I'~~(ED) becomes a parameter characterizing the
coupling of the doorway to the FS states, and its
value is precisely defined by Eq. (3) as a Lorentz
average of the coupling matrix elements. Since
Eq. (2) is identically equal to Eq. (1), it can be
used to calculate the MMKP-SF directly from the
microscopic parameters (M, , e,). Since this route
leads through I'~~(E) and 61(E), it is also ideally
suited to the model study of this report.

It should be noted that the SF defined by LIM as
the sliding box average of y~,

' or of
~
g ~i) ~' is a

histogram. In weak coupling it never approxi-
mates a well-defined smooth curve even for large
averaging intervals. In ve~y strong coupling their
SF does define a smooth curve, but this curve is
not Lorentzian. Instead, their SF follows the arc-
tangent of a Lorentzian, ' a fact well known to ex-
perimentalists who measure resonant excitation
functions with detectors of finite resolution. '

D. Continuity of the MMKP-SF

This SF given by Eq. (1) is a continuous function
of energy which can be calculated directly from
the reduced widths of a multilevel (Wigner-Eisen-
bud) R-matrix fit to high resolution data. The con-
tinuity of the SF is essential to determining the
spreading width I'I~ of a doorway directly from the
resonance parameters (y~, , E~) by performing a
least-squares fit to the parametric form. By con-
trast, the study by Lane, Lynn, and Moses used a
discontinuous summed strength function which was
fitted to the (continuous) integral of the Lorentzian
of Eq. (2). The fitting procedure is necessarily
ill defined and for intermediate to weak coupling
(as in most IAS) meaningless. LLM removed this
ambiguity of the fitting procedure by arbitrarily
selecting the midpoints of the steps in the histo-
gram of the summed strength as the fitting points.
However, there is no reason to expect the spread-
ing width obtained from such a fit to be significant
when the'coupling is weak.

III. STRENGTH FUNCTION ANALYSIS OF FRAGMENTED

DOORWAY STATES

A. Model for fragmented doorway states

The results presented in this paper are based
on the application of Eqs. . (2), (3), (4) to ensembles
of fine-structure patterns. Each ensemble con-
tained 100 fine-structure patterns. Each fine-
structure pattern in a given ensemble was con-
structed by drawing level spacings D,. for fine-
structure states from a Wigner distribution" and
matrix elements M,. from these states to a doorway

where (u,.) is a set of 200 random numbers on the
unit interval. The equation for the matrix ele-
ments can be written

erf(m, . ) =u„. , i =1,2, . . . , 100

with the normalized error function

(6)

2
dy e-~ ~',

and the variable m,. =M, /(M')'~'. Since the (m, ) de-
pend only on the set of random numbers, the di-
mensionless matrix elements are simply propor-
tional to 5'.

M,. =(M') '~'m, .

=m,. (W/2w)'~', i = 1, 2, . . . , 100. (10)

In the present study 100 sets (u,.) of 200 random
numbers each were used to generate the 100 sets
of level spacings (D,.) and 100 sets of matrix pa-
rameters (m,.). The energies (e,.) of the FS states
and the coupling matrix elements M,. for each door-
way system in a given ensemble then were calcu-
lated from one set of (u,.) and one set of (m,.)
through Eq. (10) and

c; =150+ QD;, i=1, . . . , 100.

Since (D,.) —= 1 within a 5/o sample deviation, the
fc,} span the energy range E= 150-250. To reduce

from a normal distribution with zero mean. The
entire study was carried out in dimensionless units
obtained by taking the unit of energy to be the av-
erage level spacing for the Wigner level spacing
distribution. In these units the spacing distribu-
tion is

P, (D) = —,'vD exp(-~D'/4),

and the matrix elements were drawn from

Pc(M) = (2v(M')) '~' exp(-M'/2(M')) .
Note that with this choice of dimensionless units
(D) =1.

Each ensemble of 100 fine-structure patterns is
characterized by a given value of (M'), which com-
pletely determines the distribution functions from
which are drawn the matrix elements for every
fine-structure pattern in that ensemble. Choosing
this parameter means choosing a value for W
= 2w(M')/(D) = 2m(M'). The level spacings and ma-
tri.x elements for a fine-structure pattern in that
ensemble are then found by solving the equations

D~

dDPi(D) = u2,
i =1,2, . . . , 100
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effects due to the finite number of levels, the lo-
cation of the doorway was always chosen to be
E~ = 200, the approximate center of the pattern.

The results of the model study can easily be
related to isobaric analog resonances by noting
that the average level spacing for the fine-struc-
ture patterns in the survey of Bilpuch et al. ' is
(D) -10 keV. The IAS in this survey are located
around 2000 keV. Therefore, the dimensionless
energies of the model study can be scaled approx-
imately by a factor of 10 to compare with the IAS.

B. Determination of spreading widths by least-squares fitting

The MMKP-SF of Eq. (1) for a fragmented door-
way state approximates a Lorentzian if there is
some averaging width I for which the shift ~z(E)
and I'~z(E) and nearly constant over the energy in-
terval ED —I'z/2 & E&Z~+ I'~/2. The parameters
Z~ and F~ can be determined by performing a
least-squares fit of Eq. (2) to Eq. (1), taking ZD
and F~ as constants to be determined. If this can
be done with sufficient accuracy, the spreading
width I'z(Z~) = I'z —2I is then determined. The
fractional error in F~ arises from fluctuations in
A, (E) and I'~(E). Increasing I will reduce the fluc-
tuations and hence reduce the error in I"~. But
since the fractional error in l,~ is AI'I~/I",'
= (61'z/I'z)(1'z/I'z~), it is profitable to use the
smallest values of I possible, i.e. , I-FI.

In this model study the microscopic parameters
(M, , e, ) can be used to calculate the energy-depen-
dent quantities E~(E) and I'z(E). The SF can be
calculated, therefore, by using Eq. (2) with these
energy-dependent quantities as an identical rep-
resentation of Eq. (1). Thus, Eq. (2) with constant
values for Z~ and I'~ is fitted to Eq. (2) with ener-
gy-dependent functions for Z~ and I'z. The fitted
values for Z~ and FI can then be compared with
the exact values Z~(Z~) and I'~~(E~) in order to as-
certain the accuracy of the fitting procedure. Since
y~,

' is simply an amplitude factor which has no ef-
fect on either the width of the maximum in the SF
or upon the fitting procedure, it was set equal to
unity in all the calculations of this paper.

The least-squares I SQ fitting was performed
by the program &Ap5A written by M. J. D. Powell

for the Harwell Subroutine Library. This program
has been thoroughly tested in a variety of condi-
tions and found to be extremely fast and reliable.

IV. RESULTS

Ensemble averages of a number of different
spreading parameters and their standard devia-
tions are presented in the tables together with the
predictions derived in the Appendix using various
moments of the distribution functions of Eqs. (5)
and (6). All averages over the levels of a particu-
lar doorway system are denoted by angular brack-
ets; curly brackets are used to denote averages
over an ensemble defined by an assigned value
for W= 2v(M2) /(D). In the following subsections
the ensemble averages of spreading parameters
and the results of the least-squares (LSQ) fitting
are discussed in detail.

A. Ensemble averages of W, and W2

In the literature, discussions of SF frequently
do not distinguish between several quantities which
measure the strength of the coupling of the doorway
state to FS states. Generally, 2n(M')/(D),
2v(M'/D), and I'z~ are assumed to be equaL To
test this assumption, as well as to determine the
variation in these quantities from one system to
another in a given ensemble, values of lVy-=

2n(M,. )/( D) and W, = 2v(VI, '/D, )—were c.alcu. lated
for each of 100 systems in the ensemble charac-
terized by W—= 2+M') =2m(M)/(D) =2m. The ensem-
ble averages and variances of these quantities are
displayed in Table I.

In agreement with Eq. (A3) of the Appendix, the
ensemble average (W,j is equal to the ensemble
parameter W within the statistical error o/v'Ipp
for an ensemble of 100 systems. Moreover, the
standard deviation cr.= 0.9V for the distribution of
values for W, in the ensemble is in good agree-
ment with the value o = 0.95 predicted by Eq. (A9)
for the case of 100 levels per system. The en-
semble average (W,}=9.87 also agrees satisfactor-
ily with the value of (W,)=9.56 predicted by Eq.
(A11) for an ensemble with W=2v. The statistical
error of (W,) is much larger than that for (Wg, al-
though it is, of course, not infinite as for an in-

TABLE I. Ensemble averages of spreading parameters.

W= 27t' (I )/(D) = 6.2832

Parameter
Ensemble
average Standard deviation

Statistical error
in ensemble average

LLM
6.16
6.56
9.56

0.97
2.02
2.42

0.10
0.20
0.24
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TABLE II. Ensemble average of (I'I (E)).

20

0.5 1.0 1.5 2.0 2.5 3.0

{«,&E)&) 6.17
6.217

+1.27

6.13
6.215

+1.23

6.08
6.215

~1.20

6.04
6.214 ~

+1.18

5.99
6.212

~1.15

5.95
6.210'

+1.13

With finite interval corrections.

finite ensemble. However, the value of o for the
distribution of S", values is 0 = 5.88, compared to
{W.,)= 9.56.

The values in Table I labelled LLM are taken
from Table I of the paper by Lane, Lynn, and
Moses. ' Their value for the standard deviation
differs by about a factor of 2 from the value pre-
dicted by Eq. (A9) for this ensemble.

B, Averages of the spreading width I I~

Ensemble average of |,'I 1~)

The spreading width r~) defined by Eq. (3) fluc-
tuates with energy so that a comparison with
spreading parameters lV, W„and W, must be
made by averaging I'I~ over an energy interval
chosen to minimize end effects due to the finite
number of FS states. The coupling matrix ele-
ments for a physical doorway state, e.g. , an IAS,
undoubtedly extend over several hundred levels,
whereas the model contains only 100 states.
Therefore, (r,') was obtained by averaging over
the energy interval 175 & E & 225. From these av-
erage values for each doorway the ensemble aver-
age {(r~)))and the standard deviation

({(r,'))) -={((r,') —{(r',)))')"
were calculated for the ensemble W'=2m. These
quantities are presented in Table II.

In agreement with the prediction of Eq. (A18)
the ensemble average of (rl)) is close to the value
of the spreading parameter S' and to the ensemble
average {W,); it does not approximate {W2)
={2m(M, (D,.)). This is interesting because the
usual approximation of replacing the sum in Eq.
(3) by an integral gives W, . The fractional en-

semble standard deviation of (rz) is approximately
0.20 and independent of I. The fractional standard
deviation predicted by Eq. (A19) is approximately
0.15.

The decrease of {(r)))with increasing I suggests
the effect of the finite number of levels. A correc-
tion can be calculated from the picket fence model
in which there are an infinite number of equally
spaced states coupled to the doorway by a constant
matrix element, M'. ' The model is somewhat un-
realistic because it implies an infinite value for
the expectation value (D~ V'~D) of the square of the
effective nucleon-nucleon interaction. Thus the
correction will be overestimated. The contribution
&I'I of states outside the energy range of E~ & E
& E~ is given approxim. ately as

~~(( )
&w(MS ( l, z —E „,E —E

)
(12)

In Table I the values of {(r,)) are also given with
this correction included. The corrections are
small but sufficient to remove the dependence on
I. The corrected values {(I',)) = 6.21—6.22 differ
from W= 6.28 by about 1%, less than the statistical
error for the ensemble of p.15/glpp

rms fluctuations of I ~~ ~ith energy

The spreading width I', (E) fluctuates with ener-
gy, although increasing I decreases the magnitude
of these fluctuations. The fluctuations in Fl~ will
be reflected in an uncertainty in the least-squares
fitted value for I'~. Therefore, it is useful to cal-
culate the variance of r~~(E) in the system, i.e. ,
o'((I",)) —= ((rI —(I",))'). Of course, the value of this

TABLE III. Fluctuations in spreading width with energy.

0.5
0„' ={& (r, &z) )' & &r, (@)&

')' '
1.0 1.5 2.0 2.5 .3.0

{&r,&)

1/~art

6.217

0.84

0.80

6.215

0.56

0.56

6.214 R

0.44

0.46

6.214

0.37

0.40

6.212

0.32

0.36

6.210

0.29

0.33

'With finite interval correction.
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quantity will be different for every doorway sys-
tem in a given ensemble, so it is averaged over
the ensemble W=2g, and the result is given in Ta-
ble III. The fractional standard deviation of these
energy fluctuations in F~ is independent of the en-
semble, as explained in Sec. III A. This is also the
fractional rms fluctuation.

The fluctuations of 1 (i(E) with energy are largest
for small I and decrease as this averaging is in-
creased. The fractional rms fluctuation for the
ensemble follows very closely the theoretical ex-
pression 1/(nl)'I' given by Eq. (A21). However,
even for an averaging interval of I= 3, the frac-
tional standard deviation is nearly 30%%uo. Thus the
value of Fi(E) is by. no means constant as a func-
tion of energy over the interval 175 & E & 225.
Therefore, the value of the spreading ioidth at the
location of the doonoay ~D is a local quantity iohich
does not approximate the average value of 11~; it
depends on the particular set of ()if„e,.) and on the
location of the doorway.

1.0 2.0 3.0 4.0

3.03

2.74

+0.31

W= 3.14
2.97

2.90

+0.16

2.94

2.91

+0.10

2.92

2.90

+0.07

8'= 1.57

(1'r +v)}
A

kFFir}

cr„,/O'Fix}

1.52

1.41

+0.22

1.48

1.46

1.47

1.47

+0.08

1.46

1.46

+0.06

W=' 0.628

0.607

0.582

0.594

0.590

0.589

0.589

0.583

0.584

TABLE V. I'I (ED) from least-squares fit to strength
function

Flgcuations in I",'(+D) +0.15 +0.10 +0.07 +0.06

Already we have seen that the value of F,'(Ev)
for a particular fragmented doorway will depend
on the location of the doorway as much as on the
set (M„e,.). This can be verified by calculating
the ensemble average {F,'(Ev)} and the ensemble
fractional standard deviation. These quantities
are presented in Table IV. The fluctuations in
Fi((ED) from one doorway system to another show
a decrease with increasing I. According to Eq.
(A16) the fractional standard deviation is nearly
equal to 1/&zI. The relatively large fractional
standard deviation of nearly 25%%uo even for I= 6
shoios that 1 ii(Ev) for a Particular doonuay can and
does deviate considerabLy from the ensemble av
erage value.

C. Least-squares fitted values for rl~

The least-squares (LSQ) fitting procedure de-
scribed in III B was applied to each of 100 systems
in four different ensembles characterized by W/2w
=0.5, 0.25, 0.10, and 0.025. Furthermore, the LSQ

S'= 0.157

&1'r (Ev»

ÃFn}
&r i, /(Furr}

0.152

0.147

0.148

0.148

+0.08

0.147

0.148

+0.06

0.146

. 0.146

+0.04

fit was performed on each doorway system for
four different values of the averaging width, I= i.,
2, 3, and 4. Therefore, the accuracy of the LSQ
determination of Fi((ED) was tested for systems in
ensembles characterized by values of the spread-
ing parameter ranging from weak to intermediate
coupling. The sensitivity of the method to Quctua-
tions in Fi((E) is measured by the accuracy of the
determination of 1 i((ED) for various values of the
averaging width I. Table V summarizes the re-
sults of the LSQ fitting procedure for all 1600
= 4x4x100 cases. Ensemble average values
(F„,Y} are presented for comparison with the en-

TABLE IV. Ensemble average of spreadirg width I'I (ED).

1.0
W=6.28 (= 2i'(M ) i (D))

2.0 3.0 4.0 5.0 6.0

Ã (E)}

c/(r, (ED)}

1/v ~r

6.06
6.15

+0.54

0.56

5.94
6.10

+0.40

0.40

5.89
6.13

+0.34

0.33

5.83
6.15

+0.31

0.28

5.77
6.17

+0.28

0.25

5.70
6.18

+0.26

0.23

Finite interval correction included.
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semble average of the calculated values of
li"z~(Ev)). The error in the determination of
I'~~(Ev) is measured by the fractional sta.ndard de-
viation for each I in each ensemble, i.e. , by

(13)

The significance of the results presented in Ta-
ble V can be seen by comparison with the ensem-
ble averages and fractional standard deviations
shown in Tables I-IV. Note first that the uncer-
tainty in the ensemble average value (I'~z(Ev)) de-
termined by the LSQ fitting procedure is given by
o//100 where the best value for c is the sample
standard deviation, a =crpF, T For approximately
3 of the 16 cases the diff erenc e between the two
averages (I'z~(Ev)) and (I'„,T) exceeds the statistical
uncertainty, a,s one expects for normally distribu-
ted errors. This was confirmed by a histogra. m
of the errors [I'„,T —I'z~(Ev) J for the ensemble W= v
which was constructed and found to be very close
to a normal distribution.

The uncertainty in the value of I'z(ED) obtained
by an LSQ fit to the SF for a particular doorway
system is approximately o„.A comparison with
Tables II and IV reveals that this uncertainty is
always less than the fractional standard deviation
in the average values i(I'z)J and jl'I~(Ev)j. More-
over, the fractional standard deviations in these
quantities are independent of the ensemble spread-
ing parameter lV, whereas the fractional uncer-
tainty or /I'„,T decreases with decreasing W.
Both observations are consistent with the fact that
the LSQ fitting determines 1 r(ED), a quantity which
characterizes a particular doorway state and not
an ensemble parameter.

The uncertainties in the LSQ fitting procedure
arise mostly from the fluctuations in 1 z(E), which
cause the doorway SF to deviate from a Lorentzi-
an. However, fluctuations in I'I~(E) are important
only if they occur over the maximum of the SF.
Now the seidth of the maximum of the SF is mini-
mally I'z~, which Eq. (10) shows to be proportional
to the ensemble spreading parameter W. On the
other hand, the widNs of Ne fluctuations in I', are
quite independent of 5", being entirely determined
by the properties of the dimensionless distributions
of Eqs. (8) and (9). Therefore, as W decreases so
also do the fluctuations in I'I(E) over the maximum
in the SF. The SF more closely approximates a
Lorentzian, and the value of I'z~(ED) is more accu-
rately determined by the LSQ fitting procedure.
Thus, I'z~(Ev) is determined with increasing accu
macy by the fitting procedure as the coupling be-
comes sneaker.

A. Ensemble strength function of LLM

The SF formed by doing a sliding box average of
yz,

' is a histogram, and in the case of weak cou-
pling it is meaningless to speak of its spreading
width. Recognition of this fact led LLM to pro-
pose that every physical doorway system be con-
sidered as belonging to fictitious ensemble of sys-
tems. The squared matrix elements of the ensem-
ble have some average value (M ) and the level
spacing is also fixed, but the LLM did not specify
the respective distribution functions. LLM then
considered the ensemble distribution function con-
structed by box averaging the totality of y~, for
a,ll the systems in the ensemble, and conjecture
that it is of the form

W/2v
(E-E,)'+(W/2)' '

where W = 2v(M')/(D).

(14)

B. Irrelevancy of the ensemble strength function

The ensemble of LLM contains only one physical
doorway system with its set of (M, , e,.) generating
the observed (E~, y„,'). In fact, the entire ensem-
ble must be constructed using only the information
that can be inferred from the set of experimentally
determined (E„,y~,') for this single system. LLM
suppose the ensemble to be characterized by an
(M') and a, . (D), which axe not those of the observed
system because the sets (M, ') and (D,.) of the ob-
served system must exhibit sample fluctuations,
shown in Table I. Therefore, the question which
is the central point of the entire study of LLM is
the following:

Given the (E~,y~, ') for a single doorway, what is
the probable error in taking the value of W
= 2v(M') /(D) for the entire ensemble to be that of
tM. s doorway?

The first point to be made is that the answer to
this question has little relevance to the problem
of extracting useful information from, for example,
the high resolution data on IAS. If this probable

V. COMPARISON VGTH LLM

The results of LLM have been quoted by Bilpuch
et al. ' as establishing that spreading widths of
IAS can generally not be determined with a, statis-
tical error of less than 30-40/p. Since this as-
sertion is apparently contradicted by the results
presented in Table V, the work of LLM must be re-
evaluated. The following discussion (1) reviews
the concept of an ensemble SF introduced by LLM,
(2) assesses its relevancy for the analysis of line
broadening, and (3) relates the numerical results
of LLM to those in this paper.



20 STATISTICAL SIGN IFICANCE OF SPREADING WIDTHS FOR. . .

C. LLM results disagree with exact predictions

The study by LLM actually used the discontinu-
ous summed SF

(15)

which was equated to

dE'S(E') =2 +tan '
~oo 1

(16)

Arbitrarily chosen points on the "staircase" func-
tion Z(E) for each doorway system were LSQ fitted
to Eq. (16) to determine a value for W, . This pro-
cedure was carried our for each of 100 doorway
systems in four ensembles characterized by W
= n/2, v, 2v, and 4n and constructed as described
in'this paper. A different value of 8', was obtained
for each doorway system. From these the average

error is large, the implication is simply that the
spreading width is unique to a particular doorway
system and that the ensemble strength function is
not a useful concept. If the probable error is
small, the ensemble parameter 8' is equal to IVY

= 2s(M;'&/(D, .& for the physical doorway system
But then the result depends on how accurately IVY

'can be determined for the physical dooneay sys-
tem. Since the motivation for considering an en-
semble SF was that in intermediate to weak cou-
pling the spreading width is not meaningfully de-
fined for the box-averaged SF favored by LLM,
the purpose of the exercise is lost in either case.
Thus, whatever the answer to the question, the
constructio~ of a completely fictitious ensemble
with an associated SF provides no escape from
the fact that the sliding-box SF is useless for a
doorway state with weak coupling to neighboring
fine-structure states. (Even for the case of strong
coupling this SF does not have the Lorentzian form
assumed by LLM. )

The second point to be made is that the answer
to the question posed by LLM is the standard de-
viation in the values of W, = 2@(M,'&/(D, & far all the

doonoays in an ensemble, and this is determined
by the distribution functions for the matrix ele
ments and level spacings as shown in the Appen-
dix. The form of these ensemble distributions
cannot be inferred from the (Ez, y„,') of a single
doorway system. Thus, the information available
from a single dooneay system is not sufficient to
constmct the ensemble.

In summary, the answer to the question posed
by LLM provides no information on the root prob-
lem —how accurately can a meaningful spreading
width (definition?) be determined for a single door-
way system'?

{W,) and the standard deviation were calculated
for each ensemble.

LLM found that their average {W,) always ex-
ceeded the ensemble parameter W by 5-8/o. This
difference was attributed to the effect of a finite
number of levels. The fractional standard devia-
tion of W, for the ensemble with W= v/2 was 44%%u~,

and the fractional standard deviations of 8', for
W = a, 2v, and 4v were found to be 33%%uq, 30%%up, and
31% respectively. LLM conjectured that the frac-
tional standard deviation of 8', would approach
zero if lV were increased, although this suggestion
is not supported by these results. Indeed, the exact
calculation of v (W,) given by Eq. (A9) of the Ap-
pendix (which is accurately confirmed by the nu-
merical results of this paper) shows that the frac-
tional standard deviation o/W is independent of W

and equal to [(1+4/m) /N~]'~'=15%. The results of
LLM actually confirm the constancy of o/W, ex-
cept for W = @/2 where a fitting procedure based
on Z(E) should be expected to fail completely.
However, their values for o/W are too large by
almost exactly a factor of y, .

VI. SUMMARY AND CONCLUSIONS

A model study on 400-fragmented doorway states
has used a strength function (SF) which is the Lo-
rentz-weighted average of reduced widths for a
reactance matrix (K matrix or Wigner-Eisenbud
R matrix) to study the spreading of the doorway
state. The results show that this SF can be used
in both weak and strong coupling to determine a
spreading width F,~(E~) that is unambiguously the
Lorentz-weighted average of the squared micro-
scopic coupling matrix elements (M,.) from the
doorway to the states at (~,.). By choosing the av-
eraging width I properly, the statistical error can
easily be reduced below 10/o. Moreover, for a
fixed value of I the error in determining F~~(ED)

decreases as the coupling becomes weaker.
For each doorway system a number of average

quantities were calculated —W, =2n(M, '&/(D;&, W,
= 2v(M, '/D, &, (r,'&, and [((r~)'& —(r,'&')—as well as
the quantity I'I'(Ev). Averages and standard devia-
tions over an ensemble of 100 doorway systems
were then calculated for each of these quantities.
The ensemble averages and their standard devia--
tions agree with exact expressions derived from
the normal distribution of (M, ) and the Wigner dis-
tribution of level spacings. These averages sum-
marize several observations which are obvious
from a perusal of I'~(E) for the individual doorway
systems in the ensemble:

(1) The ensemble average of 1'~~(Ev) is equal to
W =2v(M &/(D&', but the spreading widths of about
32/0 of the doorway states differ from W by a
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fractional amount greater than (wI)
' ' = (&D) /vf)' '.

(2) If the doorway state is randomly placed
among doorway states (e,.) to which it is coupled
by (preassigned) matrix elements (i';), the prob-
ability is about 32%%u~ that the width I', (ED) will differ
from the energy-averaged quantity &I'z& by a frac-
tional amount greater than (nI) '~'.

(3) The ensemble average of W; --2m&M, '&/&D, &

equals W=2w&M'&/&D)', but in about 32/q of the
systems W, differs from Wby a fractional amount
greater than 16%.

(4) The ensemble average of W, = 27i&M,
'

/D,

equals approximately (n /2) W.
These results establish that (I) the I orentz-

average spreading width of Feshbach, . Kerman,
and Lemmer' can be determined directly from ex-
perimental data a.nd that (2) it is not an average
parameter for a fictitious ensemble but a quantity
which characterizes the spreading of the physical
doorway state.

Ensemble average and variance of V,

The ensemble average of 5; can be written

{W,}=2~{&M &}/{&D;&}, (A2)

, o'({&M,'&}) o'({&D,.)}){&M,.')}
{&D,)} {&D,&}'

To evaluate the variance

o'({&M,.'&})= {&M,'&'}—{&M,')}'
use

(A4)

since the M,. and D,. are independently drawn from
different distributions. The average {&M; )}is
taken over (100x100) quantities, so an accurate
evaluation is {&M,'&}=(M'), giving the result

{W,}= 2 n'&M ') /&D) = W .
The variance can be closely approximated by

o'({W„})
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{&M,. '&'}= ---, g M,.'M,.'
i

with N~ the number of levels in a dooneay system
to get

(A6)o'{&M,.')}=o((M'&)/At, .
From Eq. (Al) calculate o(&M'&) =2&M'& to get the
result

o'{&M,.'&}= (2/A;)&M'& . (A7)

From Eq. (Al) calculate the variance o'(&D) ) = (4/n
—1) and use the analog of Eq. (A6) to get the vari-

APPENMX A

All the averages and variances calculated for an
ensemble of model doorway systems can be evalu-
ated theoretically using just the distribution func-
tions. The only quantities needed for the calcula-
tions are the averages

o'({W,})= W'(1 + 4/~)/X, . (AB)

o'{(D,)}= (4/~ - I)/A, . (AB)

Clearly, to an excellent approximation {(D,.)}=(D)
and {&M,.'&}= &M'). The variance of {W,}then evalu-
ates to the result

&1 ~D& = 7I/2

&D) =1,

&Ã =4/~,

&M'& = W/2~,

&M'& =&M')'.

(Al)

Ensemble average and variance of W2

{W,}= 2~{&M,.')}x{(1./D,.)}.
When the double averages over 10' levels are
equated to the distribution averages in (Al), the
result follows

(A10)

The fact that D,. and M,- are drawn from different
distributions leads to the factorization

Now calculate each of the following ensemble av-
erages and the corresponding variances: (1) {W,
= 2 &M &/&D;)}, (2) {W = 2 &M, /D ), (3) {I"(E )},-d
(4) {&I'~~(E))s}. Averages over the parameter for
a particular doorway system are denoted by angu-
lar brackets; curly brackets denote an average
over an ensemble.

{W,}= W(~/2) .
The variance of {W,}is

o'({W,})= (2~)'(o'{&M,.'&}{&I/D,.&}

{&M,'&} '{&I/D,&}).

(A11)

(A12)
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Since (1/D'& is infinite the variance of (1/D) is in-
finite. The variance of {W,}.is therefore infinite

Approximating the sum to an integral gives the re-
sult

Ensemble Average and variance of I I (ED)

Factorization of ensemble averages of M,. and c,.
gives

{r,'(E,)}={w,}= w. (A14)

()'i(E )) = 21(M') (A13)
The variance of this ensemble average is given

by

2

({I1(Ep)}) 4I o (I ) p [(E )2 12]2 +(M &o ((D&) g [(E )2 12]4

Again, the sums can be approximately evaluated as integrals to yield the simple result

.((r,'(z.))) = w*(),) ((.';—().
Ensemble average and variance of &I z~(E)&

(A15)

(A16)

The quantity (I'1~(E)& is an energy average of I'~~(E). In the model this quantity was calculated by aver-
aging over the integral 175 &E 225. The interval will be taken as E~ —b,/2 & E&ED+ 4/2 in evaluating,
the ensemble average {(I'1~(E))},but the result is evaluated in the limit of h very large. The ensemble
average is then

D

Approximate evaluation of this expression gives

(A1V)

{(r,'(E)&}={w,}= w. (A18)

The variance of the ensemble average of (I'z& is approximately equal to the variance of W,

{(I",&'}—{(I',&}'= W'(1+ 4i~)/&. .
Still another variance can be calculated for (I'1~&, viz. , ((I'Ii)& —(I'I~&'. Naturally this quantity also depends

very much on the particular doorway system, so let us a'verage over the ensemble. First evaluate the av-
erage of (I'I)'.

(( &)g=—"g ~~ t.n- E "+tan E"-- ' in(E '~)+~ '
(A20)

(e, —e, ) +4I I I e, —e,. (E —e,.)'+I' s

(A19)

When this expression is evaluated at the limits for large 6, the second term is found to be negligible com-
pared to the first term. In evaluation of the ensemble average of the first term, it is necessary to distin-
guish between the terms for i=j and those for which i cj. The result is

{((I",)'&}= w' 1+=i.
mI)

(A21)

The ensemble average {(I'z&'}evaluates in the limit of large A to W'. This leads to the ensemble average

{((r,')'&}—{(I",&'}= w'/ni. (A22)

In the text, the ensemble averages given in Eqs. (A3), (A10), (A11), (A14), (A16), (A18), (A19), and (A22)
are compared with those calculated directly from a model ensemble with W= 2m. The results are pre-
sented in Tables I, II, III, and IV.
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