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An s-wave two-body separable potential may give rise to several phenomena which are absent for
nonsingular local potentials. We examine the physical implications of a well known example of such
phenomena, the continuum bound state, as well as of two lesser known anomalies, the so-called positive
energy spurious state and negative energy bound states with improper long-range behavior. By examining
these anomalies in light of Levinson’s theorem, Wigner’s phase shift inequality, and the effect of a
perturbation on the anomalous states by their insertion in a three-body scattering situation, we find in
agreement with previous studies that the continuum bound state acts as a resonance of negligible width.
However, we find it difficult to see how the presence of a spurious state can be detected experimentally.
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I. INTRODUCTION

This paper discusses certain “anomalous” pro-
perties associated with zonlocal two-body poten-
tials. The term “anomalous” is used here in the
specific and limited sense that these properties
are not possible in the case of sufficiently regular
local potentials; it is not intended to cast any
aspersion on the physical character or usefulness
of any potential which exhibits them. Our concern
will be directed primarily to separable potentials
(though other nonlocal potentials may also share
these properties) because they are more easily
discussed ahd because they are being extensively
employed to describe two-particle interactions in
few- and many-body problems.

In a recent series of papers, Arnold, Bagchi,
Krause, and Mulligan® have presented an elegant
discussion of the behavior of solutions of the
radial Schrodinger equation with a nonlocal two-
body potential. These authors discussed a long-
known anomaly (continuum bound states) and also
discuss at length another anomaly known as a
“spurious state.” On the basis of their results
they also propose a new definition of “absolute
phase shift” differing from previously proposed
definitions. The logic of their arguments for this
change stems from certain mathematical consider-
ations. We respectfully suggest from our exami-
nation that the proposed redefinition has little in
the way of physics to recommend it, and that on the
basis of Levinson’s theorem and Wigner’s inequal -
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ity associated with causality, the benefits are at
best questionable.

We also discuss briefly another anomaly which
we discovered quite accidentally,? though its ex-
istence had been noted earlier,® namely, anomalous
negative energy bound states with peculiar asymp-
totic behavior. On the basis of our calculations we
discuss some questions concerning physical “ob-
servability” of some of these anomalies, while in
the Appendix we give an elementary example which
illustrates how some of these anomalies arise and
at the same time illustrates the ambiguities in-
volved in naive node-counting arguments in fixing
absolute phase shifts.

For simplicity we shall consider only s states
and use a notation to facilitate as far as possible a
comparison with the papers of Ref. 1. Thus we
shall write for the radial /= 0 wave function mul-
tiplied by ¥, #(v), and the form of the Schridinger
equation will then be (units: 2m/#%2=1)

dzu/d7’2+k2u=f Ur, v @ )ar', k=EY2, (1)
0

with E the energy eigenvalue. For a local and for
a separable potential we have respectively

U, )=8(r -v" )U(r) , (2a)
Ur,v')=xg(r)gr') . (2b)

In momentum space we represent the transform of
u(¥) by v(q), of g(r) by h(g), and of U(r,7') by
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V(g,q'); the transformation equations are

v(g)= (2/1r)’/2f°° u(r) singr dr , (3a)

0

Wa)=@/ap" [ g sinarar (3b)

Va,q')=(2/7) f f singv U(v, 7' )sing’v’ dr’ dv,

o )

(3¢c)

together with the same equations under the trans-
formation

u(@)=vl(g), g rq), UW, 7" )=Vg,q"),
qz7v, =7,

The Schrddinger equation in this representation
has the form

0 —gw@)= [ Via,a' i )aa’, @

and in particular, for the separable potential
where

Via,a') =ik’ , (5)
it reduces to
0~ @=nita) [~ ' gy’ (6)
The scattering solution in this case is given by
@ =(F1op) + [ a°a GH@ KTt E®) DT 03,
0

where the off-shell s-wave {-matrix element is
given by ‘

(d'|tE) q) = h(q a(@)T(E) , (8)
where

II. ANOMALOUS NEGATIVE ENERGY BOUND STATES

It is well known from elementary quantum
mechanics that if one has a short-range local
potential, then for a bound state the energy eigen-
value E, must be negative (assuming the potential
vanishes at infinity), and the negative energy
bound state wave function has the asymptotic form
(for an s wave)

u(r)~Ae™ " (k*=-E), : (10)

with A a constant.

It is also quite well known that for a simple
nonlocal potential of the separable Yamaguchi
type* with g(#)=e™ " so U(r,7')= —ye~ % e’
with y= — X positive, if a bound state exists (at a
negative energy) its wave function has the Hul-
thén form

u(’r‘)=e""—e'°" s (11)
with
v=2a(k+a)?, (12)

as may be verified by direct substitution into the
Schrodinger equation (1).

We note that since « and a are necessarily
positive, Eq. (12) guarantees the existence of a
positive y such that the Schrddinger equation is
satisfied. Now so long as k< a or, equivalently,
< 8a®, the asymptotic form of () will be of
the same form, ¢™*", as in the case of a local
potential, with the asymptotic rate of falloff of
the bound state wave function determined by the
binding energy alone. On the other hand, if
K> a or y> 8a®, u(r) is asymptotic to e™* which
is determined by the potential parameters but not
by the binding energy.

It may be objected that the Yamaguchi potential .
with y> 8a® may be masquerading as a short-
range potential of range a~! but that it is in actual-
ity a long-range potential and a™' is not a proper
measure of its range, It isdifficultto respond un-
equivocally to this in that the concept of range of
a potential is not that well defined. However, one
can show that for k2=E > 0, the purely real regu-
lar solution of the Schrddinger equation is asymp-
totic to sin(k7 + 6) where d(modw) is a well-de-
fined phase shift (independent of ) which suggests
that the potential is not active at large radii for
positive energies. Furthermore, on semiquanti-
tative grounds, Wigner® has shown that for a po-
tential of range R

ds/dk> -R, - (13)

using an argument that the time advance of the out-
going wave packet relative to the ingoing one is
limited by the range of the interaction. Hence if
the range is indeed infinite, one would expect Wig-
ner’s inequality to be violated for arbitrarily large
R at some k; investigation shows this not to be the
case. Thus in spite of the anomalous behavior of
the bound state wave function, no physical anomaly
seems to be associated with it, and the situation is
perhaps best described by saying the range is
energy dependent and becomes more long-ranged
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as the energy becomes more and more negative.
It should further be noted that this anomalous
behavior occurs not only for the Yamaguchi sep-
arable potential but is possible for bound states
derived from any separable potential which pos-
sesses a pole in k(g) for some complex ¢.

III. CONTINUUM BOUND STATES

A long-recognized anomaly of some separable
potentials is the existence of bound states (states
described by square-integrable wave functions)
for positive energies and hence lying in the con-
tinuum. We call these continuum bound states
(CBS’s). The condition for the existence of a
CBS at k,2=E_.q is the vanishing of the (Fredholm)
denominator in the on-shell { -matrix element as
given in Eq. (9). Since the real and imaginary
parts must both vanish, this requires

h(kg)=0 (14)
and
mny2

1-xp [ O dar-o. (15)
The elimination of k2, between these two equations
yields a condition which the potential parameters
must satisfy (see Appendix, for example) and
hence the occurrence of a CBS is accidental. If
the condition is nearly, but not quite satisfied, the
CBS is transmuted into a narrow width resonance
in the scattering amplitude whose width narrows
as the parameters approach satisfaction of the
condition. When a CBS exists, there is also a
scattering state solution’ of the Schrédinger
equation at the same energy corresponding to a
phase shift of zero (modn) which can be chosen to
be orthogonal to the CBS wave function.

A useful application of CBS’s lies in obtaining
improved fits of two-body ¢ -matrix data for p-
wave 7-N and 7-7 scattering by the use of separ-
able potentials.® The technique depends on start-
ing from a CBS or infinitely narrow resonance
at the position of the resonance in the appropriate
scattering channel, and then varying the potential
parameters to fit the phase shift behavior both
" below and above resonance.

We shall come back to the phase shift behavior
later but add two more points, the first of which
is not emphasized in Ref. 1. These are the fact
that there may exist more than one linearly inde-
pendent CBS at a particular energy and that a
CBS may satisfy the initial conditions #(0) =%"(0)
=0, Examples are discussed in the Appendix.

IV. SPURIOUS STATES

In Ref. 1 another anomaly of nonlocal potentials
is recognized and emphasized. While for a non-

singular local potential the initial conditions «( 0)
=u'(0) =0 imply that the solution is everywhere
zero, it follows from the work of Mulligan et al.
and the illustration in the Appendix that this need
not be the case for nonlocal potentials. In partic-
ular, it can fail to be the case for a continuum
bound state (see Appendix). Mulligan ef al. fur-
ther point out that for some nonlocal potentials

a nontrivial solution with #(0)=«'(0)=0 can exist
at some energies even when there is not a CBS

at these energies. In such a case, for the energy
in question, what they define as a regular solu-
tion, i.e., one satisfying the conditions «(0)=0,
u' (0)=1, does not exist. This satisfies the con-
dition for what we have called an “anomaly,” al-
though it is important to note that there exist per-
fectly respectable singular local potentials for
which no regular solutions exist at any energy.
For these potentials, of which repulsive ™" po-
tentials with »>2 are examples, perfectly reason-
able scattering solutions exist. A non-normaliz-
able state whose wave function satisfies the con-
dition #(0) =%’ (0) =0 has been named” a “spurious
state.”

Up to this point we feel that the analysis of these
authors is useful and informative. However, on
the basis of the behavior of nodes of the regular
solution of the Schrodinger equation as the energy
varies through an energy associated with a spur-
ious state, the authors go on to propose a new
definition of the absolute phase shift which we
believe has no real advantages and several dis-
advantages. We shall comment on this in detail
in the next section.

However, we should remark on another feature
of spurious states which seems to have been
unnoticed by Mulligan ef al. As we indicate by an
example in the Appendix, one can construct non-
local potentials having the property that at some
particular value of the energy, two orthogonal and
hence linearly independent solutions may exist
with the possibility that one may be a CBS [ with
u(0)=u’(0)=0] and the other may be a spurious
state. In such a case the spurious state is not
unique since one can add to it any multiple of the
CBS and still satisfy the conditions for a spurious
state. We show also that one may construct ex-
amples in which several CBS’s and perhaps a
spurious state may be linearly independent solu-
tions at a given energy. These situations add to
the problems associated with the alternative def-
inition of the absolute phase shift as proposed by
Mulligan et al.

V. ABSOLUTE PHASE SHIFTS

For scattering in a spherically symmetric poten-
tial, the scattering amplitude and cross section in
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a particular angular momentum state are expres-
sible in terms of a phase shift 6 determined only
modulo w. If the phase shift is calculated from the
asymptotic form of the radial wave function which
is regular at the origin, it is also determined only
modulo n. It is usually assumed that the phase
shift is a continuous function of energy and the
possibility of introducing discontinuities of multi-
ples of 7 has not been exploited. In particular, in
the case of local potentials there appears no need
or advantage to do otherwise; rather, there are
good reasons not to.

The first of these is to preserve the validity of
Levinson’s theorem

6(0) ~6(=) =N , (16)

where N is the number of negative energy bound
states of the particular angular momentum. The
proof is based on phase shift continuity as a func-
tion of energy for local potentials. The second is
the preservation of the Wigner inequality

ds/dk>-R , 1

where R is the “range” of the potential beyond
which its effect on the phase shift is negligible;
its derivation also assumes the continuity of the
phase shift. However, its validity would not be
impaired by upward jumps of multiples of 7 with
increasing energy, but similar downward discon-
tinuities would make the left side of the inequality
infinitely negative at such energies and destroy
the inequality.

The situation is not so clear in the case of non-
local potentials as has been pointed out by Bol-
sterli® and others. In particular, if a potential
admits a CBS at some energy then, as noted
earlier, this is the limit of a situation where a
resonance in the scattering becomes infinitely
narrow. Infinitely narrow resonances in a scat-
tering channel are not directly observable. In fact
even very narrow resonances must be inferred
from the decay of the compound system rather
than by direct observation of them in the scatter-
ing amplitude. For a very narrow resonance, the
phase rises steeply by about 7 as one increases
the energy over the width of the resonance. If one
carries this behavior to the limit of a CBS then
one expects to find a discontinuity of +7 in the
phase shift at such a zero width resonance. Con-
trariwise virtually any perturbation on a CBS dis-
solves the discontinuity into a narrow resonance
with a steep rise in 6 of 7. It is thus natural, as
emphasized by Bolsterli, to assign a discontinuity
of + 7 to 6 with increasing energy at a CBS. This
does not contradict the Wigner “theorem” and yet
preserves the Levinson theorem if the number N

is taken to be the number of negative enevgy bound
states.

On the other hand, Mulligan ef al. suggest on the
basis of arguments concerning the behavior of wave
function nodes in the regular solution of the Schré-
dinger equation (arguments best understood by
reading their discussion) that the absolute phase
shift be defined so that it is continuous at CBS’s
but shows a discontinuity of —7 as the energy in-
creases through each spurious state. They then
write a modified form of Levinson’s theorem to
fit their definition. It is on this point that we have
serious reservations concerning the utility of such
a definition which we shall now try to explicate.

If a CBS should happen to exist, its existence
can be detected or inferred experimentally by the
simple medium of introducing a slight perturba-
tion on the system. This we illustrate in the next
section by calculating the effect of a slight binding
of the target particle in an external field which
shows that a finite width resonance like anomaly
appears in the total cross section at an energy re-
lated to that of the CBS. Beregi® has shown that
the same occurs if one couples the elastic channel
in which the CBS occurs to a second channel. To
assign a physical test for a spurious state should
require that one be able to make some perturbation
on the system which makes its existence physically
apparent. In the following section we show that
target particle binding will not do this, while an
examination of Beregi’s results show that coupling
to another channel is equally impotent. The effect
of a shift in the parameters of the potential which
possesses a spurious state (generally') is simply
to shift the energy at which the spurious state oc-
curs but does not generate any quantitative
changes. Thus it appears dubious that the exist-
ence of a spurious state can be detected or infer-
red from experiment, and this would make the
proposed modification of Levinson’s theorem emp-
ty of any physical content. A downward discon-
tinuity of the phase shift with energy would also
represent a failure of Wigner’s “theorem” since
at a spurious state the left side of Eq. (17) would
be negatively infinite.

Even the reliance on node-counting is somewhat
suspect since nodal behavior can be quite peculiar
for nonlocal potentials. In examples in the Appen-
dix it is shown that one can have finite intervals
over which the wave function is identically zero at
some energy, and clarification is required as to
how such occurrences should be counted. And
there are singular but not particularly unphysical
local potentials where spurious states exist at all
energies as indicated earlier. For this reason
we feel that it is dangerous to rely on node-count-
ing or node behavior for determining whether the
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mathematical concept of a spurious state posses-
ses any physical motivation for its being singled
out for special consideration. This is not meant to
imply that there are no special cases in which the
presence of a node may be relevant to some phy-
sical effect and hence worthy of study, but we are
skeptical about general arguments with respect to
nodes which are used as a basis for a change in
the definition of “absolute” phase shift from what
has been commonly accepted. Another require-
ment, though less directly physically motivated,
favoring the present choice for the definition of the
absolute phase shift is the analyticity of the { ma-
trix in the cut complex & plane. Thus we feel that
the proposed choice of absolute phase shift of
Mulligan et al., their §,, has less physical content
than their unfavored choice 3.

Finally it is important to remark that our rec-
ommendation with respect to retaining the earlier
definition of absolute phase shift such as to main-
tain the physical usefulness of Levinson’s theorem
and Wigner’s inequality are premised on the as-
sumption that bound state eigenvalues (whether
positive or negative energy) are simple and not

degenerate., The problems of degeneracy were
J

Tiho @ 8)= [ Pl 93, @ +T2)0rc @ + 3 (G +

where ¢ is the target-core bound state wave
function, - k.c? is the target-core binding energy,
and ¢, is evaluated as in Egs. (8) and (9). In the
present calculations we employed k;.*>=3.5 eV and
a Gaussian s-wave wave function with an rms mo-
mentum distribution of 20.47 A=! for ¢rc. Two
projectile-target interactions were examined, the
first with the momentum space form factor

h@)=q*q®+n*)7" —cq*(q®+n,?)7 (19)

with #,=20.0 A=, n,=40.0 A~!, and having a CBS
at ¢,=100.0 A~*, and the second with a momentum
space form factor

h@)=q(q®+n?)", (20)

with n, =80.0 A™! and having a spurious state at
4 =100.0 A~%, The target-force center interac-
tion gives rise to bonding parameters typical of
the binding of protons in hydrocarbon molecules.?
There would be great physical motivation if the
projectile-target interactions used in the present
calculation mimicked some interaction found in
nature. However, the purpose of the calculation
being to explore the differences between the ef-
fects of incorporating a CBS and a spurious state
in a three-body situation, the values for the po-
tential parameters in Eqs. (19) and (20) were
chosen to make very obvious the differences be-

raised in the discussion of Martin and Gourdin,*°
but it is still not clear, to our knowledge, what is
the proper disposition of them.

VI. CONTINUUM BOUND STATES AND SPURIOUS STATES
IN THREE-BODY SCATTERING SITUATIONS
As an example of the above ideas concerning

the observability of a CBS and a spurious state
when a slight perturbation is applied to the sys-
tem, we consider the situation of a projectile scat-
tering from a target bound to an infinitely heavy
force center under the assumptions that all the
particles are spinless and the projectile and tar-
get are of equal mass, that the projectile and
force center do not interact, and that the CBS or
spurious state occurs inthe projectile-target subsy-
stem channel. The exact solution of this scattering
situation requires the use of the Faddeev equations.
However, for large projectile energies and when
the projectile-target scattering length is much
smaller than the target-force center scattering
length, the drivihg term of the Faddeev equations,
the impulse approximation, serves as a reliable
approximation to the exact scattering.

For the present case, the impulse approximation
to the elastic scattering amplitude is

p (fl_i‘,_f.zi _ag?
PT\ 2 2 4
r

tween the two cases.

In Fig. 1 is plotted the imaginary part of the
forward elastic scattering amplitude in impulse
approximation for the CBS and spurious state
cases. Also shown is the on-energy-shell impulse
approximation (OEA)

% +%a';> ; (18)

TSnp (@5 8p) =( 8, /21e1(95/4) G, /2) (21)
obtained in the loose binding limit by setting

b1 ®) = 0(k) (22)
and

4p7 > Ry . (23)

As seen in Fig. 1, the spurious state amplitude
shows no special structure while the CBS ampli-
tude shows a pronounced structure at g, ~ 208 A%,
The location of this peak and its association with
the CBS may be understood as follows. For the
CBS, a pole occurs in Re7(q?) at g>=¢,% In addi-
tion, the target-core wave functions peak at q”
=-q,. This pole overlaps the peaking of the wave
functions at

a4, = (49,2 + 2k?)'/2=208.2 A1 | (24)

for our example. Likewise, both the real and im-
aginary parts of 7(¢%) are smoothly varying at g2
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FIG. 1. The imaginary part of the forward elastic
scattering amplitude in the impulse approximation as
a function of the projectile initial momentum for the
separable potential form factor of Eq. (19) possessing
a continuum bound state (solid curve) and for the form
factor of Eq. (20) possessing a spurious state (dot-dash
curve). Also shown is the OEA approximation to the
imaginary part of the forward elastic scattering ampli-
tude for each of the form factors. The spurious state
results have been scaled down by a factor of 108,

=qs!,2 for the spurious state case allowing for no
special enhancement when folded with target-core
wave functions and integrated. Finally for the CBS
case, one can show that the width of the pronounced
structure at g, = 208 A~ is due entirely to the rms
momentum distribution in ¢c.

As expressed in a previous section, the CBS may
be thought of as being the limit of a resonance of
vanishingly narrow width and that a perturbation of
the CBS conditions produces a narrow resonance.
This is demonstrated in Fig. 2. This figure shows
the imaginary part of the forward bound-target
scattering amplitude in impulse approximation for
the CBS of Eq. (19) and Fig. 1 and for two pertur-
bations upon the CBS conditions yielding subchan-
nel resonances with ks =100.0 A~! and with widths
T'=0.57A"!, 1.02 A~!. Again in this numerical
way, it may be seen that the CBS acts as a res-
onance of zero width and may be observed when
coupled to another channel or when target binding
is allowed.

104 —r—————

I'-=0.004" (cBs)
- \ ———T:o574" -

103

102

Im [Timp(ap,ap)] (Arbitrary Units )
3

10°! L | 1 1 1 | 1
100.0 200.?A - 300.0 400.0

9p

FIG. 2. The imaginary part of the forward elastic
scattering amplitude in the impulse approximation as a
function of the projectile initial momentum for the
separable potential form factor of Eq. (19). Shown with
the continuum bound state case are the corresponding
amplitudes for resonances of widths I'=0.57 A1 and
1.02 A~1 obtained by perturbations on the CBS condi-
tions.

Lastly, we would claim that an exact solution
via the Faddeev equations to the scattering prob-
lem posed in this section would yield no new re-
sults. It is known that the impulse approximation
is accurate in the “quasiclassical binding” case
where the target-core potential is slowly varying
over the projectile-target interaction volume,?: 1!
This is the case for the interactions of Eqgs. (19)
and (20), the ratio of the projectile-target scatter-
ing length to target-core scattering length being
0.33 in the former case and 0.036 in the latter
case.
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APPENDIX

In this appendix we discuss some very simple
examples of nonlocal potentials which clearly
illuminate the phenomena of CBS’s and “spur-
ious states” without any direct reference to the
theory of integral equations and exhibit some of
the special phenomena referred to earlier. We
consider first a separable potential with the
“form factor”

0 (r<a),
g)=ARr)=(1 (a<¥<R+a), (A1)
0 (r>R+a).
We first take a=0 and in that case drop the sub-
script and superscript so A(¥) =A¥7). The

Schrodinger equation for the s state then takes
the form

with
1 =kfm A u(r)dr' = kfRu(r' Yar! . (A3)

The solution which vanishes at 7 =0 has the form

u(¥)=A(1 - coskr) + B sinkr, (A4)
with
A=AE"T, (A5)

Substitution of (A4) with (A5) into (A3) gives the
relation between B and I: :

[1 - e"3(kR - sinkR)]I = B(1 - coskR) . (A6)
These results hold for < R, while for >R we
have

u(r)=C sin(kr + 6) . (A7)

du/ar?+ku -k~ 2AMI =0 , (A2) Matching logarithmic derivatives at ¥ =R yields
o sinkR(1 — coskR) +| (kR)® - o(kR ~ sinkR)] coskR
k =
cot(kR +9) o(1 — coskR)?+| (kR)® - o(kR — sinkR)| sinkR ’ (a8)
with or
= 3
O=ARE. (49) (kR)*= 0(kR — sinkR). (A13)

For a continuum bound state we must have C=0
whence (A4) and its derivative must vanish at 7
=R; a nontrivial solution requires coskR=1 or
k=2m/R with n a positive integer together with
B =0 which in turn requires that

1-Ak~3(2m)=0 . (A10)

Thus the condition on the potential parameters for
a CBS to exist takes the form

0=2R’=(kR)*/(2mn) = (2m)?, n=1,2,3,... , (All)

and for a given z the state occurs at the energy
E =k?=(2mm/R)?. Since for a bound state B=0, we
see from Eq. (A4) that #(0)=«'(0)=0. The wave
functions when #n=1 and 3 are shown in Figs. 3(a)
and 3(b). Had we not taken a to be zero, the treat-
ment would have been similar and the condition for
a CBS would still have been (A11) but the wave
function would now be identically zero over the in-
terval from 7 =0 to a; they would then have the
form for #=1 and 3 shown in Figs. 3(c) and 3(d).
We. now turn to the “spurious states” of Mulli-
gan et al. For these #(0)=%'(0)=0 but the condi-
tions for a CBS are not met. From (A4) these
conditions clearly require B=0 whence for a non-
trivial solution

1-Ak"3(kR - sinkR) =0 , (A12)

This equation has a solution for k for any ¢> 6,
One finds easily that the phase shift for this solu-
tion is given by

>
1

>
1

u(r) (Arbitrary units)

2

R
(a) r(Arbitrary units) (b)

a ) a+R a a+R
(c) (d)
FIG. 3. Then=1 (a,c) andn=3 (b,d) continuum
bound state solutions to the Schr¥dinger equation for
the separable potential given in Eq. (Al).
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=~ (kR)/2 (modm) . (A14)

Note that apart from the inequality 0=AR*> 6, no
relation between the parameters of the potential
need be satisfied for a spurious state to exist, and
any change in the parameters which does not re-
sult in a violation of the above inequality will only
change the energy at which the spurious state is
located. If we examine what happens in the situa-
tion where a# 0, we find that for spurious states
the solution has not a node but a nodal segment
from 0 to a on which the wave function vanishes.
We mention this to emphasize that the node-count-
ing analysis of Refs. 1 requires some elaboration
for special potentials of the type considered here.

It can further happen with a nonlocal potential
that there exist two linearly independent solutions
at a particular energy with one a CBS and the other
a spurious state. This will occur in the case of a
sum of two separable potentials of the form

Ulr, 7" )=2aR@)ARG" )+ MAR (1)AR (') |, (A15)
with
0<R<ag<a+R', R*R' . . (A16)

In this case one sees that for 2=2m/R and \R3
=(2m)? a CBS exists of the form

A(l -coskr), 0<¥<R
Ucps (V)= 0,

Y¥>R,

On the other hand, for the same value of #, 2

a17) -

spurious state exists of-the form
o, r<a

up,(r)={ A[1 —cosk(r —a)], a<r<a+R’ (Al8)

C sin(k7 + ), r>a+R'
with ‘
6=-kR'/2-ka (modn) , (A19)
C=2Asin(kR'/2) . (A20)

In this case there is an ambiguity in the rule of
Mulligan et al. as to how their rule for the ab-
solute phase shift is to be applied, while Bolster-
1i’s rule would simply require an upward jump of
the phase shift by 7 at this energy.

Another case of interest is that in which one has
the same potential (A14) but now with R=R’ < a.
In this case again with 2=2m/R and AR®=(2m)?
there are now two linearly independent CBS’s.
For one of these -

u,(r)=A,(1 ~coskr) (A21)

over the interval 0< < R and zero elsewhere;
the second has the form

u,(r)=A,[1-cosk(r -a)], - (A22)

over the interval a< 7< a+R and zero elsewhere.
The two are clearly orthogonal to one another and
there exists a regular solution as well which is
orthogonal to both.

B, Mulligan, L. G. Arnold, B, Bagchi, and T. O.
Krause, Phys. Rev. C 13, 2131 (1976); B. Bagchi,

T. O. Krause, and B. Mulligan, Phys. Rev. C 15, 1623
(1977).

%3. A. Lock, Nucl. Phys. A298, 253 (1978).

M. Bander, Phys. Rev. 138, B322 (1965); P. Beregi,
I. Lovas, and J, Revai, Ann, Phys. (N.Y.) 61, 57
(1970); P. Beregi, Lett. Nuovo Cimento 2, 233 (1971).

%y, Yamaguchi, Phys. Rev. 95, 1628 (1954).

SE. P. Wigner, Phys. Rev. 98, 145 (1955).

®L. L. Foldy and J. A. Lock, Phys. Rev. D 17, 3065

(1978).

™. Coz, L. G. Arnold, and A. D, MacKellar, Ann,

- Phys. (N.Y.) 59, 219 (1970); L. G. Arnold and A. D.
MacKellar, Phys. Rev. C 3, 1095 (1971).

®M. Bolsterli, Phys. Rev. 182, 1095 (1969).

P, Beregi, Nucl. Phys. A206, 217 (1973).

10M, Gourdin and A. Maxrtin, Nuovo Cimento 6, 757
(1957).

M. L. Goldberger and K. M. Watson, Collision The-
ory (Wiley, New York, 1964), Sec. 11.



