Current densities in the projected Hartree-Fock approach. I. Magnetic moments

E. Moya de Guerra

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

S. Kowalski

Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 29 January 1979)

Static magnetic dipole moments of several axially symmetric rare earth nuclei are computed for the first time in the projected Hartree-Fock approximation using the density matrix expansion effective Hamiltonian. Good agreement with experiment is found for even-even nuclei. Results for odd-A nuclei show sensible discrepancies with known experimental values. These discrepancies are primarily attributed to the lack of spin polarization in the present Hartree-Fock wave functions. An estimate of spin polarization effects is also given.

NUCLEAR STRUCTURE ¹⁵⁹Tb, ¹⁵⁴Sm, ¹⁵⁶Gd, ¹⁶⁵Ho, ¹⁶⁶, ¹⁶⁷Er, ¹⁷⁴, ¹⁷⁶Yb, ¹⁷⁵Lu, ¹⁸⁰Hf, ¹⁸¹Ta; calculated static *M*1 moments. Angular momentum projected Hartree-Fock approximation.

I. INTRODUCTION

In the past few years there has been an increasing interest in the experimental determination of electromagnetic form factors of rotational rare earth nuclei and their interpretation in terms of the mean field approximation. Charge distributions of various doubly-even and odd-mass nuclei have been accurately measured,¹ and experiments to determine current distributions are in progress.² It has been shown^{1,3} that the predictions due to the angular momentum projected Hartree-Fock (PHF) approximation using the density matrix expansion (DME) effective Hamiltonian⁴ are in excellent agreement with experimental results for longitudinal form factors of elastic and inelastic transitions to the first few levels in the ground state rotational band.

A remaining question is whether this approximation will be as successful in describing nuclear current distributions. Comparison of a schematic calculation with experimental results^{5,6} on the transverse elastic form factor of ²⁵Mg indicates that this may be the case. Hartree-Fock computations of transverse form factors are now under way and will be reported in a subsequent publication. Since experimental data on transverse form factors of rare earth nuclei are not yet available, it seems appropriate to first test the above mentioned approximation against static magnetic moments which have been extensively measured. Furthermore, this test may serve as a guide in the detailed interpretation of these form factors.

Collective gyromagnetic ratios have been successfully calculated⁷ on the basis of the cranking model using pair-correlated Nilsson single particle wave functions. The cranking model yields an approximate solution of the variational equations which follow from variation of the energy after angular momentum projection⁸ and, in this sense, represents one step beyond the PHF approach. As shown in Ref. 5, the PHF approximation yields an expression for g_R that looks like an average of the self-consistent cranking formula. It is therefore mandatory to investigate to what extent this approximation—which avoids the ambiguities introduced by excitation energy denominators in previous⁷ calculations—explains the experimental results on collective g factors, before going any further in the computation of transverse form factors.

Results for doubly-even (¹⁵⁴Sm, ¹⁵⁶Gd, ¹⁶⁶Er, ¹⁷⁴Yb, ¹⁷⁶Yb, ¹⁸⁰Hf) and odd-mass (¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁷Er, ¹⁷⁵Lu, ¹⁸¹Ta) nuclei are presented and discussed in Sec. III. A detailed description of our results on $\langle J_{\perp}^2 \rangle$ (Ref. 5)—a crucial quantity in the present approximation—can be found in Sec. II. The selection of nuclei was motivated by recent results of electron scattering experiments at the Bates Linear Accelerator Center.

II. BRIEF SUMMARY OF THEORY AND DETAILS OF CALCULATIONS

In the PHF approach the magnetic moment of a state with angular momentum *I* in the ground state rotational band *K* is given, to first order⁵ in $1/\langle J_{\perp}^2 \rangle$, by the familiar⁹ expression

$$\mu_{I} = g_{R}I + (g_{K} - g_{R})\frac{K^{2}}{I+1} + \delta_{K,1/2}(-1)^{I+1/2}\frac{(I+\frac{1}{2})}{(I+1)\sqrt{2}} \left(\langle \phi_{K} | \mu_{1}^{1} | \phi_{-K} \rangle + O\left(\frac{1}{\langle J_{\perp}^{2} \rangle}\right) \right).$$
(1)

© 1979 The American Physical Society

20

357

The socalled collective and single particle gyromagnetic ratios are given in this approximation by

$$g_{R} = \langle \phi_{K} | (\tilde{\mu} \cdot \tilde{J})_{\perp} | \phi_{K} \rangle / \langle \phi_{K} | \tilde{J}_{\perp}^{2} | \phi_{K} \rangle$$
(2)

and

$$g_{K} = \frac{1}{K} \left(\langle \phi_{K} | \mu_{z} | \phi_{K} \rangle - \frac{\langle \phi_{K} | \mu_{z} \tilde{J}_{\perp}^{2} | \phi_{K} \rangle_{L}}{\langle J_{\perp}^{2} \rangle} \right)$$
$$\equiv g_{K}^{0} - \delta g_{K} , \qquad (3)$$

where ϕ_K is the intrinsic axially symmetric HF wave function, $\langle \rangle_L$ denotes linked diagrams, and $(\vec{A} \cdot \vec{B})_{\perp} = A_x B_x + A_y B_y$. As in the rotational approximation,⁹ g_R and g_K are to this order common constants of the rotational band. A small dependence of g_R and g_K on angular momentum appears through higher order terms and can be neglected for the purpose of this work.

The intrinsic wave functions ϕ_K have been determined using Negele's DME effective interaction, as described in Ref. 3. The generalization of this effective interaction to odd-A nuclei requires the addition of several current density dependent terms to the energy density. Up to now the generalization of the energy-density formalism to time reversal noninvariant systems has been restricted to the Skyrme force.¹⁰ In the present work the pair filling approximation¹¹ has instead been adopted. In this approximation the mean field has reflection symmetry with respect to the plane perpendicular to the symmetry axis, and therefore conjugate orbitals are degenerate in energy. In the presence of a single nucleon the mean field would no longer be R invariant,⁹ and the above mentioned degeneracy would be removed. Since single particle states with angular momentum components Ω and $-\Omega$ (with respect to the symmetry axis) contribute with opposite sign to g_K and with same sign to g_R [see Eqs. (2) and (3)], the absence of spin polarization of the core in our HF wave functions is expected to affect the g_K values more strongly.

Using the one body vector operator $\tilde{\mu}$, Eq. (2) reads

$$g_{R} = \frac{\langle \phi_{K} | J_{\perp}^{2} | \phi_{K} \rangle_{p}}{\langle J_{\perp}^{2} \rangle} + (g_{s}^{p} - 1) \frac{\langle \phi_{K} | (\mathbf{\hat{S}} \cdot \mathbf{\hat{J}}_{\perp} | \phi_{K} \rangle_{p}}{\langle J_{\perp}^{2} \rangle} + g_{s}^{n} \frac{\langle \phi_{K} | (\mathbf{\hat{S}} \cdot \mathbf{\hat{J}}_{\perp} | \phi_{K} \rangle_{n}}{\langle J_{\perp}^{2} \rangle} \equiv \frac{\langle J_{\perp}^{2} \rangle_{p}}{\langle J_{\perp}^{2} \rangle} + \text{s.c.}, \qquad (4)$$

where p and n indicate contributions from protons and neutrons, respectively, and $\langle J_{\perp}^2 \rangle$ is the sum of both contributions $\langle \langle J_{\perp}^2 \rangle = \langle J_{\perp}^2 \rangle_p + \langle J_{\perp}^2 \rangle_n$. Explicit expressions of $\langle (\vec{S} \cdot \vec{J})_{\perp} \rangle$ are given in the Appendix for even-even and odd-A nuclei, and similar expressions hold for $\langle J_{\perp}^2 \rangle$ replacing s_{\pm} by j_{\pm} . These equations are analogous to the definitions of W and T in Ref. 7, except for the energy denominators.

The first term of Eq. (3) gives the rotational⁹ model value

$$g_K^0 = g_I + (g_s - g_I) \frac{\langle K|s_s|K\rangle}{K}, \quad K \neq 0$$
(5)

and the second term (δg_K) gives a small projection correction to the zeroth order term (g_K^0) . Since we are mainly interested in the order of magnitude of this correction, it has been computed neglecting pairing effects,

$$\delta g_{K} = (g_{s} - g_{l}) \frac{2}{K \langle J_{\perp}^{2} \rangle} \left\{ \langle K | s_{z} j_{y}^{2} | K \rangle - \sum_{h} \langle K | s_{z} | h \rangle \langle h | j_{y}^{2} | K \rangle - 2 \sum_{h'} \left(\langle K | s_{z} j_{y} | h' \rangle - \sum_{h} \langle K | s_{z} | h \rangle \langle h | j_{y} | h' \rangle \right) \langle h' | j_{y} | K \rangle \right\}.$$
(6)

In Eqs. (5) and (6), g_s , (g_I) , and $|K\rangle$ are, respectively, the spin (orbital) g factor and the single particle HF state assigned to the odd nucleon, h and h' represent occupied states. As can be seen from the calculated results in Table I, δg_K gives a very small correction to g_K^0 and, consistent with our expansion, can be neglected.

Parameters describing the Hartree-Fock calculations are given in Table II. In the HF codes pairing is treated in a rather crude way.³ Constant energy gaps Δ_p , Δ_n , extracted from experimental mass differences, are used to solve the pairing equations for fixed particle numbers (Z, N)after each iteration. Since g_R is very sensitive to the pairing of protons relative to that of neutrons. one must be cautious when using the solutions of these equations to compute $g_{R^{\circ}}$. Consequently, we have done all the calculations with and without pairing (see Appendix).

 $\langle J_{\perp}^{2} \rangle$ of doubly-even rare earth nuclei have previously been calculated by several authors¹² using different forces and different methods. A comparison between different calculations of $\langle J_{\perp}^{2} \rangle$ can be found in the work of Vallieres *et al.*¹² The results presented here are in qualitative agreement with those, in spite of the fact that contributions from states with $\Omega = \pm \frac{1}{2}$ were overestimated in their former work.

In Table III we present in detail our results for $\langle J_{\perp}^2 \rangle_p$ and $\langle J_{\perp}^2 \rangle_n$ —as well as spin corrections (s.c.)

TABLE I. Single particle gyromagnetic ratios and first order corrections, as described in the text, are given in columns three and four. Column five summarizes experimental g_{K} values. References are as in the caption to Table IV. Column six gives the calculated values of g_s^{eff} in units of g_s^{free} , while column seven summarizes the experimental data on magnetic dipole moments for states in the ground state rotational band. The last two columns contain theoretical results on magnetic moments [from Eq. (1)] using $g_R^{(P)}$ values in Table IV and g_K values corresponding to g_s^{free} and g_s^{eff} (in column six).

	K^{π}	g_K^0	δg_K	g_{K}^{\exp}	$g_s^{\rm eff}/g_s^{\rm free}$	I	$\mu_I \mathrm{exp.}^{\mathrm{d}}$	$\mu_I^{\rm th}(g_s^{\rm free})$	$\mu_I^{\mathrm{th}}(g_{\mathbf{s}}^{\mathrm{eff}})$
				1.830(35) ^a		$I=\frac{3}{2}$	2.014(4)	2.39	1.89
$^{159}_{65}{ m Tb}$	$\frac{3}{2}^{+}$	2.39	0.010	1.788(43) ^b	~0.67	$I = \frac{5}{2}$	1.62(9)		
				1.88(5) ^c	•	c	or 2.32(13)	2.29	1.93
				$1.35(2)^{a}$		$I = \frac{7}{2}$	4.173(27)	4.64	4.07
¹⁶⁵ ₆₇ Ho	$\frac{7}{2}^{-}$	1.58	0.003	$1.329(27)^{b}$	~0.69				
				1.37(1) ^c	*	$I = \frac{9}{2}$	4.13(7)	4.52	4.05
				$-0.259(3)^{a}$		$I = \frac{7}{2}$	-0.566 5(24)	-0.92	-0.45
$^{167}_{68}{ m Er}$	$\frac{7}{2}^{+}$	-0.43	0.005	-0.249(9) ^b	~0.60				
		•		-0.259(3) ^c		$I = \frac{9}{2}$		-0.22	0.16
				0.729(4) ^a		$I = \frac{7}{2}$	2.237 99(6)	1.29	2.24
$^{175}_{71}$ Lu	$\frac{7}{2}^{+}$	0.37	0.006	0.716(6) ^b	~0.54	$I = \frac{9}{2}$	2.01(15) 1.52(51)	1.65	2.43
				0.726(3) ^c		$I = \frac{11}{2}$	2.0(7)	2.01	2.67
•		,		0.780(4) ^a		$I=\frac{7}{2}$	2.371(1) 2.370(1) 2.37(2)	1.3	2.39
¹⁸¹ 73Ta	$\frac{7}{2}^{+}$	0.37	0.004	$0.771(4)^{b}$ $0.78(1)^{c}$	~0.48				
				· · · ·	-	$I=\frac{9}{2}$	1.22(18) 1.98(63)	1.65	2.55
^a Reference 15		^b Reference 16.		^c Reference 14.		^d Reference 17.			

to g_R in Eq. (4)—with and without pairing, corresponding to Eqs. (A1) (given within parentheses) and (A2). As these two equations are related through closure, they give different results when using a truncated basis, and Eq. (A2) is more correct in this case. However, as shown in Table III, for these large basis (N=13) calculations the difference in the results is quite insignificant. This can easily be understood from the fact that the ratio [see Eq. (A3)] between $\Delta N = 2$ and $\Delta N = 0$ matrix elements of l_{+} is proportional to $\beta^{-}/\beta^{+} \sim 10^{-1}$, and contributions from higher shells (N>13) are small. A more drastic change in the value of $\langle J_{\perp}^2 \rangle$ is found between results corresponding to pairing (P) and no pairing (NP). Since $\langle J_{\perp}^2 \rangle$ ($(\vec{s} \cdot \vec{J})_{\perp}$) is proportional to the simultaneous probability of finding an unoccupied state B and an occupied state Aconnected by j_{\perp} , the value of $\langle J_{\perp}^2 \rangle$ (($\mathbf{\vec{S}} \cdot \mathbf{\vec{J}} \rangle_{\perp}$) for a given deformation tends to decrease with pairing. In our present calculations with $\Delta = \text{const}$, this effect is particularly strong when the level spacing around the Fermi level is much smaller than the

gap Δ . This is apparent from the negative terms $u_A v_A u_B v_B$ in Eqs. (A1) and (A2) which increase from 0 to $|\langle A|j_{\pm}|B\rangle|^2$ as $|\Delta/(e_A - \lambda)|^2$ goes from zero to $|\Delta/(e_A - \lambda)|^2 \gg 1$,

$$u_A v_A u_B v_B = \frac{1}{4} \{ [1 + (e_A - \lambda)^2 / \Delta^2] [1 + (e_B - \lambda)^2 / \Delta^2] \}^{-1/2}.$$
(7)

If these terms are neglected, as in the work of Flocard et al.,¹² one gets increasingly high values of $\langle J_{\perp}^2 \rangle$ with pairing. As an example, the omission of these terms in our calculation yields the results $\langle J_{\perp}^2 \rangle = 225.7$ for ¹⁶⁶Er and $\langle J_{\perp}^2 \rangle = 177.5$ for ¹⁸⁰Hf, which are, respectively, 59% and 38% larger than those in Table III. The decrease of $\langle J_{\perp}^2 \rangle$ with pairing is consistent¹³ with the corresponding decrease of the moment of inertia.7

As can be seen from Eq. (4), if pairing for protons is stronger than that for neutrons g_R will decrease with pairing. The fact that the level density around the Fermi level is usually larger for neutrons than for protons gives rise in the cases $\Delta_p \approx \Delta_n$ to an effective pairing for neutrons larger

TABLE II. Gap parameters, charge radius, and mass quadrupole moments for neutrons and protons as defined in Ref. 3. Upper and lower entries for each nucleus denote theoretical predictions for pairing and no pairing solutions.

Mit	Δ_p (MeV)	Δ_n (MeV)	<i>R_c</i> (fm)	Q_n (fm ²)	Q _p (fm ²)
¹⁵⁴ Sm	0.855	1.069	5,112	925.4	644.3
			5.108	938.8	647.7
156 Gd	0.963	1.07	5.141	895.5	647.4
			5.132	864.9	643.1
166 Er	0.915	0.903	5.257	1103.0	775.3
			5.251	1086.0	771.3
¹⁷⁴ Yb	0.884	0.68	5.324	1192.0	810.9
			5.324	1201.0	808.8
¹⁷⁶ Yb	1.18	0.59	5.316	1136.0	763.3
			5.315	1135.0	771.3
¹⁸⁰ Hf	1.02	0.85	5.363	1110.0	738.0
			5.355	1105.0	719.3
159 Tb	0.936	0.78	5.177	988.7	701.6
			5.176	990.7	716.4
¹⁶⁵ Ho	0.88	0.8	5.241	1108.0	766.4
			5.243	1089.0	760.8
167 Er	0.756	0.84	5.263	1133.0	784.2
			5,258	1149.0	779.7
¹⁷⁵ Lu	0.912	0.57	5.342	1202.0	832.7
			5,357	1208.0	848.0
¹⁸¹ Ta	0.806	0.62	5.369	1078.0	715.7
			5,359	1077.0	665.8

than that for protons, causing an increase in g_{R^*} . This is particularly the case in ¹⁵⁴Sm, ¹⁵⁶Gd, and ¹⁶⁶Er (see Table IV), where both $\langle J_{\perp}^2 \rangle_{\rho} / \langle J_{\perp}^2 \rangle$ and the spin correction (s.c.) increase. In the case of odd-A nuclei, generally, the contribution to $\langle J_{\perp}^2 \rangle$ ($(\vec{S} \cdot \vec{J})_{\perp}$) from the even group of nucleons decreases more with pairing than that from the odd group [see Eqs. (A1) and (A1') and Table III], and therefore one has $g_R^{(P)}$ (odd Z) > $g_R^{(P)}$ (odd N), as experimentally observed.

III. DISCUSSION OF RESULTS AND COMPARISON WITH EXPERIMENT

Results for collective and single particle gyromagnetic ratios are shown in Tables IV and I, respectively. Experimental g_R values for even-even nuclei are from magnetic moments of first 2⁺ states in the compilation by Grodzins.¹⁴ For a more extensive tabulation see Refs. 7, 17, and references therein.

For odd-A nuclei with $K > \frac{1}{2}$, experimental g_R and g_K values have been extracted from magnetic moments of ground states and M1 transition probabilities.¹⁴⁻¹⁶ It should be pointed out that again, to first order in $1/\langle J_{\perp}^2 \rangle$, M1 transition probabilities in the PHF approach are given by the rotational⁹ model expression,

$$B(M1; IK - I \pm 1K) = \left(\frac{e\hbar}{2Mc}\right)^2 \frac{3}{4\pi} \langle IK10 | I \pm 1K \rangle^2$$
$$\times (Kg_K - Kg_R)^2, \quad K > \frac{1}{2},$$

with g_R , g_K as given by Eqs. (2) and (3), respectively, and the usual analysis⁹ for extracting g_R ,

TABLE III. Contributions to $\langle J_{\perp}^2 \rangle$ from protons and neutrons and spin correction (s.c.) to g_R as described in the text. The notation (P) and (NP) stands for pairing and no pairing. Entries within parentheses correspond to results from Eqs. (A1) or (A1').

	$\langle J_{\perp}^{\ 2} \rangle_{p}^{\ (\mathrm{P})}$	$\langle J_{\perp}^{\ 2} \rangle_{p}^{\ (\mathrm{NP})}$	$\langle J_{\perp}^{\ 2} \rangle_n^{(\mathrm{P})}$	$\langle J_{\perp}^{2} \rangle_{n}^{(\mathrm{NP})}$	s.c. ^(P)	s.c. ^(NP)	
¹⁵⁴ Sm	58.48	72.12	73,99	107.5	0.0033	-0.0155	
62	(58.10)	(71.87)	(73.15)	(107.1)	(0.0033)	(-0.0156)	
156Gd	52.60	68.78	67.12	101.6	0.0037	-0.0127	
04	(52.18)	(68.54)	(66.34)	(101.2)	(0.0037)	(-0.0128)	
166Er	58.74	69.74	83.14	111.7	-0.0041	-0.0228	
00	(58.29)	(69.46)	(82.43)	(111.3)	(-0.0043)	(-0.0229)	
¹⁷⁴ Yb	59.54	67.05	78.26	107.3	-0.0097	-0.0101	
10	(59.07)	(66.73)	(77.27)	(106.8)	(-0.0099)	(-0.0102)	
$^{176}_{70}$ Yb	57.06	65.20	92.96	98.89	-0.0199	-0.0182	
10	(56.30)	(64.66)	(91.71)	(97.78)	(-0.0202)	(-0.0183)	
$^{180}_{72}$ Hf	50.08	56.40	78.11	98.10	-0.0117	-0.0188	
	(49.54)	(56.11)	(77.34)	(97.59)	(-0.0118)	(-0.0189)	
¹⁵⁹ ₆₅ Tb	58.19	71.41	84.25	108.6	-0.0031	-0.0136	
	(57.75)	(71.13)	(83.6)	(108.2)	(-0.0033)	(-0.0137)	
¹⁶⁵ 67Ho	67.18	68.33	86.93	112.0	0.0046	-0.0258	
•••	(66.78)	(68.03)	(86.26)	(111.6)	(0.0047)	(-0.0260)	
$^{167}_{68}$ Er	62.05	70.16	116.37	121.2	-0.0231	-0.0266	
	(61.65)	(69.87)	(115.67)	(120.7)	(-0.0232)	(-0.0266)	
$^{175}_{71}$ Lu	59.43	84.63	95.63	107.7	-0.0190	-0.0260	
•-	(58,92)	(84.28)	(94.99)	(107.1)	(-0.0192)	(-0.0261)	
¹⁸¹ 73Ta	48.80	53.34	80.83	95.92	-0.0157	-0.0017	
	(48,39)	(53.02)	(80,20)	95.44	(-0.0158)	(-0.0017)	

 g_K remains valid. As an alternative, one could use measured magnetic moments of excited states to determine g_R, g_K . However, in most cases the large uncertainty in the experimental results (see

column seven of Table I) invalidates this procedure. For even-even nuclei, theoretical results corresponding to no pairing $(g_R^{\rm NP})$ are in rather good agreement with experiment, as shown in Table IV and Fig. 1. It is interesting to note that, despite the different theoretical approaches, these results agree quite well with those in the work of Prior *et al.*⁷ The latter are given for comparison in the last two columns of Table IV. Except in the case of ¹⁷⁶Yb, for which $\Delta_p \simeq 2\Delta_n$, our pairing results $(g_R^{\rm P})$ are larger and tend to deviate more from

 $(g_R^{(P)})$ are larger and tend to deviate more from experiment. As discussed in the previous section, this is due to the fact that the level density around the Fermi level is larger for neutrons than for protons while $\Delta_p \approx \Delta_n$. Varying Δ_p and Δ_n within the experimental uncertainties may change $g_R^{(P)}$ as much as 10-20%. Such a procedure is rather ambiguous, and a state dependent gap treatment of pairing is preferred. However, the wide discrepancies between experimental results on g_R do not justify such detailed calculations.

For odd-A nuclei, theoretical g_R values vary more smoothly with A than experimental ones (see Table IV and Fig. 2). Although for odd-Z nuclei theoretical results corresponding to pairing agree rather well with experiment, there is a factor of ~2 between theoretical and experimental values in the case of ¹⁶⁷Er (odd N). In contrast to the cranking formula,⁷ our theoretical approach does not seem to explain in a quantitative way the observed large differences between collective

FIG. 1. Comparison between theoretical and experimental g_R values in Table IV of doubly-even nuclei. Theoretical results corresponding to pairing and no pairing are represented by squares and triangles, respectively.

gyromagnetic ratios of odd-Z and odd-N nuclei. This may be due to the fact that the cranking formula for the moment of inertia⁷ is more sensitive to the odd nucleon than $\langle J_{\perp}^2 \rangle$, and again a better treatment of pairing would be required. However, when comparing the results of Prior *et al.*⁷ to ours, one should also take into account that these results correspond to $g_s = 0.6 g_s^{\text{free}}$, whereas ours correspond to $g_s = g_s^{\text{free}}$ as well as to different Δ_p / Δ_n ratios. Note that pairing effects are as in eveneven nuclei, except for the contributions from the odd nucleon [see Eq. (A1')].

Our results for single particle gyromagnetic ratios are similar to those using Nilsson wave functions.⁹ The projection correction δg_K [see Table I and Eq. (3)] is less than 2% in all cases and does not account for the large deviations from experimental g_K values. As discussed in the previous section, these deviations may be accounted for in terms of spin polarization of the core.¹⁶ An estimate⁹ of this effect is given in column six of Table I. The effective values of the spin g factor for the odd nucleon (g_s^{eff}) —for which the single particle HF wave functions used to evaluate g_K^0 give the observed g_K values—are close to but somewhat smaller than those in Ref. 9, which correspond to Nilsson wave functions.

Theoretical magnetic moments for the first states of the ground state rotational band, for odd-A nuclei, corresponding to g_K^0 (g_s^{free}) and g_K^0 (g_s^{eff}), are given in columns eight and nine of Table I, respectively. In both cases theoretical values of $g_R^{(P)}$ have been used and similar results are found for $g_R^{(NP)}$. Especially for states with large I=K, μ_I is less sensitive to small changes in g_R than in g_K . It can be seen that, except in the case of 167Er in which $g_R^{\text{the}} 2g_R^{\text{ex}}$, $\mu_I^{\text{th}}(g_s^{\text{eff}})$ agrees to within a few percent with the more precise experimental values in column 7. It is also interesting to note that

FIG. 2. Same as Fig. 1 for odd-mass nuclei.

20

 μ_I^{th} (g_s^{free}) agrees better with experimental values of excited states than those of ground states. This opens the question of whether spin polarization and/or *K*-band mixing effects are different for different members of a given rotational band. It would be desirable to have more precise measurements of μ_I of excited states in order to get some further insight into this question.

IV. CONCLUSIONS

In conclusion we may say that, within the uncertainties introduced by the simple treatment of pairing in the HF codes, the present approach gives rather satisfactory results for collective gyromagnetic ratios. Further calculations on other odd-N, even-Z nuclei are underway to see if the disagreement found in ¹⁶⁷Er persists in these isotopes.

The comparison of experimental g_K values with single particle values g_k^0 indicates rather large spin polarization effects. Core contributions to $|\langle \phi_K | \mu_x | \phi_K \rangle|$ as large as 0.6 to 1.2 are needed in order to explain observed g_K values. The question still remains to whether the mean field approximation when properly extended to odd-*A* nuclei will account for these contributions. Exchange current effects—not considered in this work—are not expected to modify single particle magnetic moments by more than 10–20%.¹⁸ The small values found for δg_K provide a check on the convergence of our expansion in powers of $1/\langle J_{\perp}^2 \rangle$.

The next interesting step in these calculations will be to analyze the q dependence of the different contributions to the various multipoles that enter in transverse form factors of odd-A nuclei. On the basis of the present results one would expect large core contributions at low q. From angular momentum considerations the highest multipoles $(M5, M7, \ldots)$ are expected to be well described by single particle contributions, as seems to be confirmed by preliminary experimental results on ¹⁸¹Ta.^{2,5} Another interesting feature will be to compare transverse electric multipoles in doublyeven and odd-mass nuclei.

The authors would like to express their hearty thanks to Professor F. Villars for his comments and careful reading of the manuscript. This work

	$g_R^{(\mathbf{P})}$	$g_R^{(\rm NP)}$	g_R^{exp}	$g_R^{\mathbf{I}}$	g_R^{II}
¹⁵⁴ Sm	0.445	0.386	0.288(29) 0.379(27)*	0.42	0.38
¹⁵⁶ Gd	0.443	0.391	0.296(18) 0.32(3)	0.41	0.39
¹⁶⁶ Er	0.409	0.361	$0.393(7)^{+}$ 0.329(27) $0.312(6)^{*}$	0.27	0.36
¹⁷⁴ Yb	0.383	0.374	$0.303(13)^{*}$ $0.337(7)^{*}$ 0.247(13) $0.228(15)^{*}$	0.34	0.32
¹⁷⁶ Yb	0.360	0.379	$0.338(15)^{*}$ $0.381(16)^{*}$ 0.299(15)	0.35	0.35
¹⁸⁰ Hf	0,379	0.346	0.263(15) 0.317(35) 0.383(35) ^d	0.34	0.33
¹⁵⁹ Tb	0.405	0.383	$0.420(35)^{a}$ $0.486(58)^{b}$ $0.51(6)^{c}$	0.49	0.45
¹⁶⁵ Ho	0.440	0.353	$0.31(0)^{a}$ $0.429(30)^{a}$ $0.504(52)^{b}$	0.51	0.69
¹⁶⁷ Er	0.325	0.340	0.48(2) $0.182(10)^{a}$ $0.149(30)^{b}$ $0.184(10)^{c}$	0.22	0.17
¹⁷⁵ Lu	0.364	0.414	$0.312(8)^{a}$ $0.360(16)^{b}$ $0.326(10)^{c}$	0.33	0.32
¹⁸¹ Ta	0.361	0.355	0.293(13) ^a 0.320(8) ^b 0.30(2) ^c	0.36	0.33

^aReference 15.

^bReference 16.

^cReference 14.

^dReference 17.

was supported in part through funds for the Bates Accelerator Laboratory provided by the U.S. Department of Energy (DOE) under Contract No. EY-76-C-02-3069.

APPENDIX A

The mean value of $(\vec{S} \cdot \vec{J})_{\perp}$ on a BCS state is given by

$$\langle (\mathbf{\tilde{S}} \cdot \mathbf{\tilde{J}})_{1} \rangle = \sum_{A,B} (v_{A}u_{B} - v_{B}u_{A})^{2} (\langle A | s_{+} | B \rangle \langle A | j_{+} | B \rangle + \frac{1}{2} \langle A | s_{+} | \overline{B} \rangle \langle A | j_{+} | \overline{B} \rangle)$$

$$= \sum_{A} n_{A} \langle A | s_{+}j_{-} + s_{-}j_{+} | A \rangle - \sum_{A,B} \{ n_{A}n_{B} + [n_{A}(1 - n_{A})n_{B}(1 - n_{B})]^{1/2} \} (2\langle A | s_{+} | B \rangle \langle A | j_{+} | B \rangle + \langle A | s_{+} | \overline{B} \rangle \langle A | j_{+} | \overline{B} \rangle),$$
(A1)
$$(A1)$$

$$= \sum_{A} (A | s_{+} | B \rangle \langle A | j_{+} | B \rangle) ,$$

$$(A2)$$

where the sums extend over states with third angular momentum component $\Omega > 0$ and \overline{B} represents the time reversed state of B for $\Omega_B = \frac{1}{2}$. In Eqs. (A1) and (A2) all matrix elements are real and n_A , n_B represent occupation probabilities, $n_A = v_A^2$, $v_A^2 + u_A^2 = 1$. In the absence of pairing the same equations apply, for then $n_A = 1$ or 0 for states below or above the Fermi level.

For odd-A nuclei with the odd particle in orbital K,

$$\langle \alpha_{K} \langle \mathbf{\tilde{S}} \cdot \mathbf{\tilde{J}} \rangle_{\perp} \alpha_{K}^{+} \rangle = \frac{1}{2} \langle K | s_{+} j_{-} + s_{-} j_{+} | K \rangle + \sum_{\substack{A \neq K \\ B \neq K}} (u_{A} v_{B} - v_{A} u_{B})^{2} \langle \langle A | s_{+} | B \rangle \langle A | j_{+} | B \rangle + \frac{1}{2} \langle A | s_{+} | \overline{B} \rangle \langle A | j_{+} | \overline{B} \rangle \rangle.$$
(A1')

Alternatively, the same expression (A2) can be used with the prescriptions $n_K = \frac{1}{2}$, $u_K v_K = 0$, and, in the particular case $\Omega_K = \frac{1}{2}$, the contribution to the last term in (A2) from A = B = K must be excluded. The mean value of \mathbf{J}_{\perp}^{2} is given by analogous equations replacing s_{\pm} by j_{\pm} .

For completeness, the selection rules for l_+ operators in the deformed basis are given,

$$\langle n_{n}'n_{z}'\Lambda + 1 | l_{+} | n_{r}n_{z}\Lambda \ge 0 \rangle = -\frac{1}{\sqrt{2}} \{ \delta_{n_{r}',n_{r}} (\beta^{+}\delta_{n_{z}',n_{z}-1} [n_{z}(n_{r}+\Lambda+1)]^{1/2} + \beta^{-}\delta_{n_{z}',n_{z}+1} [(n_{z}+1)(n_{r}+\Lambda+1)]^{1/2}) + \delta_{n_{r}',n_{r}-1} (\beta^{-}\delta_{n_{z}',n_{z}-1} (n_{r}n_{z})^{1/2} + \beta^{+}\delta_{n_{z}',n_{z}+1} [n_{r}(n_{z}+1)]^{1/2}) \},$$
(A3)

where $\beta^{\pm} = \beta_{\perp} / \beta_z \pm \beta_z / \beta_{\perp}$ with β_{\perp} , β_z oscillator parameters as defined in Ref. 3. Selection rules for j_{\perp}^2 can easily be constructed from (A3). For the particular case $\Lambda = -1 \rightarrow \Lambda = 0$ that occurs in $\langle A | j_{+} | \overline{B} \rangle$ terms one has

$$\langle n_r' n_z' \Lambda = 0 | l_+ | n_r n_z \Lambda = -1 \rangle = -\langle n_r n_z \Lambda = 1 | l_+ | n_r' n_z' \Lambda = 0 \rangle .$$

- ¹W. Bertozzi, J. Phys. Soc. Jpn. Suppl. <u>44</u>, 173 (1978); F. N. Rad *et al.*, Phys. Rev. Lett. 40, <u>368</u> (1978).
- ²F. N. Rad (private communication) and (unpublished).
- ³J. W. Negele and G. Rinker, Phys. Rev. C <u>15</u>, 1499
- (1977). See also D. Vautherin, *ibid*. C <u>7</u>, 296 (1973). ⁴J. W. Negele and D. Vautherin, Phys. Rev. C <u>5</u>, 1472
- (1972); C <u>11</u>, 1031 (1975). ⁵E. Moya de Guerra and A. E. L. Dieperink, Phys. Rev.
- C 18, 1596 (1978).
- ⁶R. C. York and G. A. Peterson (unpublished).
- ⁷O. Prior, F. Boehm, and S. G. Nilsson, Nucl. Phys. <u>A110</u>, 257 (1968); S. G. Nilsson and O. Prior, Mat. Fys. Medd. Dan. Vid. Selsk. <u>32</u>, No. 16 (1961).
- ⁸F. Villars and N. Rogerson, Ann. Phys. (N.Y.) <u>63</u>, 443 (1971); P. Ring, R. Beck, and H. J. Mang, Z. Phys. <u>231</u>, 10 (1970); <u>231</u>, 26 (1970).
- ⁹A. Bohr and B. R. Mottelson, *Nuclear Structure* (Benjamin, New York, 1975), Vol. II.
- ¹⁰Y. M. Engel, D. M. Brink, K. Goeke, S. J. Krieger,

and D. Vautherin, Nucl. Phys. <u>A249</u>, 215 (1975); K.-H. Passler, *ibid*. A257, 253 (1976).

- ¹¹H. Flocard, P. Quentin, A. K. Kerman, and D. Vautherin, Nucl. Phys. <u>A203</u>, 433 (1973).
- ¹²M. Vallieres, S. G. Lie, and D. W. L. Sprung, Can. J. Phys. <u>56</u>, 1190 (1978); A. Zaringhalam and J. W. Negele, Nucl. Phys. <u>A288</u>, 417 (1977); H. Flocard, P. Quentin, and D. Vautherin, Phys. Lett. <u>46B</u>, 304 (1973).
- ¹³F. Villars, in Proceedings of the International School of Physics "Enrico Fermi," Course XXXVI, edited by C. Bloch (Academic, New York, 1966), p. 14.
- ¹⁴L. Grodzins, Annu. Rev. Nucl. Sci. <u>18</u>, 291 (1968).
- ¹⁵F. Boehm et al., Phys. Lett. 22, 627 (1966).
- ¹⁶Z. Bocknacki and S. Ogaza, Nucl. Phys. 69, 186 (1965).
- ¹⁷C. M. Lederer and V. S. Shirley, *Table of Isotopes*
- (Wiley, New York, 1978), 7th edition.
- ¹⁸G. Konopka, M. Gari, and J. G. Zabolitzky, Nucl. Phys. <u>A290</u>, 360 (1977).

(A4)