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Effect of number conservation on high spin states and nuclear deformation
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The high spin yrast states up to J = 20+ in "" ' Er are studied in the framework of microscopic
variatiomal approach by employing the Hamiltonian with quadrupole plus pairing interactions. The effect of
number conservation on deformation, calculated energy spectra and-B(E2) values is investigated. It is
observed that the results are quite sensitive to the number conservation. The results of the calculations are in

better agreement with the corresponding experimental data as compared to those obtained without number
conservation.

NUCLEAR STRUCTURE Er Isotopes: calculated energy spectra, quadrupole
moments and B(E2). Variation after projection with number conservation in

each state.

I. INTRODUCTION

The transfer of large angular momentum and

energy to the resulting final nucleus in the heavy
ion reaction has made it possible to investigate
high spin states in nuclei. A large amount of
experimental data on the excitation energies and
the B(E2) values for the cascading y transitions
from these high spin states were accumulated
during the last few years. The earlier macro-
scopic calculations' based on the Bohr-Mottelson
collective model gave a qualitative explanation of
the observed energy spacings. The observed
deviation from the rotational character of the
energy spectra was predicted earlier by Mottel-
son and Valatin2 'as a result of a phase transition
caused by the vanishing of the pairing gap above a
certain critical value of the angular momentum.
The deviation from the rotational spectrum was
also qualitatively explained in an alternative ap-
proach by Stephens and Simon in terms of a
band-crossing phenomenon in which the band
intersecting the ground band becomes the yrast
band for high spin states. It is of interest to
gain an insight into the intrinsic nuclear struc-
ture of these high spin states. However, the
drawback of the 'phenomenological approaches is
that they require some relevant parameters to
be fitted for each nucleus in order to explain the
experimental data quantitatively. Some attempts
have been made recently to formulate the problem
of high spin spectroscopy using the many-body
variational methods with constraints. These
approaches resort to simplifying approximations
regarding angular momentum conservation leading

to errors which could be of the same order of
magnitude as the observed energy differences to
be explained. Moreover, within the framework
of these constrained variational calculations, 4

one cannot calculate the B(E2) values of the cas-
cading y transitions to test the validity of the
theory by comparison with the corresponding ex-
perimental values.

In spite of the attempts made during the last
few years, one has not yet succeeded in pre-
dicting the energy spectra of high spin states
with the same accuracy as in the case of low-
lying nuclear states using theoretical formalisms
with a minimum number of parameters. The
shell model, the collective model, and the pro-
jected Hartree-Fock formulation give a good ac-
count of the low-lying nuclear states. There have
been, so far, very few attempts'6 to explain the
spectroscopy of high spin states based on many-
body variational formalism with good angular mo-
mentum. This is obviously due to the fact that
such a collective phenomenon arising out of the
coherent dynamical behavior of many nucleons
is difficult to treat in a microscopic many-body
theory. In a variational formalism, however, it
is possible to devise reasonable approaches to
cope with the complexity of many-body systems
in a large configuration space. The success of
such calculations in quantitatively explaining the
observed energy spectra and B(E2) values would
enhance the confidence in variational projection
formalism. The projected Hartree- Fock- Bogolu-
bov (HFB) method is being used recently to under-
stand the structure of high spin states in nuclei.
Apart from the complications of angular momentum
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projection in a large configuration space, there
is yet another complication due to the number
projection from the variational HFB state . The
effect of number projection on the computed
energy spectra has been estimated by approxi-
mately evaluating the integral appearing in the
number projection calculation. This approximate
treatment, ' however, does not eliminate the
total mixing amplitude of all the numbers to a
desired accuracy in the projected wave function .
We had previously studiede the high spin states in
a few rare- earth nuclei in the variational projec-
tion approach without number projection. The
aim of this paper is to study the effect of number
conservation on the calculated energy spectra and
the B(E2) values. It is of vital interest to know
whether the number conservation improves the
quality of agreement between the theoretical and
experimental results ~

The theoretical formulation with the m athe m�-
ati al expressions re quir ed in the calculation of
energy, quadrupole moment, and B(E2) values
is given in Sec . II ~ The results obtained by ap-
plying this theory to the three nuclei ' ' Er
are discussed in Sec . III. The conclusions are
presented in Sec . IV .

configuration space .
%e consider the intrinsic variational wave func-

tion to be axially symmetric in view of the fact
that the nuclei under investigation are found ' ~ to
prefer axially symmetric equilibrium def orma-
tion. It may also be mentioned here that the non-
axial variational state introduces further. complex-
ities which would make the projection calculations
prohibitive in large configuration space . The
trial var iational wave function is taken to be the
good angular momentum state projected from the
intinsic BCS state 40(P, 4~, a„, X~, X„) of the A-
nucleon system . The deformation p, the pairing
gaps &, (for protons) and ~„(for neutrons), and
the chemical potentials X~ (for protons) and X„
(for neutrons) are the variational parameters for
each angular momentum state J. The chemical
potentials in any state J are determined such that
the number in the projected state is equal to the
actual number. The wave function 4~~(P, a~, a„, X~,

A.„) projected from the intrinsic state 40 is given
by

where P„o is the angular momentum projection
operator and

II. THEORETICAL FORMULATION

A. Expressions for energy, number, quadrupole moment

and 8(E2)

It is clear that the accurate calculation of the
excited states of heavier nuclei from the micro-
scopic many-body theory would require a large
number of nucleons to be treated dynamically in
a large configuration space . The computational
difficulties involved in performing such projected
H FB calculations can be somewhat reduced by
employing a simpler many-body Hamiltonian . In
this paper, we use the quadrupole plus pairing
interaction Hamiltonian whose parameters are
determined by Kumar and Baranger from their
study of equilibrium deformations of heavy nuclei:

II(a& +"&b&bi )I0)-

b'„=g(n~
I
c

I
z.) a'., (4)

It should be noted that the basis states are di-
vided into two sub sets that are connected by a
time- reversal operator T:

T
I

+& =(- 1)'.'- ".
I

The occupation probability v, =1 —N, is related
to the pairing gap b, and the chemical potential

The fe rmion operator b~~ corresponding to the
ith deformed single- particle state is obtained
from the spherical state operators at by the
tr ansf or mation

ff=pe-a'a- —l22Z(&l &'"
I
»(b I

&'"
I
p&a'-as'aw

——.
' Cg(- I)" " '" ~a' a' a a„,

where q
~ is the quadrupole operator and y and Q

are the strengths of the quadrupole and pairing
interactions, respectively . The subscript n in
Eq. (1) denotes all the quantum numbers (n, lj,m ) necessary for the specification of a
spherical single- particle state . The state cY is
connected to the state ot by a time reve rsal op-
erator. The sums in Eq. (1) run over the entire

where
I
n +) = In„ I,j,+m ). The transforma-

tion coefficients in Eq. (4) satisfy the relations

(o - I elf-) =(- 1)'- &- "-(a+ le Ii+),
CC =CC =1

whe re, C is the transpose of matrix C ~

The expectation value E of the Hamiltonian
in Eq. (1) with respect to the wave function in

Eq. (2) is obtained by expressing the projection
operator P„o in terms of the rotation operator
R(Q) corresponding to the rotation through Euler
angles A =(Qi f12 f13) . Thus,
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E'(p, ~„~„,j,, ~„)=I'/p',
where

(7) 2

q(Jj -Jj) = (2 —5„,)(J,0, 20~ Jjo)(2J,.+1)
.
y=

n'/2

& 'o(g)(q,"+q")(detW)' 'singdg.
0

and p is obtained from Eq. (8) by replacing &
with 1. The matrix elements (40~R~4, ) and

(@o~IIR~40), necessary for evaluating pj and j'zj,

are given by

(40
~

R
~

4 ) =(d tW)' (9)

&C, ~IfRIe, )

X (q02 +2q12 +2q22)
2

The matrix W in Eq. (9) is obtained in terms of
the transformation matrix of Eq. (4), the rotation
matrix D, and the diagonal matrices U and V
corresponding to the vacancy and occupation
probabilities in Eq. (2):

W=UCD CU+VCDCV.

The generalized density matrices appearing in
Eq. (10) can now be expressed as

p=l —UW 'UCD*C,

a =CD*CUW 'VCTC .
(12)

The quantities q and rj in Eq. (10) are given by

qi / (Vjsj+ 'Vj+ja)pj+ja t

D00(Q)(detW) j Q p, ,JfQ. (14)4~'p'

The summation in Eq. (14) over proton (neutron)
states gives the proton (neutron) number Z (N ).
The expression for the B(E2; J,.-Jj) value can also
be easily derived and is given by

Ij(E2;J,-Jj) = ' (P'*P'j} '[q(J, -J,)j', --2J,-+1 (15)

where

The primes on the summations in Eqs. (10) and
(12) indicate that the summation is only over one
subset of states. The number of protons and the
neutrons N in the projected state are obtained by
evaluating the integral

Z (p, n, ~, A„, Xp, x„)

Here '(J;0, 20~ JjO) is the Clebsch-Gordan coeffi-
cient, and q" is given by Eq. (12).

B. Minimization procedure

The nuclear energies are calculated by mini-
mizing Ej in Eq. (7) by varying the parameters
P, b,&, b„, Aj, A.„for each angular momentum
state J. For each set of the values of Ig, ~~, and

6„, the chemical potentials X~ and A„occurring
in the definition of the U and V matrices are
varied so'as to yield the correct number Z of
protons and N of neutrons for each J. The
numbers Zj and Nj computed from Eq. (14) are
very sensitively dependent on A~ and A.„; conse-
quently, it is necessary to incorporate very fine
variations in A~ and X„ in the variational proce-.
dure so as to obtain the correct number in each
angular momentum state. In the calculations re-
ported in this paper, we have achieved an ac-
curacy up to the fourth decimal place in the num-
bers computed in each state J.

C. Renormalization procedure

The parameters X and G of the Hamiltonian of
Eq. (1) employed in the present calculations are
determined from the consideration of the intrinsic
states of the deformed nuclei in the region of in-
terest. The values of the parameters are esti-
mated by considering the configuration space of
two major shells and assuming an inert core with
Z=40 and %=70. The assumption of inert core
may need some modifications in connection with
the yrast states projected from the intrinsic
states of the nuclei. The simplest way to incor-
porate the effect of the neglected core on the pro-
jected energies is by renormalizing the calculated
energy spectrum. We achieve it by introducing
a, parameter, namely the moment of inertia 8„„
of the core. Since one is attempting to explain a
large amount of data, the introduction of an addi-
tional parameter is justified if it substantially
improves the agreement with the data. Besides,
the systematic behavior of the parameter may
also provide interesting information on the in-
trinsic structure of the nucleus. We assume
that the moment of inertia of the nucleus is the
sum of the moment of inertia of the core and that
of the outer nucleons. It is reasonable to assume
that the core moment of inertia is independent of
total angular momentum Z at least for a set of
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states, whereas the moment of inertia @„„cal-
culated by considering only the outer nucleons
would depend on J as deduced from the computed
energies E„„. Thus,

~ = S'
Eerie= g

~(J'+I) (1
calc

The corrected or normalized energy is then
given by

h I(J+1)
(17)

~J z, J
EJ EcalcEcore
Enorm EJ

calc core
(18)

where EJ„,is obtained from an expression simi-
lar to that of Eq. (16) by replacing 8~„, with 8„„.
It is obvious from Eq. (18) that E~„=E~„,if
Ecore Eealc& - an Enorm core f Ecalc +core

III. RESULTS AND DISCUSSION

We have employed the nuclear Hamiltonian in
Eq. (1) with the strength parameters g and G
determined by Kumar and Baranger. The same
configuration space and the same inert core as
specified by them has been considered in the
present calculations. The theoretical formula-
tion of Sec. II is used to calculate the energy
spectra and the B(E2) values of three erbium
isotopes ' 60' 6 Er. In order to study the in-
fluence of number projection on the deformation
parameter P, pairing gaps A~, 6„, and the com-
puted energies, we have calculated the energy
spectra in each of the three nuclei for the follow-
ing three cases.

One can, alternatively, express the renormalized
energy as

In the first case, the energy spectra are pro-
jected from the intrinsic Hartree-BC3 state
corresponding to the equilibrium deformation

Pp with the relevant gap parameters 6& and

0 and the che mical potentials A» and A.„o dete r-
mined from the number conservation in the
intrinsic state. The wave function in this case
will be denoted by 4'~(Pp App 6 p X&p X p), In
the second case corresponding to the var iational
calculation without number conservation in the
projected state, the energy spectra are obtained
by minimizing the projected energy with respect
to the variations in P, A~, and b,„ for each an-
gular momentum state. The wave function. in
this case will be denoted by 4', (P, b~, b,„,A», A.„p) .
The third case corresponds to a full variational
calculation in which all the parameters P, b~,
6„, A&, and A.„are varied to obtain the minimum
in energy and to achieve number conservation in
each angular momentum state. The wave func-
tion in this case will be denoted by 4'f(P, b,~, a„,
X~, X„). The energy spectra obtained in the three
cases are exhibited in Table I.

It is observed from Table I that the projected
energy spectra obtained in the first case repro-
duce the low-lying levels with J~6 reasonably
well in all the three nuclei but fail to reproduce
the observed high spin states. This may be due
to the choice of the interaction parameters which
are fitted to reproduce the ground state and the
first excited state of these nuclei. It should also
be noted that in all the three nuclei (the variational
calculation with wave function 4, of the second
case yields a good agreement with the observed
energies for J ~ 6 and for J'&6) the agreement
is better than that obtained in the first case with
wave function 4, . This could be attributed to
the effect of large angular momentum on the de-

TABLE I. The calculated and experimental energy spectra are tabulated. The energies (in MeV) in the first four
columns of each nucleus are obtained from the intrinsic BCS state, the variational state without number conservation,
the variational state with number conservation, and the renormalization procedure, respectively.

'"Er
III IV Expt I

i60Er

III IV Expt I
162Er

III IV Expt

0.00 0.00
0.17 0.30
0.54 0 ~ 90
1.09 1.70
1.67 2.50
2.24 3.28
2.60 3.48
2.92 3.94
3.30 4.41
3.78 4.98
4.41 5.70

0 0.00 0.00
2 0.17 0.16
4 0.54 0.50
6 1.09 0.98
8 1.74 1.53

10 2,46 2.13
12 3.25 2.74
14 4.09 3.22
16 4.89 3.69
18 5.65 4.24
20 7.04 4.96

0.00
0.19
0.53
0.97
1.50
2.08
2.68
3.19
3.67
4.23
4.89

0.00 0.00
0.15 0.15
0.48 0.48
0.98 0.98
1.62 1.58
2.39 2.28
3.27 . 2.95
4.23 3.59
5.26 4.22
6.35 4.92
7.49 5.70

0.00
0.18
0.60
1.23
l.92
2.63
3.33
3.96
4.59
5.30
6.09

0.00 0.00
0.12 0.13
0.38 0.38
0.79 0.78
1.28 1.26
1.81 1.81
2.37 2.39
2.92 2.95
3.48 3.49
4.10 4.03
4.78

0.00
0.14
0.47
0.97
1.63
2.41
3.31
4,29
5.36
6.49
7.67

0.00
0.14
0.47
0.97
1.59
2.31
3.11
3.74
4.39
5.12
5.91

0.00
0.18
0.57-
1.13
1.81
2.56
3.33
3.94
4.58
5.30
6.09

0.00 0.00
0.11 O.11
0.34 0.35
0.69 0.69
1.13 1.14
1.65 1.63
2.21 2.15
2.72 2.70
3.27 3.23
3.90
4.55
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formation and pairing gaps.s. The values of the
deformation parameter P corresp '

gondin to the
E~ are plotted as a functionminimum of energy ar

of J in Fig.. 1 A similar plot of variation of
d L with angu1ar momentumpairing gaps Ap an „w

F 2. The variational calcula-J is displayed in Fig.
tions show a ~,th t P 6 and 4 corresponding to

r J ~6 are very close tothe minimum of energy for
d A obtained from the first type ofPp, Lh pp, an b.„p o

=10calculation. orF the states with J=B and J=
th deformation P and the pairing gap A~ fore e

a 6 fort d not change. The pairing gap
however, starts decreasing, in i-neutrons, ow

cating that it is softer than b~ and P for c ang
with respec o et t th angular momentum J. As
the angular momentum increreases further with
J&10, the neutron pairing gap b„goes to zero

idl with sudden changes in deformation.
However, the proton gap b,~ still chang yes ver
slightly up to J==20. This general feature is ob-
served in al11 the three nuclei under investigation.

The riear constancy of the proton pairing gaps
with angular momentum J 's '

p yi dis la ed in Fig.
2. It can be understood in view oof the fact that
the difference in the separation gyn ener between
the last occupie1 t upied and the first excited single-

ti le roton states decreases only very
ation

chan es from 0.24 to 0.32 in these erbium
ei re. This is shownlei under consideration here. inuc ei

F' 3 The important factor deci '
gidin thein Fig.

en thepairing gap is e seth paration energy between
last occupied and first excited single-particle
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understand qualitatively the behavior of pairing
gap 6„for neutrons, it should be noted from Fig.
1 that for J&12, the deformation P decreases at
least in ' ''6 Er. It should then be observed
from Fig. 3 that the separation between the last
occupied neutron state and the first excited
neutron state increases with the decrease of de-
formation. It is thus expected that the pairing
gap for neutrons decreases with an increase in
J beyond J&12. Besides this implicit dependence
on deformation, there would also be other angular
momentum dependence arising from the variation
after projection. This effect analogous to the
Mottelson- Valatin effect2 seems to be dominating
in all the three nuclei '5 ' 6 ' ~ Er. The neutron
pairing gaps approach zero very fast as seen
from Fig. 2. The importance of this effect is
explicitly demonstrated in the case of "BEr,
wherein A„vanishes in spite of a small separa-
tion energy at the Fermi level for large angular
momentum J~ 14.

It should be noted from Fig. 1 that the deforma-
tion P reduces for higher J in the case of varia-
tional calculations performed without number con-
servation. This behavior is contrary to the ex-
pectation that deformation would increase with the
angular momentum. It is one of the intentions of
the present investigations to find out whether this
unexpected behavior is a result of the noncon-
servation of the number of nucleons. The effect
of number conservation in each angular momentum
state on the deformation P is shown in Fig. 1. It
is clearly seen from Fig. 1 that the number con-
servation affects the deformation substantially.
In fact, the trend of variation of deformation p
with angular momentum J is just the opposite to
that observed when the number conservation is
not enforced. For a few low values of J, the
deformation P obtained from the calculations with
the wave functions 4'3~ with number conservation
is smaller than that obtained from the calculations
with wave functions 4, without number conserva-
tion. The deformation P now increases for higher
values of J& 4, in contrast to the results of cal-
culations without number conservation. This
trend is observed in all the three nuclei consid-
ered i.n the present work. At still higher values
of J&14, the deformation in '60""Er decreases
back to the equilibrium deformation value,
whereas it remains constant in ' Er for all the
higher J values. The present calculations thus
clearly indicate that the number conservation
significantly affects the deformation p. On the
other hand, the number conservation does not
affect the pairing gaps A~ and 6„. As seen from
the results shown in Fig. 2, the pairing gaps,
particularly the neutron gaps, have a very pro-

250—

200-

l50—

LLI

100—

50
2 4 6 8 IO I 2 I4 l6 I 8 20

FIG. 4. The calculated (dashed cureve) and the experi-
mental (solid curve) values of energy E (i)jJ (in keV)
are plotted as a function of angular momentum J. The
curves a, b, and c refer to ~ Er, INEr, and 8 Er re-
spectively.

nounced dependence on the angular momentum J.
It is, however, found from the present calcula-
tions that the pairing gaps are almost insensitive

, to the small fluctuations in the number of nucleons.
A similar behavior of deformation and pairing gaps
with and without number conservation was ob-
served' in the case of Yb isotopes.

The observed change in deformation due to
number conservation is expected to affect the
nuclear energy spectrum since the latter de-
pends sensitively on the deformation. The energy
spectra obtained from the present variational cal-
culations with and without number conservation
are shown in Table I. The energy spectra, as
seen from Table I, change significantly after
number conservation. The change, however, is
in the wrong direction. The energy spectra ob-
tained with number conservation are much more
spread out than those obtained without number
conservation, thus making the agreement with the
experimental spectra poorer. It is seen from
Table I that, in all the three nuclei, the energy
spectra calculated without number conservation
agree better with the experimental spectra as
compared to those calculated with number con-
servation. This unexpected result could be
attributed to the truncation of the configuration
space and the assumption of an inert core. The
effect of the "inert" core on the energy spectra
can be incorporated by introducing the para-
meter @„„tg account for the contribution-of core
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polarization to the nuclear moment of inertia.
The core polarization essentially renormalizes
the energy spectrum as indicated in Sec. II C.
The renormalized energies thus computed are
shown in Table I. It is seen that these renorma-
lized energy spectra are in excellent agreement
with the corresponding experimental spectra in
all the three nuclei under consideration. In
order to visualize the agreement between the cal-
culated and experimental energy spectra at a
glance, we have plotted E /Jas a f'unction of J
for the three erbium isotopes in Fig. 4. The
good agreement is quite evident from this figure
in which the energy is plotted on the keV scale.
This figure also brings out the salient physical
effect of a pronounced departure of the energy
spectra from the simple rotational structure at
around J= 12. It should be remarked here that
the renormalization in the case of energy spectra
obtained without number conservation does not
yield such an agreement with the experimental
spectra as obtained with number conservation.
The values of the moment of inertia 8„„ofthe
core employed in the renormalization calculations
are, in the units of h'/MeV, 9.10 for "8Er, 9.43
for '60Er, and 11.63 for '6 Er. It is, however,

l

observed that equally good agreement for all the
states cannot be obtained by the same value 8„„
=9.10 in the case of '5 Er. The repormalized
energies '5 Er shown in Table I are obtained with
8„„=9.10 for states with J(12 and with 8„„
=6.02 for states with J~ 12. It should be noted

that the moment of inertia increases with mass
number from 9.10 in Er to 11.63 in Er. The
sudden change in 8„„value from 9.10 to 6.02
indicates that the nuclear core state in "Er .
changes at J=12.

The quadrupole moment Q(J) and B(E2;J+2-'J)
values are calculated by employing the three
types of wave functions 4', , 42, and 4~ des-
cribed earlier. The core-polarization and trun-
.cation effects are simulated by ascribing the ef-
fective charges e~ =1.53e to the protons and e„
=0.53e to the neutrons. The computed B(E2)
values in the three nuclei under investigation are
shown in Table II. The agreement between the
calculated and the corresponding experimental
B(E2) values, as seen from Table II, is quite
good. It should be noted from Table II that the
B(F2;J+2-J) values for,J (8 obtained from
wave functions 4, projected from the intrinsic
BCS state C, (P, ; b~„A„„X~„A.„,) are identical
with those obtained from the variational wave
functions 4', without number conservation.
Calculations with the variational wave functions
4f with number conservation show that the B(E2)
values for J&4 are decreased, whereas those
for 4 (J&8 are almost unaffected. In the case
of higher spins J&10, the situation is different.
The B(E2) values calculated from the wave func-
tions 41 are larger than the corresponding values
obtained from variational wave functions 42~. The
number conservation does not change these values
in ~ Er as seen from the almost identical

TABLE II. The calculated and experimental B(E2;4+2 Jj values in units of e x10 cm
are tabulated. Experimental values are from Ref. 10. The theoretical results in the first
three columns of each nucleus are obtained with wave functions projected from the intrinsic
BCS state, the variational wave functions without number conservation, and the variational
wave functions with number conservation, respectively.

158Er

III Expt
160Er

III Expt
162Er

II

0 68.4 68.4 58.7

2 98.3 98.3 84.6

4 109.3 109.3 109.5

6 116.0 115.7 115.9

8 120,7 117.5 118.5

76.3+3'6

86.9

92.4 92.4 83.7

130.5 130.5 119.9

122.9+',4, 6 144.1

112.3 31'4 151.6

108 2+5544. 11156 5

144.1 132.6

152.3 152.3

156.9 156.9

10 125.0 105.0 121.7, &104.3 160.2 146.0 146.0

16 133.6 109.0 120.3 &68.7

18 135.0 110.0 121.3

167.7 148.7 148.7

169.5 149.5 149.5

12 128.2 106.5 119.2 78.4+15'1 163.1 . 146.0 146.2

14 130.7 107.9 120.3 131.1 34 5 165.7 147.7 147.7

86.4+"
0

138.6+6 15

102.9 8'3

103 2+2

1+55.6

94.9 94.4 87.6

135.1 135.1 125.5

149.3 149.3 149.3

158.9 156.7 156.9

161.8 161.4 161.4

165.6 152.3 162.8

168.6 154.5 152.5

171.0 153.9 153.9

173.2 154.9 154.9

175.0 155.8 155.8
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15 (J +1)(J+2)
32m (2J'+3)(2J'+5)

J
Q(J) =—

(2J+3) Qo ~

(19)

The calculated quadrupole moment Q(J) along
with the intrinsic quadrupole moments Qo ex-
tracted from Eq. (19) are displayed in Table III.
It is clearly seen from Table III that in all the
three erbium nuclei the values Qo(Q) extracted
from the quadrupole moment Q(J) agree very
well with the corresponding value Qo(E2) obtained
from the B(E2;J+2-J) value. In general, Q, (Q)
is slightly less than the corresponding Qo(E2)
value as seen from Table III. One can also ob-
serve from Table III a systematic trend in the
behavior of both Q0 values as deformation changes
for different angular momentum states. In' ' 8Er,
the deformation is 0.24 for J «2 and it changes to
0.2V for rest of the states up to J=20. The com-

values obtained with the wave functions 4 2~ and
4'3 for the two nuclei. In '5 Er, however, the
number conservation results in increasing the
B(E2) values for Z~ 10. These results on the
B(E2) values for the high spin states in '58'60'~62Er

indicate that the number conservation would af-
fect the calculated values only if it changes the
deformation.

In order to understand the connection between
the Bohr-Mottelson collective model and the
microscopic approach followed here, we have
calculated the intrinsic quadrupole moment Qo
from the B(E2;J+2-J) values as well as from
the Q(Z) values using the following relations
from the collective model:

puted Qo values are found to be (Table III) nearly
constant for all the states, except the J=2 state
for which Qo value is lower than those for the
rest of the states. This result is expected on the
basis of deformation for these states. The varia-
tion of QD with the deformation is also seen from
the tabulated values in two other isotopes,

'"'Er. In '"Er, Q, (Q) is nearly constant for
the states with J «6 and J&14 for which the de-
formation is the same (P =0.30); the Qo(Q) value
is slightly larger for the set of states with 8 «J
«12 for which the deformation is also larger
(P =0.32). Thus, the observed variation of Qo
with deformation and the near equality of Qo(Q)
and Qo(E2) values computed from the present
microscopic calculations indicates that the micro-
scopic approach brings out the basic features of
the Bohr-Mottelson collective model.

It is worthwhile to discuss the single-particle
orbits occupied by the last pair of nucleons in the
intrinsic wave function for each angular momen-
tum state. This may give some insight into the
phenomenological approach based on decoupling
of .bands where the Coriolis effects in high-j
single-particle orbits are assumed to play an

important role. In our microscopic approach,
however, it is difficult 'to separate the contribu-
tions arising from Coriolis effects, centrifugal
stretching, or the particle-core coupling. Never-
theless, they are all included in the microscopic
approach. One can look into the intrinsic wave
function to find its characteristic features that
could be compared with the phenomenological
approaches. Since we have not incorporated the
band mixing in the present microscopic calcula-
tions, we can only compare the structure of the
ground band in the two approaches. For this

TABLE III. The calculated static quadrupole moment Q(J) and the intrinsic quadrupole
moments Qp(Q) and Qp(E2) extracted from the computed Q(J) and B(E2) values respectively,
are tabulated. The tabulated quantities are in units of @x10 cm .

i58Er

-Q(~) Qp(Q) Q,(E2) -Q(J)
i6P Er ' 162Er

Qp(Q) Qp(E2) -Q(~) Q,(Q) Q,(E2)

2
4
6

10
12
14
16
18

1.55
2.13
2.34
2.46
2.53
2.58
2.62
2.65
2.68

5.41
5.85
5.84
5.83
5.83
5.81
5.79
5.80
5.80

5.45
5.92
5.95
5.93
5.96
5.86
5.86
5.84
5.85

1.85
2.35
2.58
2.85
2.95
3.01
2.91
2.94
2.96

6.47
6.46
6.46
6.77
6.77
6.77
6.44
6.43
6.42

6.50
6.51
6.81
6.83
6.53

. 6.49
6.50
6.49
6.49

1.89
2.50
2.74
2.89
2.98
3.03
2.97
3.00
3.02

6.61
6.86
6.86
6.86
6.85
6.83
6.57
6.56
6.54

6.64
6.91
6.92
6.93
6.89
6.63
6.63
6.63
6.63
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purpose, we study the highest occupied single-
particle orbits just below the Fermi levels
corresponding to the chemical potentials A~ and
A.„. As seen from Fig. 3, the last pair of protons
occupies the Q =2 orbit in which the largest
(= 99%%u~) amplitude is of the Oh«» single-particle
state. This is true for all the angular momen-
tum states in the three nuclei under consideration.
The situation in the case of neutrons is, however,
different in the three nuclei. In the case of high
spin states corresponding to P =0.27 in '5"Er, the
last pair of neutrons occupies the Q=~ orbit just
below X„and the largest amplitude in its wave
function is that of Oi/3/2 single-particle state.
This situation persists till the end of the energy
spectrum up to 8=20. In ' Er, the orbit oc-
cupied by the last neutron pair is Q =—from the
Oh( f /g single- particle state. This configuration
remains unchanged for all the angular momentum
states in '"Er. In the case of '"Er, the pair of
neutrons just below X„ is the Q= —,

' orbit in which
both Oh, &, and 1f,&, single-particle states are
almost equally mixed. However, the Q= —,

' orbit
very close to the Q=~ orbit is also substantially
occupied by the neutron pair and this Q=~ orbit
has the largest (90%%u~) amplitude from Oi„&, sin-
gle-particle state. Thus, the present micro-
scopic calculations indicate the presence of
single-particle orbitals with high j values near
the Fermi level in the intrinsic structure of the
high angular momentum states of these nuclei
as pointed out by Stephen and Simon. ' It should,
however, be stressed that the highest occupied
neutron state near the Fermi level is not neces-
sarily the Oi, 3/2 state.

IV. CONCLUSION

The microscopic formalism of variation after
projection is applied to study the high spin yrast
states in three erbium isotopes ' ' '6 Er. The
nuclear Hamiltonian employed in the calculations
consists of quadrupole plus pairing interactions.
The configuration-space comprises two major
shells for both protons and neutrons outside the
"inert"- core with Z=40 and %=70. The effect
of core polarization is simulated by ascribing
effective charges to the nucleons and by intro-
ducing moment of inertia of the core to renorma-
lize the energy spectra. The deformation P,
pairing gaps A~ and A„and the chemical potentials
A~ and X„are varied to obtain the energy mini-
mum and to conserve the number of protons and
neutrons in each angular momentum state. The
effect of number conservation on deformation,
pairing gaps, energy spectra and B(E2) values is
studied. It is found that the number conservation
significantly affects the deformation and the cal-
culated energy spectra. The renormalized
energy spectra obtained with number conservation
in each angular momentum state are in very good
agreement with the experimental energy spectra.
The computed B(E2) values are in good agreement
with the available experimental data. The intrin-
sic quadrupole moment Qo extracted from the
calculated quadrupole moments and the corres-
ponding B(E2) values is found to be nearly equal.
The variation of Q~ is correlated to the deforma-
tion parameter P. Thus, the present micro-
scopic approach preserves the basic features of
the Bohr-Mottelson collective model.
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