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A simple method of imposing orthogonality constraints upon the relevant bound and continuum waves

involved in the calculation of {p,m+) and other proton induced reactions is presented.

NUCLEAH REACTIONS Orthogonality relations for optical model and bound

nuclear wave functions.

Continuum proton (neutron) w'ave functions which
are solutions of an optical-model Hamiltonian are
generally not orthogonal to the bound proton (neu-
tron) wave functions having the same quantum
numbers. This problem has received much atten-
tion recently' and is still an outstanding problem.

One may consider the calculation of such reac-
tions as (P, m'), (P, y) and (p, d) among others. For
concreteness let us focus on the reaction
"C(P, w)"C. We consider the simplest case where
pion emission proceeds via a single nucleon pro-
cess. The proton, upon emitting a pion, becomes
a neutron which is captured into the ith bound
particle state of '3C. If the impinging proton were
not to feel a Coulomb force and if charge indepen-
dence were assumed, the proton distorted wave,
in principle, would have to be orthogonal to the
bound wave function of the neutron. In practice
this constraint is violated since the proton wave
is taken to be an eigenstate of a complex energy-
dependent optical-model Hamiltonian with an ener-
gy argument that lies in the continuum. The neu-
tron bound-state wave function, however, may be
considered to be an eigenstate of a generalized
(real) effective Hamiltonian. (One model for such
energy-dependent Hamiltonians may be obtained
from the projection operation reaction theory of
Feshbach. ') Since two different Hamiltonians
are used to define the continuum and bound waves,
it is clear that these are not orthogonal in gen-
eral.

Similar considerations apply for other reactions.
For example, if we consider the direct capture
process (P, y) the proton wave which would be ob-
tained from an optical-model calculation would not

generally be orthogonal to proton bound states
with the same quantum numbers.

The method we suggest below which has been
outlined and applied previously to other problems4
yields wave functions which have the correct or-
thogonality properties and also the correct phase
shifts. Specifically, the optical proton wave func-
tion will be orthogonal to the proton bound states.

Let
~ Q,.) represent the bound-state proton wave

functions having energy &,. obtained from an ap-
propriate model Hamiltonian. (For example, Q,.)
may be the bound-state eigenfunctions of a Woods-
Saxon potential. ) Define projection operators

and

(2)

The proton continuum wave
~

tj
"(X)) satisfies the
kequation

H„,(x, e )
~

g".(A.)) = e.
~
g"(z)),

where e"„=k'/2p, . Here A. stands for the strengths
and ranges of the phenomenological potentials
used in the construction of H„,(A., e„"). Let
us agree that A. represents the set of parameters
which produce the best fit to the elastic data. It
should be clear that in general

(p,.
~

0|-',
"(z)) w 0.

We now outline a procedure which may be used
to obtain continuum wave functions that are ortho-
gonal to the bound states. We introduce a new
optical model Hamiltonian
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H(l, ~ ) ~t"(~))= « ~i"(~)), (6)

or

(«-, -H., (~ «,)) li'- (~»

H(A&«) = Q «(P(+ (1 —P)H, ~((X& «) (1-P).

The scattering states of H(X, «) will be clearly
orthogonal to the

~
P,). The new scattering states

(~)& satisfy

from H(X, «-„) may no longer fit the elastic data,
but for any choice of A. we have

(P, ~(t'"(A.)) =0. (»)

We are now free to readjust the parameter set X

such that the ~g"(X)) have the correct asymptotic
behavior. We may denote the new parameter set
as X and the new wave functions as

~
g '(X)).

In conclusion, we see that we may obtain con-
tinuum wave functions

~

(t&(-„'(X)) which are solu-
tions of H(X, «) and which have the desired prop-
erty,

Equation (i) may be solved easily to yield

~
c'„'(~)&=

I
e'„'(~))

-G &;(&(~, «)PM '(~, «,)P ~

q'„'(~)), (6)

where

G,(;I(A., «) = [« —H„,(X, «) + iq] '

and the matrix All is defined such that

(e((M I e,& =-(e(IG.':((~, «) ( e,&. (10)

We now note that the scattering amplitude obtained

(4 ( ~

4'-„'(~)& = o (12)
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These techniques may be extended to apply to
wave functions obtained from relativistic optical-
model Hamiltonians if the appropriate relativistic
models are also used to obtain the bound-state
wave functions. This method also has applications
to other problems such as the proper description
of (y, p), (e, e'p), and stripping reactions.
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