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Non-plane-wave Hartree-Pock states and nuclear homework potentials
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It is shown that non-plane-wave single-particle Hartree-Fock orbitals giving rise to a "spin-density-wave-
like" structure give lower energy than plane waves beyond a certain relatively low density in both nuclear

and neutron matter with homework pair potentials v, and v, .

INUCLEAH STRUCTURE Nuclear matter, Hartree-Fock: nuclear structure. j

In a recent series of papers' the plausibility of
non-plane-wave (PW) Hartree-Fock (HF) orbitals
was studied in the thermodynamic limit for many-
fermion systems interacting via simPlified two-
body interactions, su. ch as attractive and repul-
sive delta functions. Subsequently, effective two-
body (Skyrme type) interactions were introduced
and shown' to lead to such nuclear effects as al-
pha-particle clustering at subnuclear densities.
The question still remained whether the various
non-PW HF orbitals would be rel. evant when em-
ployed with rea. listic (i.e. , bare) two-body forces.
The work of Calogero ef, al. ' unfortunately omits
the repulsive cores in the nucleon-nucleon force,
whereas the importance of these repulsions (hard
or soft) for the establishment of long-range order
in the form of crystallization is well accepted both
classically' and quantally. " The present note re-
ports on the use of several new non-PW HF orbit-

als with two of the most common "homework" po-
tential. s, so-called v, and v„' used for both neu-
tron-star and balanced nuclear matter. We es-
tablish that the new HF states have lower energy
for densities beyond a certain, relatively low, val-
ue and may thus play an important role not only in

the understanding of pion condensation and other
"exotic" nuclear states, but also in providing a
nontrivial unperturbed vacuum state upon which to
base correlation energy calculations by either per-
turbation (ladder summations, hole-line expan-
sions, etc. ) or variational schemes.

The non-PW HF orbitals considered here are a
somewhat modified and superior version of those
found in Ref. 1 under the name "corrugated-sheet-
spin-density waves" (CSSDW), which now include
higher-order harmonics. They are orthonormal,
obey periodic boundary conditions in a box of vol-
ume V, and are given by
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while n and q are two additional variational parameters. The coefficients P (o.) are defined by the expan-
sion
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The global density is just.

p, =N/V = vk~'/6n',

with v=2 for neutron and v=4.for nucleon matter. On the other. hand, the local density (sum of orbitals
modulus squared which are occupied in the HF states determinant) is
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FIG. 1. The local density Eq. (4) (thick curve) arising
from the non-PW orbitals considered here Eq. (1), for
+ =2 and ~ = 2 (neutron matter) shown along the direction
of q. Along perpendicular directions the density is space
independent. Also seen are the contributions from spin-
up and spin-down matter (thin curves).

where pi(r)/po comes from the unity in the first
(square) bracket and from half of the first unity on

the right-hand side, and clearly corresponds to a
corrugated-sheet density wave, in the direction of

q, of spin-up particles. Out of phase with this
wave is that of p& (r)/p, of spin-down particles, but
the total density is stiO spatially inhornogeneous

FIG. 3. Same as Fig. 2 but for the e& homework poten-
tial. Here the energy gain begins at po

—='.024 fm 3,
probably due to the fact that the e& repulsion is larger
than that of v&.

(cf. Fig. 1) unlike the original Overhauser' spin-
density wave (SDW).

The energy-per-particle difference between HF
determinants of orbitals (1) and those of the usual
PW orbitals is tedious though straightforward to
calculate. It is
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FIG. 2. Energy lowering of CSSDW HF state of orbitals
Eq. (1), with respect to the PW orbital, as a function of
nuclear matter density po for the g& homework potential.
Energy gain begins at about Po —0.22 fm '.
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FIG. 4. Same as Fig. 2 but for neutron matter. Note
that the & =2 orbitals give the lowest energy. Energy
gain begins at Po =0.12 fm
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For the homework potentials, one has an interaction

Qa„e /x, x=pr, t =0.7fm',

where X=1, 4, and 7 for vl and 1, 2, 4, and 6 for v„while the coefficients a, are found, e.g. , in Ref. 6.
Then the terms M(A, B) appearing in (5) are

M(A, B)= ~gaz/&v(a +b )
' [1+(-) ' i ]—9I&(A, B)}, a= Ay/kz, b = (B-A)q/2k+,

1 "dx 1
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, b-2, b+2
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f =——(20a'+16)ln 1 —, ,—, +5 (a'+20a') f4.0 a + b+2)

The PW energy per particle is just

2 h' 6w' &"'
4Pw-=— P, I + M(0, 0).52m v

For all two-body interactions examined in B.efs.
1 and 2, the minimum with respect to q ~ 2k+ oc-
curred for the equality, i.e. , q= 2k~. Taking this
choice here also we minimized Eq. (5) for each
density p0 with respect to n, for several n = 1,2, ~ ~ ~ .
Some typical results are shown in Figs. 2—4 where
a definite energy lowering is found for all densi-
ties above a certain value. From the variational
principle one can expect even lower energy by
having density oscillations along a/l three mutual-

ly perpendicular directions.
We finally note that the corrugated-sheet-densi-

ty waves (CSDW), defined as in Eq. (1) but without
the S, spin factor which dephases spin-up and
spin-down populations, and which would be more
akin to the "charge-density waves" (CDW) of
Overhauser, ' were also attempted as above with-

the bvo homework potentials but found never to
have lower energy than the PW state.
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