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Translationally invariant spectral function for Li
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A spectral energy function for the most tightly bound protons in the Li ground state is calculated. A

highly collective, or correlated motion wave function utilizing the translationally invariant hyperspherical

harmonic formalism is used rather than an independent particle shell model wave function. A local energy

approximation is made resulting in a calculated full width at half maximum of 10 MeV for the spectral
function. The mean removal energy calculated is 21 MeV. These. numbers generally agree with

experimentally deduced values.

NUCI EAR STRUCTURE; 6Li, K harmonics, Spectral Function, independent
particle energies.

I, INTRODUCTION where

We desire to calculate the spectral energy func-
tion for a proton bound in the most tightly bound
shell in the 'Li ground state. The spectral func-
tion can be measured from high energy (e, ep)'
or (p, 2p), ' (d, 'He), (p, d) reactions assuming a
one step impulse approximation is valid. The
(d, 'He) and (p, d) reactions have small cross sec-
tions' ' due to the absorption of particle flux that
occurs before and after the reaction takes place.
There is also a momentum mismatch that occurs
in these reactions that also reduces these cross
sections.

The spectral function can be measured experi-
mentally' "' in knock-out experiments such as
(p, 2p), or (e, ep), see Fig. l. One measures
the spectrum of the final state particles at fixed
scattering angles using a beam of definite fixed
energy. Then assuming the only energy transfer
occuring to take place between the incident pro-
jectile and the knocked out proton, there is a one
to one correlation between the spectrum of the
final state particles and the spectral energy func-
tion of the proton within the target nucleus. As-
suming an impulse reaction mechanism, the
cross section for (e, ep) or (p, 2p) reactions can
be written as a product of an appropriate two
body scattering cross section at a particular
energy and angle, times the spectral function
for the appropriate target nucleus. We now as-
sume the incident projectile is a proton.

Thus, the spectral function can be experimen-
tally determined' ""(measured) from the experi-
mental cross section as

(2)

gzJ = y *(K,r)g *(K,x)g~z(r)y'(Ko, ar)dr. (3)

Here Q= P —q, —q„ is the recoil momentum of
the residual nucleus; —,'(P, +Q) and —,'(q q) are
the relative momenta of the protons ip their com-
mon center of mass system before and after scat-
teringo &0 Ky and E, are the initial and final
proton momenta in the A+ I body system. The
spectral function measured depends on the validity
of the impulse approximation and on the calcula-
tion of the off-shell two body t matrix T. The
factor g~~ depends on knowledge of the correct
in- coming and out- going distorted scattering wave
functions X', as well as the bound state proton
wave function within the target nucleus. The bound
state wave function is usually' '" taken as eigen-
function for a Woods-Saxon potential fitted to an
assumed binding energy. The scattering wave
functions are taken as eigenfunctions'" to stan-
dard Woods-Saxon optical model potentials. One
must also calculate the off-shell two nucleon t
matrix in Eq. (2) to determine S(P, W) experi-
mentally. I=actorization of the knock-out cross
section in terms of the pp cross section does not
occur' in the presence of spin orbit nucleon
forces, so these must be neglected here. Then,
it has been shown' "that an accurate procedure
to estimate the off-shell f matrix (squared), is
to use the experimental (on-shell) cross section
in the final. energy prescription" times a calcu-
lated ratio (squared) of the off-shell f matrix
divided by the on-shell f. matrix determined by a
potential model. This ratio has been shown to be
almost potential model independent, and therefore
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or

and where

Here the total Hamiltonian of the nucleus would be

FIG. 1. The quasifree one step (e,e'p) reaction.

an appropriate way to describe the off-shell be-
havior of the required t matrix. Thus, subject
to experimental errors, uncertainties in the
scattering, and bound state wave functions, and
the validity of the impulse approximation, one
can experimentally measure the spectral function
for a bound proton in a nucleus. As such, the
spectral energy function is a very interesting
function.

The spectral energy function tells the probability
that a nucleon in a given quantum state in a nu-
cleus has a particular bound energy. For a two
body system, the spectral energy function has a

function energy dependence. For systems of
three or more interacting nucleons, the spectral
function for a given nucleon is continuous smooth
(non-5) function of energy. The spectral energy
function of bound protons within a nucleus is also
a very interesting quantity to calculate, as it pro-
vides a separate and distinct test for two nucleon
potentials appropriate for bound states. This
test is separate and distinct from calculations"
of the spectrum of bound states for a nucleus.

The simple shell model predicts a spectral
energy function defined as

S„(E)= $*6(E—H„)gd7',

where P is a Slater determinant product wave
function and d7' signifies integration over 3A spin,
isospin, and space coordinates. A is the number
of nucleons in the nucleus. The subscript zo de-
notes the set of quantum numbers (n,j,parity)
of the bound nucleon using normal shell model
nomenclature. When calculating the spectral
function the simplest shell model can be improved
on.""" However, the simplest shell model
takes the Hamiltonian for the knocked-out proton
to be a one body operator such as

jP AIl'"= V' '+ ~
2m

i=2

where

q= det ~e;(r,) ~/(A!)'~',

and 4 are the one body wave functions or orbitals
of the shell model.

This model obtains for the spectral function

(1O)

where n is the number of protons with the quan-
tum numbers labeled by m. Thus, the spectral
energy function has a 5 function energy depen-
dence in the simple shell model, just as in the
two body system. This energy dependence stems
from the Hamiltonian and wave function chosen
for the nucleus, see Eqs. (8), (9). Experimentally,
shell structure peaks are seen'" ' " in the spec-
tral energy function, but not of the zero width
variety, as predicted by the simple. shell model.
Large widths are deduced for the deeply bound
protons.

One can go beyond the simple shell model by
using a better Hamiltonian, such as a Hamiltonian
that includes two body forces, for example:

@2 A

a, = Q v„'+ Q V,,(y;,). (11)
g=l

One can calculate the spectral energy function
using this Hamiltonian and a shell model wave
function. The resulting spectral energy function
will not have a 5 function energy dependence if
A is greater than 2. This occurs because-the
product shell model wave function is not an eigen-
function of the operator inside the 6 function of
Eq. (4). The widths of the spectral energy func-
tion peaks calculated are smaller than experiment.

For C and ~ 0, the effects of residual inter-
actions in the independent particle shell model
spectral function have been invisioned by Mougey"
and studied by Gross and Lipperheide, ' Wille,
Gross, and Lipperheide, '~ Wille and Lipperheide, '
and by Faessler, Kusuno, and Strobel. " There
it was difficult to calculate a spectral function
energy dependence that agreed with experiment
partially because the direct coupling from a resi-
dual interaction connecting continuum states to the
bound states had to be neglected. One particle-two
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hole and two particle-three hole configurations
relative to the target wave function were included
in addition to the one hole configuration. Later
target correlations and core or residual nucleus
correlations both were considered. Best agree-
ment with experiment was obtained' ' for a "C
target, by adjusting the s, (, single particle bind-
ing energy (to 3V.3 MeV} to more nearly represent
the mean removal energy. All these calculations
must overcome the uncertainties in the residual
interaction to be used. Its parameters are gen-
erally determined by fitting excitation energies
of states that do not involve deep lying holes.

For deep lying hole states in highly excited
residual nuclei, the hole state is not an eigen-
function of the residual nucleus. The single par-
ticle energies of the independent particle shell
for these states are perhaps not well determined
from other considerations. For instance, finding
the s,&, eigenenergy for a Woods-Saxon potential
parametrized to reproduce the sd shell may not
be all thai appropriate a procedure to follow.
Also the residual interaction deduced from low
excited states may require modification for states
involving deep holes, and may in fact be "large"
rather than weak. %e therefore seek to avoid
the calculation of eigenfunctions for deep lying
hole states.

Following Lipperheide, "we write the spectral
function as

nucleon problem, possibly with residual interac-
tions, in addition to an assumed set of single
particle discrete quantum numbers. %e use a
translationally invariant wave function for a 'Li
target. Thus, we avoid the assumption of aver-
aged single particle energies inherent in the shell
model and calculate a spectral energy function
without a 6 functioned energy dependence. The 6
functioned energy dependence of the spectral
function is not an approximation for a, deuteron,
or two body target nucleus, where proper treat-
ment of the center of mass motion requires 2.22
MeV of energy to be transferred into the deuteron
to get a proton out. The 5 function energy depen-
dence of the spectral function had to be relaxed
by Mougey" to approximate the experimental
spectral function for deep lying hole states in

C, "Si, ' Ca, and "¹i.A similar approxima-
tion was made earlier" for "C, 'Li, and 'Li,
where the 6 function dependence was replaced
by a sum of Gaussians with suitably parametrized
widths, strengths, and central energies.

These approximations were utilized to fit the
data without doing the extremely taxing job of
calculating the energy dependence of the spectral
function. The spectral function has been ca,lcu-
lated for a 'He target by Dieperink et al.' There
a 'He translationally invariant ground state wave
function was used that was calculated" "using
the Faddeev three body formalism with Reid soft
core potentials. This calculated spectral function

where

S„„.(W}=(I/r ~ct,'6(W+a- W~}a„~y) ~ (13) S(k.w)(fm )

pre are here willing to approximate the g„(p) as
the 'Li bound state independent particle shell
model eigenfunctions in momentum space. But
in evaluating S„„,(W), we will not make the inde-
pendent particle shell model with residual inter-
action approximation which assumes independent
particle binding energies. Instead, we use direct-
ly a translationally invariant wave function deter-
mined by solving the 6 nucleon bound state Schro-
dinger equation with the center of mass motion
properly treated by using hyperspherical coordi-
nates. In 'I i we only solve for a diagonal S„~(W),
that is for v' = @=os,&2 state with certain approxi-
mations, but we do avoid the independent particle
shell model approximation. Note that single
particle refers to the discrete quantum numbers
of a given nucleon bound state, and is different
from the independent particle implications. By
independent particle, we mean an independent
particle motion shell model solution to the bound

k(t )

FIG. 2. The 3He spectral function from Ref. 26 as a
function of K, the momentum of the residual bvo nucleon
momentum and the separation energy W. The dashed
curve corresponds to d+p breakup of 3He. The dotted
curve is a harmonic oscillator model of that two body
breakup.
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is shown in Fig. 2. Note the logarithmic vertical
scale. We see the separation of the energy and
momentum dependence into separate factors is
approximately valid. Exact spectral function
calculations for heavier nuclei have not been
available. Here a non-5 function spectral func-
tion for 'Li will be calculated.

The rest of this paper is organized as follows.
In the next section the details of the hyperspheri-
cal harmonic solution are spelled out. Then the
calculation of the spectral function is detailed.
Finally, the calculated spectral function is com-
'pared to experiment and our results are sum-
marized.

II. THEORY AND RESULTS

We will calculate a spectral energy function
for v=0s~/, protons in the 'Li ground state (OT'
= 1'0). We use a six body wave function that has
previously been obtained4' for this state via a
hyperspherical expansion. 4' This wave function
has assumed a full s shell of 4 nucleons, , and 2

nucleons in the p shell. The two nucleon potential
used i8 a version of the Sprung and de Tourreil
supersoft core potential, ' that is finite every-
where, including the origin. The version used4' "
predicts a 4% D state probability for the deuteron.
Complete details of the hyperspherical- method
are available elsewhere. """ The ground state
wave function for 'Li can be expanded as

(p) y (Q)/p(3A-4)/2

ka

where the I'„(Q) are hyperharmonic polynomials.
The hyperradius p is defined by

(14)

p' — r r' (15)
f&j

with Q denoting all the rest (14) of the coordinates.
The X„(p) satisfy a set of coupled differential
equations

K= g (2&+I), , (18)

and then L is given by

I =K+8(A —2)/2=K+6.

The configurations considered ' have K=-2, the
minimum value for this nucleus. The summand
and subscript a, in Eq. (14) denote all the other
quantum numbers of the configuration that con-
tribute to the J"T=1'0 ground state. The differ-
ential equations, Eq. (16), were solved using
bound state boundary conditions and yielded a
binding energy of 31.8 MeV and a root mean
square radius of 2.2 fm compared to 2.53 fm
experimentally. The hyperradial dependence

x„(p) calculated resembled

x(p) = &p'e (20)

n' =
~

2IE/I'
~

.
The calculation for the ground state wave func-
tion g has assumed the infinite sum over K, Eq.
(14), is dominated by the first terms, those with
K=2. Terms with higher K were neglected. We
assume this approximate wave function is ade-
quate for purposes of calculating the spectral
energy function for l =0 nucleons, and in what
follows drop the ka subscripts on I'„(Q) and

x„(p)~

Now one splits the Hamiltonian into two parts

(22)H=A„+B„,

where (g ~A„~)t)) is the energy of the nucleon with
quantum numbers specified by v while it is in
the 'Li ground state, and ((t ~B„I)) is the energy
of the core (c} of all the rest of the nucleons,
not in state v.

A„and B„are both 6 body operators. If we
could solve

with a peak at p equalling 5 fm. In Eq. (20}, o, is
defined as

, x)),—,x),„(p) + (~)„'(p) —&lx)),(p)
-I d' I,(I.+ 1)
2' dp2 p 01

A„y„=E„y„ (28)

(24)
a'a'sea

where TV~'; is the hyperspherical angular average
of the potential

A

W;{p)=fdQYq, (G) g Y,&(r,&)Y~(Q,). ,
f&j

One assigns a set of quantum numbers n, l, j,
j,~, to each nucleon, using notation paralleling
the harmonic oscillator shell model, from which
one can calculate

one could proceed in a traditional quantum mech-
anics manner. " That is, if we solve for the eigen-
functions and eigenvalues of A.„or B„, and in what
follows we discuss A„, preferring to discuss a
bound nucleon46 to g, bound core, . then we could
calculate

or
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(26)

s,„(w)=&yi5(w A„)iq& (2V)

Likewise, the spectral energy function would be

+,(p) = dnY*(n)A. Y(n)x(p)/x(p)

One has to solve Eq. (36) for p as a function of W.
These solutions we identify as

OI' p. =(F. ')(w). (38)

(28)s (w)=g &q~y„&5(w E„)&y„~y&.
n

The difficulty is that the (t)„or (j)„' are difficult
eigenfunctions to obtain in a 6 body frame of
coordinates. Also the overlap integrals &(j)„~(t)&

are difficult to do if one does not make an inde-
pendent particle shell model approximation. In-
stead the utilizing Eqs. (23)—(29) we take

We note that x(p), while not a constant, never
changes sign so is in some sense smooth. Another
way to get Eqs. (34)-(36) is to start from Eq. (2V)
and assume that A„admits to a power series ex-
pansion. Then the 6 function can be written in ex-
ponential form, so Eq. (2V) becomes

s„„(w)= 2, x(p) Y*(n)e*" ""'x(p)Y(n)dpdn«1

(39)

&.Q ~A. ~~&=F,(p, n},(,) Y(n}, (29)

where E„(p, n) is a local function of p and of Q.
This leads to two similar methods for determining
the spectral energy function, the approximations
depending on the order of integration (p, n). In
general using Eq. (29) to evaluate Eq. (2V}, one
must solve

We separate the W exponential dependence to
obtain

s (w) = — dpx(p) dte"1

x dnY*(n) e ""Y(n)x(p).

We now define

(4o)

wx(p) Y(n) = F,(pn)x(p) Y(n). (30) (d+( p)X (p) — dn Y+(Q) (p dd&v Y(n) X(p) (41)

This provides a relationship

p=p, (n, w}

Expanding both sides of Eq. (41) in powers of t
and equating coefficients, we see we must have

to be used if one integrates over dp first, or a
relation

n=n, (p, w)

F(p) -=«Y*(n)A.Y(n)x(p)/x(p).

Substituting Eq. (41) into (40) we obtain

(42)

for 1 of the 3A —4 = 14 coordinates specified by
0, if the integral dp is done last.

First integrating over dp, Eq. (2V) becomes OI'

s,.(w}= 2, dpx(p) «e" e *"'"x(p), (43)

s„„(w)= dnx*(p, )Y*(n)x(p,)Y(n)
Po OI'

s.„(w) = dpx(p)5(w- +(p))x(p), (44)

w F.(p) = 0,
where

(36)

We ask that X(p,(n, W)) be smooth enough to ap-
proximate Eq. (33) by

fx(p.) J'

(w)

when p, is a suitably averaged value of po(n, W),
so that p, is a function of W. A suitably averaged
value would be found by considering

dQY" (A)WY(Q)Y(P) = J dOY*(())A Y(A)d(P)„
(35}

OI'

(45)
Jx p)f'

sz/sp ~. . .
"

This assumes implicitly that (E}"= fdnY*(n}
x (A„)"Y(n)X(p)/X(p), but this is not explicitly
used hereinafter. This would be true if 4' were
and eigenfunction of A.„.

We have written p= p, in Eq. (45) because on
comparing Eqs. (42)-(44) with Eqs. (36)-(3V) we
see the solution for the 5 function in Eq. (44) are
identical to those of Eqs. (36)-(38).

I et us compare Eq. (42) with Eq. (25}. Equation
(42) is just a hyperspherical angular average,
with a Y„(n)/X(p) weighting factor, of A, (j). Thus,
Eqs. (44) and (45) for the spectral function would
be exact if A„had a local hyperspherical repre-
sentation as assumed in Eq. (29), or if Id were
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6

Y(0) = Q T'o(r,.)C„„,
j=l

where the cofactor C»~& is itself an A.-1 by A-1
Slater determinant. The cofactor determinant has
the set of quantum numbers v, omitted and also
the coordinates r& omitted. The coordinates that
the cofactor does depend on are written in cyclic
order to avoid minus signs appearing in Eq. (46).
The expansion Eq. (46) is sufficient for the kinetic

(46)

an eigenfunction of A„. Equation (42) is evaluated
in the following way to obtain E(p).

Y(Q) has, ' as a factor, a Slater determinant
of single particle functions T "(y). The superscript
~ labels the single particle quantum numbers.
This Slater determinant is expanded in a cofactor
expansion of A. terms as

energy (one body part of the Hamiltonian), but the
cofactors must themselves be expanded into sec-
ond cofactors to handle the potential energy terms
as

5

C„„=gT *(r,)C„„„„
i=1

(47)

The C», ,„,,; is an A-2 by A-2 Slater determinant
that has the states v, and v, missing and the coor-
dinates rzr,' missing. The remaining coordinates
are written in a cyclic ordering.

Substituting Eqs. (46) and (47) into Y(Q) and
Y*(0) in Eq. (42) results in an analysis that paral-
lels the shell model reduction ' or see also Ref.
40 for the reduction in hyperspherical coordinates.
One finally obtains for I'(p)

5

s'„.(s)=x(s)(x;.s Jxs(sp )ds g('x "7'-, '()'„)x"'x '-x"x"')) x(s)l~x(s)l'
i=&

(46)

where

D(s p') =B's " '(s/7()' 'e'~/(nip' '") (49)

and the contour ds is along the imaginary s axis.
B is a normalization factor in the theory. ~'

The term T,,It(p) corresponds to taking the kin-
etic energy operator, using the cofactor expan-
sion Eq. (46) and keeping only those terms where
the derivatives involve coordinates that match
the coordinates of the particle with the quantum
numbers v, . Eventually we obtain

for 'Li(p, 2p) determined by Tyren et al.' for 460
MeV incident protons. Assuming the pp cross
section does not vary rapidly with the separation
energy for the kinematics measured (a symmetric
coplanar reaction with both protons detected at

.6— I

K =20-50 MeV/c

p

six s2dx d Xr„X= ' + —' —+s
p dp

where the s are complicated sums that depend on

vo, and the quantum numbers of the other nucleons.
Their values are given in the Appendix.

In Figs. 3-4 we compare the spectral function
calculated by Eq. (44) with various experimental
results. In Fig. 3 we compare our calculated
spectral energy factor to that obtained' from (e, ep)
reaction by Nakamura et al. Shown as a dotted
line is a Gaussian' whose parameters (width,
height, and central value) are fitted to best repro-
duce the experimental data. The solid curve,
calculated from. Eq. (44) under the assumption of
Eq. (29), agrees somewhat better with the experi-
mental data.

In Fig. 4 we show the differential cross section

yo

K =50-$0 MeV/c

p
bb

ops~

p
K=&00-ZGMeV/c

p
Qq

OP I &co oP p
0 0 20 30 40 50 60

W(eeV)

FIG. 3. Proton separation energy spectra for 6Li
from Nakamura et al. (Ref. 24), from 200 MeV (e, ep)
data. The dashed curves are Gaussians fitted to the S
shell knock-out peak. The solid curve is calculated here
with arbitrary normalization.
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I

20

0
X

~0-0 0

Q =37'
and theoretically calculated spectral energy func-
tions for 0s protons. in L'i, suggest that the shell
model assumption of independent particle motion
is inappropriate for deeply bound nucleons in a
nucleus.

Cl 0~ LLJ
U

0 20

0
(OI I

I I

30 40

W (MeV)

I

50

FIG. 4. The symmetric coplanar (p, 2p) cross section
for 460 MeV protons versus the separation energy W

from Tyren et al. (Ref. 14). The solid curve is the spec-
tral function calculated here normalized to the experi-
mental data, assuming the (p,p) free scattering is ap-
proximately constant.
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APPENDIX

The sums in Eq. (52) come from expanding inte-
grals of the type

3 l' from the incident beam), this cross section
should be proportional to the spectral function.
We show in Fig. 4 the spectral function from Eq.
(44} multiplied by an arbitrary factor to bring
about best agreement to the eye of the two curves.
The agreement is satisfactory.

In summary, we have calculated an approximate
spectral energy function for l = 0 nucleons in the
Li ground state without using the independent

particle shell model assumptions. In the simplest
independent particle shell model, single particle
energies E„are input (parameters) to the model,
and the spectral function energy dependence. is
$„„(W)= 6(W —E,).

Here we use a translationally invariant hyper-
spherical harmonic wave function and calculate
the spectral function energy dependence using a
local energy approximation, Eq. (42). The spec-
tral energy function calculated has no free para-
meters in it, once the bound state wave function
and the two nucleon interaction used to derive that
wave function are specified. The spectral function
calculated is in agreement with that derived
from experiment. The mean removal energy is
calculated for 'Li to be 21 MeV and the full width
at half maximum is about 10 MeV. The peak in
the spectral function resembles a Gaussian, but
only superficially.

The moderate agreement between experiment

dz(l z)" 'z'+'~'-

+ n(n+ 2)$",-'+ 2ns", -', (Al)

S &,
= S (2l+ 3) —(2n+ 1)S —2S

N-1
3I c b

where we defined

n = (3A —4) /2 = 7,
M =K+ 3 (A —2) /2 —l = L —l,

(A2)

(A3)

(A4)

(A5)

S, = P (-1)" /(2l+2r+3),
mt

y=p
m

, P (-1)'( /(2)rnrr5),
0m p

C = & (K+ 3(A —l)/2)/I" (l + 3/2) .
2m

(A6)

(A6)

(A'l)

where Z = y'/p' and the coordinate of the particle
with quantum numbers vp was r, i.e., a function
T"'(r). M is defined as

M =K+3(A —2)/2 —l,
where vp specifies /. l =0 for the spectral function
we calculate.

Then we obtain

$ = $+ (2l + 3)$)))' n(2l + 3}$+
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