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Measurability of the deuteron D state probability
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It is shown that several two-body unitary transformations which arise in the theory of meson-exchange
currents can change the percentage D state of the deuteron, implying that this percentage is not a
measurable quantity. The connection of these transformations to meson-exchange contributions to the
quadrupole moment, rms radius, magnetic moment, and the asymptotic D/S ratio of the deuteron is
discussed.

[NUCLEAR STRUCTURE H; q, p, p; meson-exchange currents;percent D state. ]

q(r) = u(r)u (r) —u('(r) IW&, (Ib)

is an "outside" quantity, whose major contribu-
tions come from those values of the integrand
outside the range of the nuclear force. This is
due to the fact that the deuteron wave function
gun(r), given by

(y) S„(") (y) X

v8 r -&4v
(2)

falls off slowly as z increases because the binding
energy qD= 2.224644(46) MeV is very small. ' In

this equation x, u, m, Sy2 and X~ are the neutron-
proton separation, (reduced) S- and D-state wave
functions, tensor operator, and spin wave func-
tion, respectively. On the other hand, the S- and
D-state probabilities P~ and PD are defined by

Ps —= u'(r)dr,
0

(3a)

PD—: SU X O'F ),

0

where P~+PD =1, and are "inside" quantities

(3b)

A strict relationship between the deuteron
quadrupole moment Q, the deuteron D state prob-
ability PD, and the nucleon-nucleon tensor force
has been elusive since the origins of nuclear
physics, although considerable effort has been

' devoted to the search. A connection clearly
exists, since the absence of the tensor force im-
plies Q=PD=O; nevertheless, it has proved pos-
sible to construct diverse phenomenological poten-
tials with widely varying values of PD and similar
values of Q. The reason for this behavior has been
known qualitatively for a long time. Blatt and
Weisskopf' argue that the quadrupole moment,
given in the impulse approximation by

Q= j HQ(r)d~,

because they lack the extra factor of x' in the
integrand and are sensitive to the interior region
of u' and u('. Presumably the deuteron mean-
square radius (r')D (neglecting the nucleon finite
size) given in impulse approximation by

(y')s = —,
' y'C(r)dr,

0

&(r) = u'(r)+ u'(y)

(4a)

(4b)

is also an outside quantity. Experimentally, Q is
believed to be' 0.2860(15) fm' while~ (r')n' '
= 1.9635(45) fm.

Another physical quantity which is often dis-
cussed in connection with the deuteron D state is
the magnetic moment p,D, given in nuclear magne-
tons by

3 1
PD = Ps —sPD(Ps —s)+ ~si (5)

where p, ~
= p, ~+ p,„ is the isoscalar nucleon mag-

netic moment, 0.8797 p» and 5R is the contribu-
tion to p, D arising from a rich variety of relativistic
and meson-exchange effects. The known value'
of p, n, 0.8577406(1) it„, produces Pc=3.9% if
6R=—0. The recognition of the fact that exchange
effects are comparable to the effect of PD in Eq.
(5) led to substantial work on the magnetic moment
problem, about 25 years ago, by Breit' and
others', this work was inconclusive. Thus, folk-
lore considers ILL, D to be an inaccurate gauge of
PD.

Although relativistic and exchange corrections
to pD have. considerable antiquity, 'quantitative
discussions of such effects in connection with the
charge density, (r')n and Q are more recent. "
The sizes of these corrections to the impulse
approximation are comparable, being a few percent.
The reason is that such contributions to the charge
density and to the isoscalar current density are
corrections of relativistic order (v/c)'. A rough
estimate of all such relativistic effects is given
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by the relativistic correction to the nonrelativistic
kinetic energy and is typically a percent to a few
percent.

An additional quantity whose importance has
been recognized lately' " is pD or q, the asymp-
totic D to S ratio outside the range of the nuclear
force. This ls a true outside quantity and is ob-
tained by analytically continuing scattering ampli-
tudes into the unphysical region. Its value is
believed" to be 0.026~ 0.002.

It is important to note that each of. the quantities
we have mentioned (qD, (r')o, Q, po, q) corresponds
to a well-def ined specif ic measurement, either
scattering or the interaction of the deuteron with
an electromagnetic field, and these quantities
necessarily include the effect of relativity and
meson degrees of freedom. It has been hoped that
PD could be similarly measured by some physical
process. Although values of PD have been gene-
rated ranging from 3—9% using a wide variety of
schemes, it has been felt that this disparity is
the result of incompletely understood reacti. on
mechanisms. Thus PD remains elusive.

Bounds exist for PD, however. I evinger"
obtained a variational lower bound for PD, which
assumed the impulse approximation for Q. He
found Po ~ 0.45%. Recently Klarsfeld" improved
this estimate by constraining the potential to have
a one-pion exchange potential {OPEP) form for
r&It, where Il = 2 fm, and found PD ~ 3.3%. This
number is close to the smallest values found in
some semiphenomenological potentials with OPEP
tails. In spite of this apparent progress, Amado,
Locher, and Simonius have recently stated that
PD is not an observable of the deuteron and should
be classified as a calculated rather than a +mea-
sured property. Rather, they view po as a mea-
sure of the D state. A similar point of view was
expressed by Amado earlier. " Does, then, the
deuteron percentage D state have any fundamental
meaMng?

In order to answer this question we first exa-
mine a series of recent calculations of relativistic
and exchange corrections to the deuteron magnetic
moment" and charge form factor" carried out by
the author. Within the framework of one-pion
exchange only, a unified approach was used that
allowed both pseudovector (PV) and pseudoscalar
(PS} coupling of the pion to the nucleon to be
treated indistinguishably. This approach has two
motivations: {1}It allows the validity of the equi-
valence theorem (for the two couplings) to be
investigated, and (2) it provides a consistency
check on the method of calculation. The equiva-
lence theorem has its origin in Dyson. 's'7

canonical transformation of pseudoscalar
(PS) coupling field theory, which is trans-

1

E E( )
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W6

Eoo = Gs C(r)j o(qr/2)dr,
0

E,' = 2Gss Q(r)j 2(qr/2)dr, (6c)
0

2

E;= ' [4G„' —(P+ 1)Gss]

dhh,'~qj, qx 2 Cr+4 2 ~, Va
0

(6b)

formed into pseudovector (PV) coupling plus
additional seagull terms which violate the theorem.
Suitably generalized by Drell and Henley to in-
clude electromagnetism, it defines the basic
vertices used in calculating exchange currents
and allows motivation (1) to be realized. One
actually transforms the Hamiltonian with PS
coupling only part of the way into PV form using
an arbitrary parameter p, (p = 0 and p, = 1 cor-
respond to PS and PV) Th.is device allows the
realization of motivation (2), since p, is an arbi-
trary parameter associated with the transforma-
tion. In the final results for the "dressed"
nucleus with no explicit pion fields it is asso-
ciated with a unitary transformation of the purely
nucl ca& wave function.

We emphasize that there is no physics associated
with this transformation and the expectation value
of any operator associated with an observable
(e.g. , p~o, Q) must be independent of p. This
allows a convenient check that all contributing
processes have been calculated and calculated
correctly. One of the important results of these
calculations is that it is absolutely necessary to
simultaneously specify every component of the
matrix element of an observable: both the wave
function {or equivalently the potential) and the
operator. This is quite clear from the viewpoint
of a unitary transformation, since both wave
functions and operators are changed by such a
transformation. In calculations of exchange
effects of relativistic order (charge and isoscalar
current operators) the unitary transformation
alters the nonstatic parts of the one-pion-exchange
potential. This fact alone casts serious doubt on
aD calculations of such exchange effects which
use phenom enologi cal stati c potentials. Indeed,
as we shall see, it is possible in isoscalar sys-
tems to eliminate the entire exchange effect for
certain observables by means of a judicious choice
of p (i.e., a choice of representation for the wave
function).

As an example we present the results for the
exchange corrections to charge and magnetic mo-
ment operators in an arbitrary representation.
The charge form factor E(q} has the basic form~2
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2 8
E', = — ' [4G„' —(i), + l)Gss]

x dr ho(r) [qj,(qr/2) (C —Q/)(2 )
p

('rb)(27/2r) uj), (qr/2)],

where F' and F' are the conventional impulse
and pion-exchange parts of F, respectively. -

Monopole and quadrupole parts are denoted F,
and E,. In addition, the wave functions (u, u)) to
be used in this equation are functions of p, ,

calculations use p, = -1. The OPEP potential
V, is simplest for p. =1, as are the motional"
relativistic corrections. For the sake of con-
sistency, we will keep terms no higher than
order f,' in what follows, as we did in Eqs. (7)
and (8).

Using Eq. (7) the exchange contributions to the
mean-square radius and quadrupole moment can
be obtained in the form

f()
4)O

(r ),= — — [4(4 —((4r 1))J drr 8(C 2+48)(),
4Mm, p

((t() = (1 —iU, )4(-1),

— K (1) ~ p, (2) ~ ».( N

+go(2) p, a(1) ~ Vh, (r))],
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Q, =- ~' [4u, —(u+I)]2Mm,

K uw
drrho u' ——0—0 10
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(2v)' (q'+m„') m,'r
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where the last relationship for h, holds if the pion-
nucleon form factor F,„ is identically one. We
have defined f,' =f' m'/4w = 0.079 and f =g/2M,
while G~ and G~ are the isoscalar electric and
magnetic nucleon form factors with Gzs(0) = 1 and
Gs(0) = ps. All the form factors are functions of
the momentum transfer q, the j„are ordinary
spherical Bessel functions, and M and m, are
the nucleon and pion masses. We find, further-
more, that"

~~ +~ ~~ 2 2M
use h" —3h' rW8f, 't(,

m+ p

where 6„' contains additional terms, indepen-
dent of p. . The pseudovector coupling results can
be obtained by replacing Gus by Gss in Eq. (7); 5z'
is also different in the two cases. We note that
if one uses the usual type of Born term model to
calculate exchange effects, the corresponding
analysis of threshold pion photoproduction strongly
favors pseudovector coupling. In this case p, = 3
completely eliminates one-pion-exchange parts
of the isoscalar charge form factor. Most

It is a relatively simple matter to show that
insertion of u and u) from Eq. (9) into Eqs. (1)
and (4) results in a set of t(, -dependent terms
which exactly cancels the (p+ 1) term in Eq. (12),
as, of course, it must. More serious, however,
is Eq. (11) when inserted into Eq. (g). Unless a
drastic error has been made, this equation
appears to depend on p. , a completely artificial
parameter. The only way out of this impasse is
to assume that PD depends on p, ; calculating
&Po = 2f u)—,&u) produces

&Po = ' dr [u,u), (ho' —3h,'/r)f,'(p, + 1)v 8

2Mm,

+ 2h()u)ou()] 0 0

Thus we see that PD is not invariant under the
unitary transformation Uz. Furthermore, the i),

dependence in Po from Eq. (13) exactly cancels
the p, dependence in 5z in Eq. (11). The meson-
exchange correctI. on 6~ not only complicates the
analysis of p, D in terms of PD, but for a subset
of terms it is indistinguishable from Po. Since
there is no physics in a unitary transformation, we
must conclude that PD is not a measurable quantity,
in contrast to (r )o, Q, po, qo, and )7. We have
demonstrated that the first three of these quan-
tities are p, independent and it is clear that &~
must be, since to order fo' the change in the
Hamiltonian H produces an energy shift ([U, H])
—= 0, independent of the form of U which we use.
Furthermore, q is determined from the asymp-
totic region outside the range of our short-range
(actually pion-range) transformation and is there-
fore unchanged; the same argument applies to the
nucleon-nucleon phase shifts. For the same rea-
son, fu)'dr cannot be made to vanish since u) does
not vanish in the asymptotic region.

This result is so clearly at variance with most
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of the accepted beliefs" that additional comment
and discussion and some numerical work are
warranted. Our first remark is that the conclu-
sion above is completely consistent with the re-
marks in Refs. 9 and 14. In addition, since the
transformation U~ changes the short-range be-
havior of the wave function and is of relativistic
order Ii.e., (v/c)'], it is fair to say that Po has
both a relativistic component and is to some ex-
tent a measure of the off-shell properties of the
appropriate nucleon-nucleon applitudes. This
remark is bolstered if we calculate the change
in Q, (r')~~', and Po produced by changing p by 2
and choose Reid soft core (RSC) wave functions
for uo, mo. There is no motivation for this choice
othe'r than convenience, since the RSC potential
is static (local) in each partial wave. For a point
v-N form factor one finds b, (r')', ~'= -0.003 fm,
~Q, = —0.006 fm', and LPo =+1.7%; that is, since
Eq. (12) gives positive results for p, =-1, in-
creasing p, decreases the resulting correction.
Alternatively, if one inserts Eq. (9) into Eqs. (1)
and (4} and ignores the exchange corrections,
increasing p increases (r')o, Q, and Po, as one
might expect.

The particular numbers which result are largely
irrelevant to our discussion, although a 2%change
in P~ is large. It is possible to lower those
numbers by means of the z-nucleon form factor;
in addition our arguments involve only one-pion
exchange and ignore higher-order terms. Using
a monopole form factor with a mass of 1 GeV
produces only a slight change in (r'), and Q,
while lowering &Po to 1.3%%uo. The reason is that
the form factor affects primarily the small-x
behavior. A smaller mass, such as that suggested
by analysis" "of the Goldberger-Treiman rela-
tion, is inexplicable from the point of view of
those physical processes which might be expec-
ted'4 to generate the form factor. The integrand
of EPo in Eq. (13) has a maximum at 'about 1 fm
using the form factor discussed above. This is
certainly well within the range of other more
complicated processes whose potentials will also
possess similar unitary ambiguities; these may
tend to increase or decrease &P~. Our only
point is that a rather small (unitary) adjustment
of V (and P) can produce rather large fractional
changes in P~.

In order to see this, imagine that u, can be
written as vP~v(r), where fv'(r)dr is unity, and
that some unitary transformation of tensor (8„)
character AO operating on u~ produces a change
in zU given by XOuo = Ego= Xv(r), One finds imme-
diately that t Po =—2~Pod. Assuming Po ranges
from 4% to 9%, one obtains v'Po ranging from 0.2
to 0.3, and using an average value of —,

' we see

that a, val~e of 0.02 for & produces a 1% change
in P~. From this schematic argument we see
that a small transformation can produce a large
fractional change in &PD.

One may also ask if there are any additional
unitary transformations which arise in a "natural"
way similar to the way U~ arose. The answer
is yes and can be found in Ref. 16. Various ways
of treating retardation in meson exchanges exist
and these are unitarily equivalent. One such
transformation is obta, ined from Eq. (103a) of
Ref. 16,

(14)

It induces changes in Q and (r') to' of magnitude
0.002 fm' and 0.002 fm, respectively, using the
previous parameters; these are similar to results
found earlier. The change in P~, however, is
only 0.1%; the much smaller result can be traced
to a node in &sg in the region where large contri-
butions to &PD could ordinarily be expected.

Both U~ and UD have similar intrinsic size and
both are Hermitian, even under a parity transfor-
mation, and odd under a time-reversal transfor-
mation. The latter property is important since,
for any transformation, i U must be even under
time reversal if the time-reversal properties
of the Hamiltonian and electromagnetic current
operators are to be maintained. For the two-
body system in its center of mass, this means
that U must be momentum dependent. Using the
spins o(1) and o(2), and the vector r in a bilinear
fashion to form a tensor operator, one cannot
make an operator which is Hermitian and odd
under time reversal. Using an odd number of
factors of p makes this possible while maintaining
parity properties. "

It is obvious at this point that an arbitrary uni-
tary transforination of arbitrary strength and
(finite) range can be constructed which can change
P~, since the latter quantity is not an observable
(i.e. , measurable). That this is not done is a
result of our theoretical prejudices which can
and should be used to restrict PD by fixing the
(unitary} representation. Assuming that the tail
of the potential has the standard OPEP form al-
lowed Klarsfeld to make stronger statements about
PD than I evinger could. This amounts tg fixing
the representation. Drastic changes in the Hamil-
tonian by means of a totally artificial unitary trans-
formation would make correspondingly drastic
changes in other operators, such as the magnetic
moment, etc. %e have attempted to introduce
unitary transformations in a way which is less
artificial; indeed, different methods of calculating
operators of relativistic order will in general lead
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to different, but unitarily equivalent, results.
The transformation U~ arose in just this way.

Can the representation be further restricted to
eliminate the ambiguity associated with U~?
Regrettably, no representation seems uniquely
best. Choosing p, =1 in U~ produces the simplest
potential and (motional) relativistic corrections,
while the charge density is simplest for p, = 3.
The commonly used p, = -1 has no redeeming
features of which we are aware. Similarly, the
two representations in Ref. 16 which correspond
to using or not using UL) correspond to a simpler
potential and a simpler charge operator, respec-
tively. Our own prejudice is that the poten-
tial should be simplest. Nevertheless, in view
Of the fact that isoscalar one-pion-exchange con-
tributions can be eliminated from p by a choice of
p, , one should be wary of statements that such
contributions are needed to understand the ~He

and 'He-'H charge form factors, because struc-
ture calculation cannot reproduce certain features
of these form factors. Finally we note that lower
bound proofs for PD imPlicitly assume p, = 3, be-
cause they explicitly assume impulse approxima-
tion. Thus, changing representations from p, = 3
to p, = 1 or -1 would redh~ce the minimum value of

P~, since it increases the amount of exchange
contribution to Q.

We wish to emphasize that the transformation
U@ arose from a field theory trmlsforzIlatlonq &ld
a covariant treatment of the deuteron would pre-
sumably have the same problems in defining P~
as a nonrelativistic treatment has. In essence,
the Dyson transformation rearranges the way
pions interact with nucleons. and when the pion
fields are "embedded" into the "dressed" deuteron
ground state, different amounts of these fields end

up in the S and D states. In this regard we note
that Gross's covariant calculation of deuteron
properties" uses a linear combination of PS and
PV couplings, and finds that PD is much more
sensitive to the particular combination that is
used than are Q, (y )D, etc. His calculation, un-
like ours, does not use perturbation theory and a
direct comparison is difficult. To first order
in f,', however, our method is equivalent to using

a linear combination of PS and PV couplings speci-
fied by the parameter p. , and is thus very similar
to what Gross uses.

From the point of view of relativistic correc-
tions, the changes in Q, (r')» and pD produced
by U~ are consistent with our estimate of the size
of such corrections; the effect of PD on p,~ is also
the same size. Our result that ~ p, D (-=~„) and

&PD are indistinguishable for certain processes
extends to heavier isoscalar systems, as well.
In particular, there is a relatively small dis-
crepancy in the isoscalar 'He-'H magnetic mo-
ment p,

' ' similar to that of the deuteron. The
formula for p,

'~' in terms of the trinucleon D-
state probabilit jP(D) is

p,
' '= p, ~-2P(D)(p, , —~)+O. ,

where we have lumped the S' and S-state prob-
abilities together and used P(S)+P(S')+P(D) =1.
The results of all the Faddeev and variational
calculations that we could find for a wide variety
of potentials were compiled and plotted; we found
that almost all of the calculations were (approxi-
mately) consistent with

P(D) = —", P, . (16)

Thus the isoscalar three-body magnetic moment
problem is closely coupled to the corresporiding
deuteron problem and our previous remarks apply.

Finally we hypothesize that the many attempt s
to determine PD experimentally have used theoreti-
cal assun1ptions in the analysis which have im-
plicitly assumed a wide spectrum of reasonable
representations and thus have achieved a wide
variety of numbers. This may explain why P~
has remained so elusive for such a long time.
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