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Sixth-order boson expansion calculations applied to samarium isotopes
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In previous publications we reported on calculations based on the boson expansion method, and showed

that good overall fits can be obtained to levels of a number of collective nuclei chosen over a wide range of
the periodic table. In the present paper we concentrate on Sm isotopes and obtain much improved results,

the fits to experiment being very good in all cases. In achieving this, the calculations are made by first

removing a few errors committed in the previous work and also by including all terms up to sixth order in

the Hamiltonian. In addition to calculating energy levels, B(E2) values, and quadrupole moments as in our

previous work, we also calculated isomer shifts and spectroscopic amplitudes for two-nucleon transfer

reactions.

NUCLEAB STBUCTUBE ' ' '~ ' ' Sm microscopic calculation of energy
levels, B(E2)'s, static quadrupole moments, isomer shifts, two-nucleon trans-

fer spectroscopic amplitudes, boson expansion.

I. INTRODUCTION

In the past few years, two of us (T.K. and T.T.)
have been engaged in describing nuclear collective
motions in terms of a boson expansion technique.
A paper' which dealt with the formulation (here
called I) was published some time ago. .The second
paper (here called Il) which dealt with additional
formulation, as well as numerical calculations,
was published recently 2 (References to a number
of earlier publications made by other authors can
be found in these two papers. ) In this second pa-
per, about ten nuclei were chosen over a wide
range of the periodic table, and it was shown that
our calculations successfully reproduced important
characteristic features of all the nuclei considered.

These calculations were nevertheless made to
serve primarily as a general survey of the appli-
cability of our boson-expansion method. There-
fore, little effort was expended to obtain further
improved fits to data for individual nuclei or iso-
topes. Encouraged by the success achieved in II,
we have since been engaged in performing improved
calculations, and to report on the results obtained
so far for Sm isotopes is the purpose of the present
paper. 'The Sm isotopes were chosen because of
the experimental fact that a transition from spher-
ical to rotational character takes place in going
from ' 'Sm to "~Sm. Because of this, the Sm iso-
topes have been used as an example by a number of
authors in the past to test various theories of nu-

clear collective motions. ' '
In Sec. II we, very briefly, summarize the form-

ulation given in I and II and used in the present cal-
culations. The results of the new calculations are
given in Sec. III. As will be remarked in Sec. II,
a few errors were committed in I and II which have
now been corrected. Also the calculation was re-
stricted in II to fourth order, but it has now been
extended fully to sixth order. It will be evident
from Sec. III that these modifications allow us to
get much better agreement of the obtained results
with experiment than was possible in II. It will al-
so be seen in Secs. II and III that the present work
has been extended beyond that of I and II, in that it
now includes calculations of isomer shifts and of
spectroscopic amplitudes for two-nucleon transfer
reactions. The results obtained for these quantities
also agree rather well with experiment. Discus-
sion of the present work is given in Sec. IV.

II. BRIEF SUMMARY OF FORMULATION

The Hamiltonian that we take as our starting
point is given as a sum of a single-particle Ham-
iltonian-, - a particle-hole type quadrupole-quad-
rupole interaction, and a pairing interaction of both
monopole and quadrupole types. " 'Taking first the
single-particle Hamiltonian and the monopole-type
pairing interaction, the Bogoliubov transformation
is made, so that the original, shell-model type
single-particle system is replaced by a system of
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quasiparticles. As mentioned in II, we did not
solve the BCS equation, but rather took the gap pa-
rameters from the experimental binding energies
and determined the Fermi energies ~~ and ~„so
that the occupation number given by Q,. (2j+ I)v,.'
agrees with the proton and neutron numbers for the
nucleus under consideration. As discussed in
Bohr-Mottelson, ' it is not always meaningful to use
the third difference formula (quoted in II) to calcu-
late the gap parameter ~~ „. In particular, in the
case of "4Sm irregularities in the experimental
binding energies give a value of ~~=0.86 MeV
which is much lower than that obtained for the
other isotopes. For this nucleus we therefore took

~~ as determined from a second difference in bind-
ing energies as given in Bohr-Mottelson. This
gave a result of ~~ =1.17 MeV and produced a
small but noticeable improvement in the energy
spectrum we obtained.

The single-particle energies, which were pre-
viously taken from the Nilsson Hamiltonian with
the deformation parameter P ='0, are here taken
from results of shell-madel studies of Klinken-
berg. ' The parameters in the Nilsson Hamiltonian
were originally chosen so as to reproduce Klinken-
berg's levels over all the major shells. As was
shown (cf. Fig. 2 of Ref. 7), however, it was im-
possible to get exact agreement everywhere. In the
course of the present calculations, we fouiid that
some aspects of the results of our calculation de-
pended rather sensitively on the detail of the posi-
tions of the single-particle levels. We therefore
decided to choose the single-particle energies to
be close to what experiment shows, and thus
choose Klinkenberg's levels. For all the nuclei,
the same 11 neutron orbits, used in II, were again
used. As for proton orbits, the calculation of II
used 8 of them, and that is also the case here for' ' '"Sm. For "4Sm, however, three more levels
(2p,~„2p,~„and lf,~, ) were added, because this
gave a result significantly better than what could
be obtained otherwise.

After the Bogoliubov transformation is made,
the Hamiltonian is written in a form which is quad-
ratic in the quasiparticle pair creation and scat-
tering operators. As done in I, an orthogonal
transformation is then made so as to isolate a col-
lective particle- hole operator.

These fermion-pair operators are expanded in Bn

infinite series of boson operator products. 'The co-
efficients of this expansion are then determined so
that all the commutation relations, satisfied by the
fermion pairs, are satisfied by their boson-ex-
panded form as well. Since the Boson-expanded
form is infinitely long, satisfaction of the com-
mutation relations is required to hold order by or-
der. After the expansion coefficients are obtained,

the fermion-pair operators in the Hamiltonian are
replaced by their boson-expanded forms, and thus
the boson Hamiltonian emerges. As we remarked
in the introduction, the present calculations employ
the boson Hamiltonian to sixth order. In II, which
used the fourth-order Hamiltonian, an explanation
was given of how to make every calculation con-
sistently to fourth order. The same guiding prin-
ciple is again used here, except that it is now used
to make every calculation consistently to sixth or-
der.

Probably one of the most important ingredients,
that was introduced in I and II, was to take into ac-
count the collective-noncollective coupling, still
allowing the final form of the Hamiltonian to be
written entirely in terms of collective bosons.
Previously reported boson expansion calculations"
had suffered from the fact that the level spacings
were too large by a factor of 1.5 to 2, compared
with experiment, even when the theoretical spec-
trum resembled experiment very closely. In II, it
was shown that the collective-noncollective cou-
pling all but removed this difficulty, making it pos-
sible for the first time to compare the theoretical
spectra in absolute scale with experiment. In the
present calculation, this coupling was taken into
account throughout.

The boson Hamiltonian was diagonalized in a
space spanned by products of the collective bosons.

he basis states in this space are classified' by
irreducible representations of the chain of groups
SU(5) o R(5) o R(3), i.e., by the set of quantum num-
bers N, v, y, and I. Here N is the number of col-
lective bosons, v is the seniority (i.e., the number
of bosons that are not coupled pairwise to spin
zero), and I is the angular momentum. The extra.
quantum number y enumerates R(5) states that are
degenerate for a pair of values of v and I. In the
actual calculations we truncated the boson space
such that & &-19 and v ~.17. For higher spins
(I~ 10), we further made a truncation with respect
to seniority such that the dimension of the space
did not exceed 100.

At this stage we remark that a few errors and

misprints were detected in I and II, and we want to
correct them here. The quantity x 8(and r, ) d.e-
fined in Eq. (2.5) of II should have a sign opposite
from what was given in this equation. The correc-
tion of this sign error is one of the major reasons
why the present results fit data ~uch better than
did those of II (although the agreement with experi-
ment obtained in II was already fairly good). Er-
rata found in I for the sixth-order Hamiltonian are
summarized in Appendix A.

'The formulation and corresponding numerical
calculations reported in I and II were restricted to
those of energy levels, B(E2) values and quadrupole
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moments. In the present paper, an extension has
been made so as to calculate isomer shifts and also
the spectroscopic amplitudes for two-nucleon
transfer reactions. Formulas that are @ceded to
calculate these quantities are summarized in Ap-
pendices B and C, respectively.
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III. RESULTS OF CALCULATIONS

A. Preliminary

Before presenting the results, we emphasize that
we have only two adjustable parameters in the
Hamiltonian, as was also emphasized in II. They
are f, and g, which determine the strengths y, and

6, of the quadrupole-particle-hole and quadrupole-
pairing. interactions, respectively. They are de-
fined as y, =f,y „and G, =g,y, where Y „=2404 '~'

MeV is the so-called self-consistent value" of X,.
We expect f, and g, to be roughly unity. Their val-
ues fixed to give the best overall results were
found to be f2

= (0.845, 0.865, 0.955, 0.974) and g,
= (0.964, 1.047, 1.026, 1.01), corresponding to y,
=(0.049, 0.049, 0.053, 0.053) MeV and G,
= (0.056, 0.059, 0.057, 0.055) Mev for """'""Sm
respectively. 'Note that these values of X, and 62
lie within 4$ of their respective median values.
'The use of the median values throughout retains
the gross features of the results given below. Thus
it is legitimate to call our theory microscopic.
Compare this with the situation in some other bo-
son theories, ' "where the Hamiltonian is param-
etrized 100%%up, without going through any step of its
derivation.

In calculating the B(E2)'s and the static quad-
rupole moments, we used the effective charge e,ff,
as we did in II, which for simplicity was assumed
to be the same for protons and neutrons. Its value
was fixed to reproduce the experimental
B(E2;2;-0') and was found to be e,« = (0.64, 1.08,
1.16, 0.66)e for the four isotopes. It is unfortunate
to find that the values for ' 'Sm and 's4Sm are
somewhat smaller than those for "Sm and '"Sm,
although the small value for "4Sm is largely due to
the addition of three proton orbits, as we dis-
cussed in Sec. II.

B. Comparison of fourth- and sixthmrder calculations

We first give in Fig. 1 the best sets of fourth-
and sixth-order energy spectra obtained for

Sm. In Sec. II C, we compare the sixth-order
results with experiment, and it will be seen that
the agreement is very good in general. The com-
parison made in Fig. 1 will then serve to give an
idea of the extent to which the fourth-order results
deviate from experiment, i.e., about what sort of
improvement was achieved in going from fourth-
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Flo. 1. Comparison of fourth- and sixth-order calcul-
ations for energy spectra of ' ' ' ' Sm. Only the
spins of the sixth-order spectra are labeled. The cor-
responding fourth-order levels, which differ signifi-
cantly in energy or in ordering, are connected by
straight lines to the corresponding sixth-order levels.

order to sixth-order calculations.
In Fig. 1, we labeled spins only for the sixth-

order spectra. When marked difference appears in
the energies between the fourth- and sixth-order
calculations, the corresponding states are con-
nected by lines. It is seen that essentially no dif-
ference took place between the fourth- and sixth-
order results for "'Sm. The same is true for
"Sm, although a slight difference begins to be
seen for states higher than 1.5 MeV.

In "Sm, the difference between the two results
becomes more noticeable, having two character-
istic features. The one is that, in going from
fourth- to sixth-order calculations, the spacings
between states that belong to the ground and the P
bands get much narrower, and the other is that the
head of the y band is brought down. Essentially
the same features are repeated in '"Sm, with fur-
ther enhancement.

It is easy to understand why the difference be-
tween the fourth- and sixth-order results is small
for ' 'Sm, but increases as the mass number is in-
creased. Our boson expansion method begins by
constructing a complete set in a spherically sym-
metric representation. 'Therefore, it is expected
that the calculation converges at a lower order,
when our method is applied to nuclei which are
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FIG. 2. Potential energy surface plotted against the
deformation P for y=0' (right half) and y=60' geft
half). Both the fourth- and sixth-order resul, ts are
plotted for ~ Sm and ' Sm, but only the sixth-. order re-
sults for ~ 88m and ~ Sm, because the fourth- and sixth-
order results are virtually identic. -.l. in these lighter
elements.

basically spherical. The result shown in Fig. 1 for
'O'Sm, in fact, shows that the calculation has con-
verged at the fourth order. As the mass number
(or more precisely the neutron number) is in-
creased, the nuclei deviate more and more from
the spherical shape, and call for calculations with
increased order.

In II, we showed that our boson Hamiltonian could
be expressed as

0=H(v„)+ H(v„, p„)+V(p„),

where P„are the deformation parameters of the
Bohr-Mottelson model, "while g& are the conjug-
ate momenta. We also showed in II that, in spite
of the fact that the first two terms of (1) are rather
complicated, the behavior of the potential energy
term V(P„) gives a good insight into what is the
shape of the nucleus under consideration. In the
sixth-order theory, we may write V(P„) = V(P, y) as

V(P, y) = c,P'+ c,P' cos(3y)+ c4P + c,P' cos(3y)

+c,p + c,p cos'(3y).

The same expression holds also for the fourth-or-
der theory, ' but with c, =- c, = c, = 0.

In order to understand further the features seen
in Fig. 1, we plotted V(P, y) in Fig. 3 for the four
Sm isotopes. For '4'Sm and" Sm, the fourth order
V(p, y) were too close to the sixth order V(p, y) to
be shown separately. However, the difference is
sufficiently large for "Sm and "4Sm, and we give
both of them explicitly. This reflects the fact,
seen in Fig. 1, that the fourth-order and sixth-or-
der levels differ little in 'O'Sm and '"Sm, but sig-
nificantly for '"Sm and "Sm. In this figure, it is
also clearly seen that the nuclear shape changes
from spherical to prolately deformed, in going
from '4 Sm to "Sm.

We note that the coefficient c, is negative for all
these nuclei, reflecting the fact they are all prolate
(although some of them are deformed very weakly).
In the sixth-order calculation, c„c„and c, are
all positive. Since c, remains about the same in

going from fourth- to sixth-order calculations, the
positive c, w'orks to reduce the deformation, par-
ticularly for '"Sm and "Sm, and the effect is
clearly seen in Fig. 2. The positive c, and c, steep-
en the potential wall at large P. This, along
with the factor cos'(3y) in the c, term, results, for
large p, in the potential wall against deformation
into axially asymmetric shapes (y w0' or 60) being
less stiff than it is in the fourth-order potential.

his explains why the y-band head is brought down
in the sixth-order calculation compared with the
fourth-order calculation, as was seen in Fig. 1.

Gne might naively expect that the decreased value
of P, corresponding to the minimum of the poten-
tial, results in a decreased nuclear deformation,
i.e., in a decreased moment of inertia, and then
in turn to increased spacings between levels in the
ground and the I3 bands. The relative behavior of
the fourth- and sixth-order level schemes shown
in Fig. 1 is, however, opposite to this expectation.
It should be noted, how'ever, that in our calcula-
tions, w'e always demand that the energy of the 2,'
state agrees exactly with experiment, and thus, in
this sense we always have a fixed value of the mo-
ment of inertia (for any given nucleus). Then. a
pushing of the outside potential wall to a smaller
value of p (in going from the fourth- to sixth-order
calculations for '"Sm and "48m), means that the
nucleus is forced to behave more like a spherical
than like a deformed nucleus, the spacings between
the higher members of the band in turn being
forced to become closer to that between the 2' and
0' states. This explains why the above, naive ex-
pectation is not realized in Fig. 1.

C. Comparison with experimental spectra

In Figs. 3-6, we compare the results of our
sixth-order calculations with the experimental.
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FIG. 3. Comparison of the sixth-order spectrum (Th)
with experiment (Exp) for Sm.

spectra known for ' "Sm. For " "Sm, there
are available results of calculations4 based on a
theory of Kumar and Baranger, " and they are also
compared with our results.

&48ggpg

In Fig. 3, the sixth-order energy spectrum for
"'Sm is compared with that of experiment. ""
Since "'$m is basically a spherical nucleus, we
expect to have a vibrational pattern for its spec-
trum. In other words, we expect two-phonon trip-
let states to appear at twice the energy of the first
2' (2;) state, and three phono-n quintet states at
thrice the 2, energy. Experimentally the quintet
states appear at about 1.9 MeV, and our calcula-
tion predicts them at the correct energy, but with
somewhat too large splitting and with incorrect or-
dering. To our knowledge, however, experimental
confirmation of the three-phonon nature of this
quintet of states is not definite. It should also be
remarked that there are observed experimentally
a number of states below 2 MeV, which we believe
are of quasiparticle nature. It thus seems prema-
ture to make a detailed comparison between theory
and experiment for states above 1.4 MeV. A fur-
ther experimental investigation is needed. We also
would need' to extend the calculation so as to treat
expliritly the excitation of some of the quasiparti-
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FIG, 5. Same as in Fig. 4 except that this is for

FIG. 4. Comparison of the sixth-order spectrum (Th)
with experiment (Exp), as well as with the result of
Kumar (K) for 5 Sm. Only the experimental levels are
labeled and are connected to corresponding levels in
theoretical spectra. Theoretical levels are also labeled
when there is no counterpart in experiment.
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cle tnodes.
As for the lower states, the presence of the 1.12

MeV (0') state might be questioned; the presence
of this state was reported in Hef. 16, but not in
Ref. 15. Suppose ihat thi. s state is::ndeed absent.
We can then show that, if we took f, =-0.92 and g2
=0.76, the resultant theoretica, l spectrum fits the
lowest five states (0;, 2;, 4;, 0,', and 2;) almost per-
fectly. This calculation, though looking better as
regards a fit to the energy spectrum„results in a.

potential energy surface which is slightly more de-
formed than that shown in Pig. 2 for" Sm, violat-
ing a smooth transition from spherical to deformed
shape as the mass number is increased. In addi-
tion, the e,«needed to fit the experimental
&(E2; 2;-0+) becomes unreasonably small, com-
pared with what was obtained for the other iso-
topes. It should also be remarked that the above
choice of f2 =0.92 and g2 =0.76 is inconsistent with
values for the other isotopes. Ne thus tend to be-
lieve that the 0' state at 1.12 MeV does exist. This
then leaves the problem that our theory predicts
the 2,' state a little too low. However, because of
the reason we stated at the end of the last para-
graph, we shall not go further into this problem at
present.
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FIG. 6. Same as in Fig. 4 except that this is for +Sm.

2. Sm

This is a rather typical transitional nucleus. As
is seen in Fig. 4, the experimental spectrum" "
has fairly well developed ground and P bands. It
also has a y band, but there the presence of y in-
stability is evident in that the 3' and 4+ states ap-
pear rather close together. The labeling of states
as P- and y-band states should not be taken too
seriously; it was done to a large extent only for
convenience. The nucleus is not very well de-
formed.

It is seen that the sixth-order calculation fits the
data very well. Out of the 13 states belonging to
ground, p, and y bands, only three (0+&, 28, and

4&) are slightly off the experimental positions, but
by amounts that do not exceed 80 keV. Noticeable
deviations are nevertheless seen in the energies of
states which we tentatively denoted as 0& and 28,
states. It is very likely, however, that a consid-
eration of explicit coupling with quasiparticle ex-
citation modes would push down these states, thus
removing the difficulty.

As is well known, and as was discussed in some
detail in II, the theory of Kumar and Baranger"
uses an adiabatic assumption very seriously. It is
thus believed that this theory is good for well de-
formed nuclei, but gets poorer for weakly de-
formed nuclei. Kumar's result reproduced in Fig.
4, seems to reflect this fact. The ground-band

states are too narrowly, and the p-band states are
too widely, spaced compared with experiment. Al-
so the 3' state appears too high, although Kumar's
4' state appears much closer to experiment than

y
does ours.

3. "~Sm

This nucleus is rather well deformed, particular-
ly in the sense that, as is seen in Pig. 5, the ex-
perimental energies" of the ground-band states
obey rather closely the I(I+ l) law. These ground-
band states are fit perfectly by our sixth-order re-
sults. Our theory also predicts very well the spac-
ings between y-band states, although the bandhead
was predicted slightly too high. A somewhat more
serious problem is seen in the P band, in that the
predicted spacings are slightly too large, compared
with experiment. It is a little surprising to find
that the energies of the 0& and 2~, states are now
predicted in good agreement with experiment.

In spite of the slight discrepancy we mentioned
above concerning the P and the y bands, the im-
provement achieved by going from fourth-order to
sixth-order calculation is obvious from Fig. 1. In
the fourth-order calculations, all the higher spin
members of these two bands had appeared too high.
The sixth-order calculations bring them down to
energies not very far away from experimental val-
ues ~
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Kumar's calculation' is expected to work better
here than in" Sm. Nevertheless, it is seen in

Fig. 5, that a difficulty similar to that which we
pointed out concerning the '"Sir calculation is
again seen here. Overall, our results fit the ex-
perimental "Sm spectrum much better than do
those of Kumar.

4. '54'
This nucleus is known to be well deformed, and

if the boson expansion method, which is based on
a complete set prepared for a spherically sym-
metric system, fits the spectrum of this nucleus,
it can be considered a significant achievement.

The sixth-order calculation given, in Fig. 6, re-
produces the experimental collective levels" very
well. The same may be said for Kumar's calcula-
tion. 4 As mentioned, we included three more pro-
ton single-particle levels in this calculation, and

the effect was to lower the y bandhead energy by
about 160 keg, with little or no effect on the ground
and P bands. Thus it helped to soften the potential
wall in the axially asymmetric directions.

D. Electromagnetic transition probabilities and the static
quadrupole moments

There is a limited amount of experimental data
concerning the electromagnetic properties of ' 'Sm.
Comparison of the theoretical predictions with the
experimental data is as follows: B(E2;2;-0')
= 0.141e'b (exp. = 0.141 a 0.005) ' Q(2;) = -0.58eb
(exp. = -0.54+ 0.2, and =-0.97+0.27),""and

B(E2;4;-2;)=0.255e'b' (exp. =0.25+0.07).'4 It is
seen that good agreement has been obtained.

The B(E2) values and the static quadrupole mo-
ments Q(2;) for "0 "~Sm are summarized in Table
I, which contains three columns, one for experi-
mental values, the other for sixth-order results
(followed by fourth-order results in parentheses)
of the present work and finally for Kumar's re-
sults. ' Each column has three entries, presenting
values for Sm, ' Sm, and '5 Sm in that order.

Most of the experimental values shown in the ta-
ble are those given by experimentalists, as such.
We derived a few of the other entries, however,
by using experimentally known B(E2)'s and related
branching ratios which are also known experiment-
ally. The derived values are underlined.

We shall discuss the sixth-order results first.
It is seen in Table I, that Q(2, ) and the B(E2)'s we
obtained for the transitions between ground-band
states agree almost perfectly with experiment.

he same is also the case for Kumar's results,
although the number of quantities he calculated is
somewhat less than what we did.

The agreement of the calculated B(E2)'s with ex-.

periment, for transitions from P- and y-band
states to the ground-band states are also rather
good, though not as good as they are for transi-
tions within the ground-band states. We under-
lined theoretical values (ours and Kumar's) when-
ever they deviate from experiment by more than a
factor of 2. It is seen that about one third of our
values are underlined, and the same is also true
with Kumar's values. Even when this sort of de-
viation takes place, however, it is recognized that
the trend, i.e., the mass number dependence of the
triad of quantities, often agrees with that of exper-
iment, a feature which is to be desired at the
least. In Table I, we attached an asterisk to a
triad whose trend disagrees with that of experi-
ment. It is seen that there is only one such case in
our calculations. With Kumar's calculations, there
appear four asterisks.

It is gratifying to find that our calcuj. ations re-
produce the experimental electromagnetic proper-
ties as mell as in Table I. It is well known that the
comparison of the theoretical and experimental
electromagnetic properties presents a much more
severe test of a theory, than does the comparison
of the energy levels.

When the electromagnetic transitions get weaker,
the pertinent experimental data are normally sup-
plied in the form of branching ratios. Therefore,
the comparison of the theoretical branching ratios
with experiment offers a.still more stringent test
of the theory. It begins to test the validity of the

. prediction of rather small components of the wave
functions.

The calculated branching ratios are compared
with experiment in Table II. We underlined theo'-

retical values whenever they deviate from experi-
ment by more than a factor of 5 (rather than of 2
as was the case in Table I). It is seen that only a
few of the entries are underlined; in particular
only one is underlined for" Sm. We may thus say
that, overall, the agreement of the calculated
branching ratios with experiment is rather good.

Nevertheless, one may be embarrassed to find
a case in which the theory deviates by more than a
factor of 100. An example is B(E2; 2' -2+)j
B(E2; 2' -4') =3916 for "4Sm, which is to be com-
pared with the experimental value of 25. If one
looks at Table I, it is easy to see that the very
small value of B(E2; 2' -4;) =0.000012 is largely
responsible for the very large value of the above
theoretical branching ratio. 'The corresponding
experimental value B(E2;2"-4;) =0.0008 is, how-

ever, also very small. This means that the com-
parison of theoretical and experimental branching
ratios often forces us to compare extremely small
quantities. In other words, an occasional appear-
ance of a large discrepancy in branching ratios
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does not necessarily mean that the theory is poor
to such an extent.

We shall finally discuss briefly the results of the
fourth-order calculations. First of all, it should
be noted in 'Tables I and II, that the fourth- and
sixth-order results are close to one another. Also
the quadrupole operators resulting from the
fourth- and sixth-order calculations were nearly
identical. The lowest-order term dominates in
both cases and the same effective charges can be
used. These facts clearly support our previous
conclusion, made with regard to the energy spec-
tra, that our calculation is indeed converging. Of
course, there are found a few cases in which no-
ticeable differences are encountered. However, in
all these cases, the B(E2) values involved are
small. Since, as we emphasized above, small
B(E2)'s reflect small components of the wave func-
tions, a difference of this extent is not unexpected.

The results for '~Sm are of particular interest.
As we remarked above, there w'ere sixth-order
B(E2)'s for "4Sm which disagreed with experi-
ment, and thus were underlined in Table I. As
seen in this table, however, none of the fourth-
order B(E2)'s are underlined. In other words, the
fourth-order predictions fit all the known B(E2)'s,
even the worst deviation being within a factor of 2.
'These results reflect themselves into that of the
branching ratios in Table II. In particular, the
trouble, pertaining to the 2' -4' transition dis-
cussed above, has completely disappeared.

It is likely that the excellent B(E2) predictions
of the fourth-order calculation in" Sm are some-
what accidental, since the energies of the levels
are not predicted as well as in the sixth-order cal-

' culation. We may also remark that it should be
possible to make the sixth-order "4Sm B(E2) re-
sults as good as the fourth-order results. Since
only subtle features of the wave functions are at
issue, small modifications of some input quantities
might achieve this. Reasonable possibilities are to
make the energies of the single-particle orbits de-
pendent (apart from the 41/A'~' scale factor) on the
mass number" or to increase the number of single-
particle orbits used in the calculation.

E. Isomer shifts

The isomer shift 6(r~'), which is the proton
mean-square radius in the 2,' state minus that in
the ground state, was calculated by using formulas
given in Appendix B, and the results are summar-
ized in Table III. This table also contains experi-
mental results"" and other theoretical predic-
tions. 4'2"' As is seen, our value agrees with ex-
periment in trend, but is about a factor of 1.6 too
large for '"Sm, and is grossly too large for '"Sm.
The agreement is perfect for" Sm.

Marshalek" calculated many isomer shifts, by
using the pairing-plus-quadrupole interaction
(PPQ), as we do here, and by solving the self-
consistent cranking equation to third order. The
results thus obtained were too large by about a
factor of 3, due to an overestimate of the centri-
fugal stretching. Meyer and Speth" then suspected
that this overestimate was due to the use of PPQ,
and showed that better agreement with experiment
was obtained, if an effective interaction of the
Migdal type was used. The fact that we obtained a
good fit to data, at least for ' Sm, however,
seems to indicate that the use of PPQ does not al-
ways result in disagreement with experiment. It
should be emphasized that our calculation of the
isotope shift was made as part of a larger calcula-
tion which obtained energies, B(E2)'s and so forth
pertaining to a number of levels, while Meyer and
Speth considered only the 2,' and 0,' states.

Concerning the too large isomer shifts we en-
countered in "Sm, it should be remarked that a
,sufficiently small value can be obtained only
through very delicate cancellations of contributions
from a number of single-particle states; cf. Eq.
(B3) in Appendix B. Normally an orbit above (be-
low) the Fermi energy gives a positive (negative)
contribution to the isomer shift. Thus, had we
suppressed the contribution of the two highest or-
bits (2f7&, and 1h,&, ) in our "4Sm calculation, we
would have obtained a theoretical value for the iso-
mer shift, which agreed very well with experi-
ment. The same may be achieved by adding contri-
butions of orbits that lie below the g =28 shell. In

TABLE III. Isomer shifts in units of 10" fm2 for '~ ' ' Sm. Experimental values were
taken from Ref. 26 for ' Sm and Ref. 25 for +Sm.

'"Sm
'"Sm
"4Sm

Exp.

49.6 + 2.6
18 +4
1.2 y 0.8
0.75 + 0.5

Present

73.3
18.4
12.9

Kumar4

56.

Theory
Meyer- Speth28

14.6
5.55

Marshalek27

49.3



SIXTH-ORDER BOSON EXPANSION CALCULATIONS APPLIED. . .

this way, it appears that the calculation of the iso-
mer shifts requires far more delicate arguments
of how to treat the contributions of far-off levels,
than is needed in discussing the other properties
of a nucleus. (We suspect that this delicate prob-
lem is also embedded in the work of Meyer and
Spethas) Because of this, we shall be content with
results obtained so far in the present calcula-
tions.

F. (t, p) cross sections

TABLE IV. Peak differential cross sections in mb/sr,
for (t,p) reactions on Sm targets. The theoretical val-
ues were normalized so that the result agrees with ex-
periment for the ~ Sm- 5 Sm transition. See text for
more detail.

A g + 2) 148 150 150~ 152 152~ 154

Exp.
Theory

0.57
0.27

0.19
0.19

0.30
0.27

By using the ground-state wave functions obtained
in the course of the above calculations for the four
Sm isotopes, we calculated the (relative) cross
sections for (f, p) reactions between ground states
of the consecutive even-even nuclei. First the
spectroscopic amplitudes are calculated, by using
the formula given in Appendix C. They are then
multiplied with the pair of radial wave functions,
and the results were summed over these pairs of
states. The resultant sum was then transformed
to a sum of products of relative and center-of-mass
(c.m. ) parts of the wave functions, and the term
corresponding to the Os relative state has been re-
tained. Its coefficient is nothing but the c.m. wave
function to be used as the DWBA form factor for
the corresponding (f, p) reaction

Instead of calculating the (t, p) cross section, we
took the square of the form factor, at its peak at
the nuclear surface, and assumed it to be simply
proportional to the cross section. By carrying out
this calculation for "Sm(t, p)""Sm transitions with
A. =148, 150, and 152, we were thus able to obtain
the relative cross sections for these three reac-
tions. Normalized so that the "Sm - ' Sm cross
section agrees with experiment, the results are
given in Table IV, and are compared with experi-
ment. ' As is seen, the 152-154 result agrees
very well with experiment, but the 148-150 result
was too small by about a factor of 2. 'The latter
discrepancy may again suggest the need of adding
the noncollective modes explicitly in our calcula-
tion.

IV. SUMMARY AND DISCUSSIONS

We have compared our theoretical results with a
large number of quantities known experimentally
for ' ' "Sm, and the overall agreement obtained
is seen to be very good. There nevertheless re-
main discrepancies with regard to quantities, like
(some of the) branching ratios and isomer shifts,
which are considered to depend sensitively on the
fine details of the wave functions.

We remarked earlier that the choice of single-
particle energies, with which all our calculations
begin, plays a very crucial role. We found that the
use of either Nilsson or Klinkenberg level schemes
resulted in noticeable changes in the obtained spec-
tra. It is thus possible that a further search for a
better set of single-particle energies would help to
decrease the still remaining discrepancies. In the
above calculations, we used a fixed set of single-
particle energies for all the four isotopes, which
might have happened to be the most appropriate for"Sm. Recall that the best overall fit to experi-
ment was found for this nucleus.

In spite of the fact that we considered here iso-
topes whose neutron numbers differ only by six,
there is reason to believe that different choices of
single-particle energies are well justified for dif-
ferent isotopes. Let us note that Kisslinger and
Sorensen' and Hammamoto" pointed out the im-
portance of considering the short-range residual in-
teractions between protons and neutrons that are in

orbits with the same quantum numbers. In our
mass region, the 2f~~, and Ih,~, neutron orbits lie
very close to the Fermi energy, and thus their
amplitudes of occupation, i.e., the u and v ampli-
tudes of the BCS theory vary rather significantly as
the neutron number is increased. The short-range
proton-neutron interaction then affects the position
of these orbits, as well as those of their proton
counterpart. The 2f,~, and 1h,~, proton orbits lie
rather high above the Fermi energy. Neverthe-
less, their precise positions can affect our results,
because these orbits give significant contributions
to our Hamiltonian through the quadrupole-pairing
interaction. By allowing for the mass number de-
pendence of the single-particle energies in this
way, we may expect to improve further the results
obtained so far. This may be particularly the case
with regard to the branching ratios and isomer '

shifts.
A number of other theories which introduced

bosons in one way or another h@ve been recently
utilized. The work of Lie and Holzworth demon-
strated that a nearly perfect fit can be obtained
when the coefficients in the boson Hamiltonian were
allowed to be free parameters. Their applications
were, however, limited to nuclei that are basically
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spherical. Also the number of free parameters
was as large as eight. As we stated in the intro-
duction, when a microscopic version of their boson
theory was used, they encountered the trouble of
having too large level spacings (by about a factor
of 1.6). A similar difficulty was experienced by
Sorensen, ' who used a boson expansion theory very
close ta ours, but without collective-noncollective
interactions.

Janssen et al.' started with a set of quadrupole
operators and their conjugates, and then formed
their commutators. There are thus altogether 35
operators which were then recognized to form gen-
erators of an SU(6) group. They wrote down a
Hamiltonian with these SU(6) operators, and ap-
plied it to nuclei in the A =150 region, in particu-
lar "oSm and '"Sm. They introduced a cutoff pa-
rameter N and parametrized their Hamiltonian,
keeping only second- and third-order boson terms.
N can be related to the number of pairs pf valence
nucleons, and thus they were ]l.eft with three free
parameters. Their fits to the experimental energy
levels were not as good as we presented in Figs.
4 and 5. They also had difficulties in fitting some
of the branching ratios, to an extent similar to
what we experienced.

Another parametrized boson theory, the interact-
ing boson approximation (IBA},"which also uses
SU(6), but in a way very different from that of
Janssen et g$. ,

' was applied by Sujkowski et al."
to '5 Sm„The fit obtained, with four free param-
eters, was somewhat poorer than our result, if
only low-lying states in Fig. 4 are concerned. IBA
fit, however, the energies of high-spin (J ~ 14)
states of the ground band very well.

We have also calculated the energies of these
high-spin states for" Sm, and found that the ob-
tained values became progressively too high as J
increased. The experimental energies for I=. 10,
12, and 14 states are 2.433, 3.048, and 3.676 MeV,
respectiveLy. Our results were higher than these
values by 26, 141, and 325 keV, respectively. One
may suspect that this discrepancy is caused either
because we truncated our Hamiltonian, cf. Sec. II,
or because the calculation has not converged even
with sixth order, when applied to such high-spin
states. We have confirmed, however, that neither
of these suspicions hold, particularly by noticing
that the fourth- and sixth-order calculations gave
the same energies for these states.

A possible way to improve the situation may be
the following. Let us take two neutrons in high-
spin orbits, e.g. , an (i»~2)' pair, and allow them
to be coupled to various angular momenta. These
newly coupled modes will then be represented by
what we may call (active) noncollective bosons and
will be treated on an equal basis with our current

collective quadrupole mode. To work fully in this
extended space, in the same way as has been done
with a pure collective quadrupole boson, will cer-
tainly make the calculation impractical. Actually,
however, such a large scale calculation can be
avoided. We have already solved the problem of
purely quadrupole bosons. We shall then just re-
tain the wave functions for the ground-band and
other low-lying states, and couple them to the ad-
ditional mode of noncollective nature. The Hamil-
tonian to be diagonalized in this new space is the
interaction, between this new mode and the collec-
tive quadrupole mode, which has been ignored in
the calculations made so far.

It should be recognized that the idea behind this
proposed approach is very closely related to that
of Stephens and Simon, "who pointed out the im-
portance of considering the coupling of the de-
coupled pairs to the nuclear rotation, in explaining
the back-bending phenomena found in a number of
deformed nuclei. In other words, we are proposing
here a possible new approach to the problem of
back bending, and such work is under preparation.
It is hoped that the problem of high-spin states in"Sm will also be solved in the course of this type
of calculation.

We recall that we have compared our calculations
to those of Kumar and have been successful in
achieving a great deal of improvement. Recently,
Kumar and collaborators'4 have introduced an im-
proved version of his earlier work, but this new
theory has not yet been applied to samarium.

We may summarize the following achievements
in the present work. (i) Transition from spherical
to deformed nucleus, iri going from '4 Sm to "~Sm
is well explained, by reproducing energies,
B(E2)'s and other quantities of these nuclei in a
very consistent way. (ii}Convergence of the cal-
culations at the fourth order has been confirmed
for two lighter elements, '~88m and ' Sm. The
rather small, though significant, difference be-
tween the fourth- and sixth-order calculations ex-
perienced in heavier elements '5 Sm and "Sm
leads us to be convinced that the calculation has
converged at the sixth order. (iii) It'was found
that good choice of single-particle energies is
sometimes very crucial in getting a goad fit to
data.

Because of the confirmation of the convergence
we have shown, our theory may be called a sixth-
order boson theory, as compared with some other
theories which appear to have claimed to achieve
a goad fit to data by using a fourth-order boson
Hamiltonian' " 4; and one would certainly prefer
to have a lower-order theory, since it is simpler.
We note, however, that for nuclei which are bas-
ically spherical, like ' 'Sm, our theory is in fact
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a fourth-order theory. We further note that our
computer program has been written in such a way
that the sixth-order calculation takes only slightly
more computational time than does the fourth-order
calculation. 4'

The work of Janssen et a).' is, as we stressed in
Sec. IIIA, a purely parametrized theory, and the
truncation of the Hamiltonian to the SU(6) form was
made as an ansatz. More recently, Holzwarth,
Janssen, and Jolos4' revisited the work of Ref. 5,
based on an extended form of the formalism of Ref.
9, and indicated that the conditions to justify the
SU(6) truncation are not necessarily satisfied.
They further showed, probably more importantly,
that the fifth-order terms are by no means small,
even when applied to spherical nuclei. The work of
Refs. 9 and 46 is microscopic, as is ours, though
the methods used are fairly different. As far as
the convergence argument is concerned, however,
both microscopic theories point to the use of a
sixth-order theory, ' at the same time showing
that the expansion can in fact be terminated there.
The comparison of the work of Refs. 5 and 46 may
further be considered as a warning against taking
too seriously the predictions of a parametrized
theory. 47

The interacting boson approximation (IBA)'2'»» is
likewise a fully parametrized theory (as it has
been used to fit data so far), and the significance
of the obtained fit might again be questioned. As
for Sm isotopes, comparison with experimental
spectra was made in Ref. 44, where the theoretical
spectra were obtained by freely varying four pa-
rameters in the Hamiltonian; &, g, q' and g" in

Eq. (7.1) there. In spite of the use of the complete
freedom thus allowed, the obtained fit is by no
means better, if not worse, than what we obtained
above. LThis can be confirmed by plotting the
theoretical levels in Fig. 25 of Ref. 44 in our Figs.
3-6. It is not difficult to see th"'t a similar con-
clusion can be drawn with regard to B(E2) values
as well. j It is also important to note (ir. Table II
of Ref. 48) that, not only does z increase by an or-
der of magnitude, but also g' and g" change sign
in going from A =148 to 154. When such a drastic
variation is made to free parameters, justifica-
tions must be made of their use. Otherwise the
obtained fit remains rather arbitrary.

As in Ref. 5, the IBA Hamiltonian has been
chosen to be of fourth order, again as an ansatz.
Only very recently, Otsuka et aE. ' attempted to
justify this Hamiltonian microscopically. Their
procedure may briefly be summarized as follows:
(i) An even number of fermions are taken assuming
that they occupy a single shell with a large j value.
(ii) A set of fermion wave functions are then con-
structed, so that each member of this set behaves

as close as possible to a corresponding member
of the boson wave functions. A large number of
the other unwanted fermion states are just thrown
away. (iii) The parameters in the IBA Hamiltonian
are fixed by equating the expectation values of this

' Hamiltonian, taken for one- and two-boson states,
with those of the fermion Hamiltonian taken for
states with j2 and j» configurations. (iv) It is then
checked whether the expectation values and other
matrix elements of the thus fixed IBA Hamiltonian
taken for states with higher N, the boson number,
agree with those taken for corresponding fermion
states with v=2N, g being the seniority. If the
equality of the corresponding matrix elements
holds, the use of the (fourth-order) IBA Hamilto-
nian is considered justified.

Let us consider first the step (iv). As is seen
in several tables given in Ref. 48, the expected
equality holds rather well

forint

=3. However, for
A=4, noticeable violation of the equality begins to
take place; in many cases it is by 20 to 30%%u&, and

in a few cases it is by as much as 50 to 60%%uo. Since
it is expected that the discrepancy increases as &
increases, a serious doubt is cast as to whether
the justification of the fourth-order IBA Hamilto-
nian was in fact achieved. As Otsuka et al. them-
selves alluded to, the difficulty will certainly be
eased, if one extends the IBA Hamiltonian to sixth,
or still higher orders. If this is done however, the
claimed simplicity of IBA is lost. In passing, it
may be worthwhile to note that, in the matrix ele-
ments of our sixth-order Hamiltonian taken for
states with / & 4, the contributions from the fifth-
and sixth-order terms are less than SF&. In other
words, within states with N4 4, our sixth-order
Hamiltonian is in effect a fourth-order Hamilto-
nian with a confidence level of 97%%uq.

The step (ii), mentioned above, may also be
questioned, because it appears to be a procedure
which maps the boson space into the fermion
space. A correct procedure would have to be the
opposite. The step (i) is also highly questionable,
because a realistic microscopic theory must be
based on a set of nondegenerate subshells. Be-
cause of these reasons, it may not be unfair to
conclude that the task of justifying the IBA Ham-
iltonian is far from being accomplished by the work
of Ref. 48. Note that, with our method, none of
these difficulties is encountered.

At this stage, it may be worthwhile to note fur-
ther that the physical understanding of the origin
of the nuclear collective motions, taken as the ba-
sis of IBA is quite different from that of all the
rest of the microscopic boson theories, including
ours. In the latter, the particle-hole (ph) mode is
considered to be responsible for the collective mo-
tion, while in the former it is the particle-particle
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(pp) mode. It is our understanding that the ph
modes successfully explain the giant resonances
(EO, El, and E2), while there does not exist a
counterpart with the pp description. We may also
consider the collective 3 state in 20'Pb, which is
known to be easily accounted for in terms of the ph
mode. If the pp picture is taken literally, how-
ever, there is no way to explain this state. There-
fore, if one sticks to the pp picture in understand-
ing the (nongiant) quadrupole collective mode, one
is forced to conclude that the physical origins of
the quadrupole and octupole collective motions are
entirely different from one to the other. This con-
clusion contradicts the basic idea of the original
Bohr-Mottelson model.

Returning to the question of the convergence, we
note that, to our knowledge, there are two known
methods which make the boson expansion exactly
finite. The one is that of Schwinger (referred to as
S henceforth), 9 and the other is that of Dyson. '0

The former was explored in great detail recently
by Blaizot and Marshalek (BM),"who compared it
with the method of Holstein and Primakoff (HP' ),"
which is an infinite boson expansion. What BN
noted was that these two methods are partially
equivalent, in that their bosons can be transformed
mutually from one to the other, by a one-sided uni-
tary operator. Had this operator been two sided,
the S and HP bosons are completely (rather than
partially) equivalent, and there would be no doubt
that the use of the S method is preferred. How-
ever, the reason why the above unitary operator is
one-sided is that the S method includes unphysical
components in its Hilbert space (contrary to HP
which does not) and thus 'introduces a number of
spurious states. This is the penal' one has to pay
for making the expansion finite. BP5' showed that
there is a way to remove the spurious states by us-
ing a perturbation method. Because of the use of
this perturbation, however, the S expansion be-
comes in practice an infinite expansion. "

Contrary to Schwinger's, the method of Dyson'0
seems to be free from the spurious states, and the
use of this method would be worthwhile to explore
further. One apparent disadvantage is the fact that
Dyson's Hamiltonian is non-Hermitian. However,
as has been discussed, e.g. , by Bing and Schuck, "

ways are known to diagonalize such a Hamiltonian,
obtaining real eigenvalues. Thus the non-Hermitian
Hamiltonian does not cause any practical difficulty.
It may nevertheless be noted that Dyson's Hamil-
tonian is of sixth order (had the BCS transforma-
tion been made in the original fermion Hamilto-
nian), rather than fourth, and thus is as compli-
cated as is (the sixth-order version of) our Ham-
iltonian. In other words, the confirmation that we
can terminate our expansion at the sixth order can
be regarded as a confirmation that our seemingly
more complicated infinite boson Hamiltonian is not
in practice more complicated than is the exactly
finite boson expansion of Dyson. This may be con-
sidered a significant achievement made in the
present work. To be more precise, however, the
reason why we were able to terminate at the sixth
order was that we have so far been interested only
in states with compartively low energies. If we
want to extend our description to still higher
states, we may find that the use of Dyson's method
is more preferable.

Staying with lower-energy states, it is our belief
that extension to higher orders is now unnecessary.
More important than increasing the vertical expan-
sion would be the inclusion of more explicitly the
excitation of noncollective modes in our calcula-
tions. For this purpose, the use of our method,
rather than Dyson's would be more preferred, be-
cause our Hamiltonian is Hermitian, making more
transparent the interpretation of the behavior of
the Hamiltonian and of the resultant wave func-
tions.
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APPENDIX A: SUMMARY OF THE SIXTH-ORDER HAMILTONIAN

There were errors and misprints for the sixth-order Hamiltonians given in I. We first give here their
corrected versions. The equation numbers are those of I.

(1 ""(46)= 6e()'I6el(, K,' —K )+v(6A 1,-+61 (K, —1)]

[66( eee)f(cfeal)+6F(ceec()1'(f66e)]A, A,A, A, A, AeI,
abcdef

(5.2a)
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a»&6 2&(33)=-Q' 4r'K, (K,' —3K, +2)+4rsI, (K, —2)+s' g Y(abed)Y(aefg)A, AiA ~A, A, Az
L abcdef g

a "&(31)+a "(22)+a "(11)
=-Q'{[Sr'+(12F'+20E )rs/7+s'(14G, 'o +20G,', +36G4, )/35](K,K, +H.c.)+4r'(K, '-K, )

+ 4r sI2 + s [(21GOO —30G22++ 9G~)K,K~ + (60G,~ +45G44) (K22- K2) + 15(G~~ —G22)(Z —6K2) ]/105

+(32r'+SrsF+)(K,2-K, )+SrsI2+4s'[(2G -G"-2G, )K,K, +(3G'- G +2G, )(K, -K, )

—(G'- G +4G, ){Z'-6K, )/3]/7

+(24r2+48s +8rsF' 4s'-F')K, },
F&'&=g (+)'(2k+1)f '/5

O", = 5[[A,'A", ],A, ],[[A,'A', ],A,],—4K,K./7,
Efws]=8(G'+' '+G' ')+2G' ' ', Ef~ =6G' ' '+4(G ' '+G )+3G +G2 6

(5.20b)

(5.21)

(5.2 la)

(5.26)

El w31 —DG&++& + 6G&+ &+ 6G& &+ Lh. Q 6 . [f (g)]2

E, "=8(G,';-, +G, -;-. )+10+5, ,[f,(g)]',

E '~=2Ef~'l (of Ref. 1)+ ~ (6G,'+~ '- Go"' '+3G~","')—6G,"; '- 3G,","'
5 5 5 4,4 0,0

4
——,

' G& &- —;P (2k+1) G&;,&,
A'= 0

E I:w43 9G(+,+)
I 2, 2,g)

E' "=20(G,', +C, ;,)+25 P 6 [f (g)]'

E f.&23 9y (+)~(+).
l 2 2

E is2l 20F& &(F&+&+F& & )

asc =-4~rqA, [[A~2A2t], A2]p, —g WsQA, (e)[2F (e)+F2(e)] [[A~2A~2], A2],

(5.33)

(5.42)

(5.44)

—2v 5sqA, QQ kk'F~+W(22kk', 22)[[[AtA2~]2&Ai ]»,[2A2A, )&-, , ]0+H.c. (5.49)

a&,'& =-(sq.,/99) g k„,(O,'"'+H c ), . .
l

(A 1)

a&'& = a&' '& [42] + a&"&[33]

Finally the second line of (5.51) should read
(2F,"'+48F,' '+34F,"'- 20F& &) O,'"'.

In terms of the basic quantities defined in I, with
the corrections shown above, we shall now sum-
marize the collective part of the fifth — and sixth-
order Hamiltonian. They are given as

in Eqs. (5.50), (5.40), and (5.26), respectively, of
Ref. I, while the coefficients are defined as

k„,=v 5(41F&'&- 6F& &+4F&'&-14F& &),

k„, =W5(2F&'&+48F& &+34F&'&- 20F&-&), (A3)

7~(+)+30~( ) 2O~(+)+ VO~( )

and

5

=-q, g[k„,(OI"'+H.c.)+k„,. O,.""].(A2)
i=1

The operators 0 "&, 0 " and 0 " were defined

k„,= s'Dl(i) +xwD3(i),

k„,= s'D2 (i) + moD4(i),

with

(A4)
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5

L]I(i) ~c [42]ELsll

j=l
b(1, 2, . . . , 13)=((p, $, 0, 0, 0, p(p', g', (p',

D2(i) =2 cL»]gis2]
=I

II3(I)=3 pc),'. "Zr "
(A 5)

Y(r)=3,(g r,grtt'2 —3r r,„/2),

Z(o. ) =2y,r Mro/7. (A 9)

Q, =]t,qo'/2, and Q=g, qoroo/2, (A 6)

with qo and r00 defined by Eq. (2.5) of Ref. 2.
In the solution of the boson expanded commutation

relation equations [see Eqs. (3.5) of Ref. 1), we
truncated to the collective branch as was done for
the Hamiltonian. The resulting solution is then
r =u= v=0, s=-1/(4x), and u) = —s/(18x), where
x, ~, s, u, v, u, were introduced in Ref. 1. As in
Ref. 2, ~ is fixed to a value slightly greater than
unity in order to normalize boson expansion of the
pair operator to unity. The transformation of the
Hamiltonian, from the above form in the A~ repre-
sentation to that in the o.'~ representation, is
straightforward, if use is made of the formulas
given in Ref. 2.

Addition of the noncollective coupling, as de-
scribed in Ref. 2, was also extended to fifth and
sixth order. Using similar notation as in Eq. (4.9)
of Ref. 2, we define

1 . . 1
2 + ' ' II,. 3R —W„n. 3|r—W„)

(i, j=1,13), (A7)

with

I 12 8 IQ 2 n nil nl

n5 =0, n4 =2, n, =-2, n6 =-3„n9=3.

The coefficients f; (i =1, 5) were g.iven in Ref. 2
where f; =0 (i &5). Let f.,

"=f; (Ref. 2)+p,'. .

p', =-g p„'Y(o.)b(i) (i=1, 5),
(A8)

5

D4(i) 36 g f32]Eiw4]
j=l

he constants e,.j' and c~j" were defined in Tables
1 and 2 of Ref. 1. Finally,

We may write, as in Eq. (4.10) of Ref. 2,

8 t f 7 f 8o2P- &p&1 ~ O2P- &P&I ~

9 10 ll
02P —&PKI, 02[1 O'PK2, 02~ —&~K2

O,"„=[~'[~'~),),„, O,"„=[~[~'~],l,„, (A 10)

with. the operators Kl and K, defined in Ref. 2.
The above Hamiltonian H~~ can easilyrbe brought

into the form

Hpp 2 Plt ]g0$
[mfa]g

(A 11)

to obtain the contribution of collective-noncollective
coupling to the fifth- and sixth-order Hamiltonian
in the n representation. See Ref. 2 for details.

APPENDIX B: FORMULATION OF THE CALCULATION
iOF ISOMER SHIFTS

he isomer shift we intend to calculate is that of
the 2, state. It is defined as the difference of the
mean-square (ms) radius of protons in this state
with that of the ground state. More precisely, it
may be given by the following formula:

b(r, '& = (r, '),. (r, '&,.-— (r,'A")(X; -A, ) .P P 2 P /o dA P

(B1)
t

The inclusion of the last term in (Bl) is made, be-
cause we use the BCS theory which does not con-
serve the nucleon number. In this term, Ã2+ means
the expectation value of the proton number in the 2'
state and &p+ is defined similarly. The effect of
this term was to decrease the isomer shift, given
by the first two terms of (Bl) by up to 25%%u().

In the first two terms of (Bl), we may set

HJ3p = Qg;, (O~(p
' 02(~)+H c ),. .

~~ l

where the operators 0,' (i =1, 5) were defined in Eq.
(3.13) of Ref. 2. The new operators are given as

P,' =-P y„z(d)b(i) . (i=6, 13),

with

(r, '&,.=z '(f'l]if. If' &,

the monopole operator being given by

(B2)

Mo= g (2j+1)' '(j ( ~r'~ tj&((u]' —v]')[(I — )/2x+P]~(p jb(&,(+H.c.)+(p'+(t)')A'+5(t)')]+v, '
j(protons )

—su&vj W]&[(p'(p+ (p'p)(KM+H. c.)+(g'+(p'+2pp(p+ p))(K»+H. c.)]) . (B3)
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In (83) the quantities x, s, g, and @ are those that have been defined in II, while g(=K, ), K„K», and K„
are boson operators defined in I. The quantities u& and g& are the usual BCS amplitudes. Further

W~=10(2j+1) ' Q A~ )A~i~A, ~a W(jj '22;2j").
gtgtt

(B4)

Finally A, , , is the quantity called D, &,g&, .2 in I. See Eq. (2.7) of I for a precise definition. of this quantity.

APPENDIX C: (I, p) SPECTROSCOPIC AMPLITUDE

The spectroscopic amplitude for the O'-O' transition of a (f,, p) reaction can be obtained by taking the
matrix element of the following operator between the ground states of the parent and the daughter nuclei:

T,, . = [(2, +-1)/(I + 6„„.)]'~'

&{u&v&5„„,(2-~'+10/'P&&, )+(u&v& +u,'v&)P&, , [t/rg(K, +H c )+(.g.'+Q')N]

+ sW~~ [((jp+ 2tjl $)(u. ug K2~ —vgv Kpg) + ($ + 2$Q )(uJ ug K2g —vgvy K2g)

+ p p(u, . u, K,o- v, v; K,o)+g p(u&u&. K~~ —viv~'K»)]] . (C1)

Notation is the same as that in Appendix B. The Kronecker delta 5„„,signifies that a term multiplied with
it contributes only when j=j' and &z =n', where n and n' are the radial quantum numbers. In other terms
j=j is still required, but n can be different from n . The quantities P&,. and 8",.&, can still be defined by
(B4), if one of the A factors is interpreted to correspond to an orbit having a, spin j but a radial quantum
number equal to pg', rather than to n.
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