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Relation between the interacting boson approximation and the quasiparticle formalism
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A direct relationship is demonstrated between the interacting boson approximation and the conventional
quasiparticle formalism. Numerical calculations are carried out for the Sn isotopes using a Hamiltonian
derived from a realistic nucleon-nucleon interaction.

NUCLEAR STRUCTURE quasiparticle formalism, interacting boson approxi-
mation.

The interacting boson approximation (IBA) pro
vides a very powerful and flexible formalism for
the study of collective states in nuclei, whether
they be deformed, vibrational, or in between. '
Coupled with group theoretical techniques, and with
very few free parameters, it has been shown to
describe very well both energy level systematics
and electromagnetic transition rates. Further-
more, a microscopic interpretation of the s and d
bosons in terms of the shell model has been given
by Arima, Iachello, Qtsuka, and Talmi' '; the
agreement between the shell model and this ver-
sion of the IBA is particularly good in the limit of
good seniority.

In this paper, we wish to discuss the relation be-
tween the IBA and calculations done in the usual
quasiparticle formalism. Let us write the ground
state of a spherical nucleus in which only one kind
of particle (proton or neutron) is active ae'
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ing that number projection from the above states
gives
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It is then natural to associate the s and d bosons
with the two-nucleon clusters that occur in the
above expressions,

s—S~=—N~ —~ a~a-
n&o "n

n-8 ~n~8

One can then construct the corresponding boson
space Hamiltonian truncated to fourth order:

where the a are particle creation operators and
the coefficients v„and u are obtained by solving
the generalized Bardeen-Cooper-Schrieffer (BCS)
gap equations. The first excited 2' state can then
be written as

I TDA;2') = g x.s(h'„l s'},„I Bcs)
e-8

where the coefficients X 8 are obtained by a two
quasiparticle Tamm-Dancoff approximation (TDA)
calculation and the quasiparticle operators are as
usual
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Such a formalism can give an excellent description
of the Sn isotopes for example. ' '

We can relate this formalism to the IBA by not-
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In general, the boson Hamiltonian should contain

+ ,'U, ((dtd~},ss+ s-ts~( dd},) .
The coefficients U,. are determined by the require-
ment that the matrix elements of HB taken between
normalized one and two boson states be equal to
the matrix elements of II taken between the cor-
responding, orthonormalized, ' two and four fer-
mion cluster states. ' Here H is the usual fer-
mion space Hamiltonian of the shell model:
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TABLE I. The ground state energy and the excitation energy of the first 2+ state with a
semirealistic interaction and the relevant coefficients of 8 . For comparison the other co-
efficients of H for OSn are U2(0)=0.348, U2(2)= -0.804, U2(4)=-0.208, U3 ——-0.0786, and
U4= -0.350.

E(0+)

N BCS;PHOJ BCS
E.(2.)

TDA IBA

6
8

10
12
14
16
18
20
22
24
26

-7.90
-10.01
-12.08
-14.12
-16.17
-18.33
-20.65
-23.15
-25.87
-28.81

-3.81
-5.83
-7.90
-9.98

-12.05
-14.14
-16.28
-18.52
-20.89
-23.42
-26.14
-29.05

-3.75
-5.85
-8.18

-10.74
-13.49
-16.36
-19.21
-22.05
-24.86
-27.58
-30.30
-32.99

1,31 1g23

1.36 1.22
1.41 1.23
1.47 1.29
1.51 1.38
1.50 1.55
1.45 1.76
1.37 1.97
1.30 2.14
1.24 2.23
1.20 2.28
1.18 2.30

-1.799
-1.782
-1.762
-1.746
-1.739
-1.740
-1.745
-1.7&0
-1.752
-1.750
-1.746
-1.740

-0.549
-0.538
-0,.513
-0.462
-0.367
-0.224
'-0.050

0.130
0.295
0.443
0.583
0.716

-0.293
-0.337
-0.376
-0.401
-0.407
-0.398
-0.375
-0.350
-0.326
-0.303
-0.283
-0.266

-0.165
-0.182
-0.194
-0.201
-0.202
-0.193
-0.178
-0.164
-0.153
-0.148
-0.146
-0.146

higher order terms with six, eight, ten, ... opera-
tors; however, the calculation of the required co-
efficients U, becomes prohibitively difficult. One
must then hope that the truncation is all right and

proceed accordingly. In fact, this truncation is
essentially exact in the ease of single j -shell cal-
culations in the seniority scheme, and appear to
be very good also in more general calculations
with pairing plus quadrupole forces. '

The states (n!) ' '(st)" [0) and ((n —1) t) ' 'dt
&& (s )" '[0) evidently correspond to the projected
BCS and TDA states. One can also proceed to con-
struct more complicated states containing two,
three, or more d bosons. In general, the Hamil-
ton'. an II~ must be diagonalized in a space of many
such states. With the identification of the s and d
boson proposed in Eqs. (5) and (6), we have es-
tablished an equivalence between the number con-
serving IBA and the quasiboson methods' ' which
use the operator q„[Eq. (2)] to define the boson
space.

To study how well this approach works, we have
applied it to the Sn isotopes. The fermion space
includes the five neutron orbitals d, ~„g,~„s,~„
~3/ 2 and A j j ]2 and the Hamiltonian H is derived
from a realistic nucleon-nucleon potential. De-
tails of the single particle energies and the Ham-
iltonian are given in Ref. 10. The results of the
BCS and TDA calculations together with the ground
state energies calculated in the BCS formalism,
but including number projection, "are given in
Table I. The IBA wave functions which correspond
to the projected BCS and TDA states, and which
are expected to describe quite accurately the
ground state and the first excited 2+ state of the
Sn isotopes without significant mixing of more
complicated configurations, are

)
0') =~, , ( )"[0),

TABLE II. Ground state energy of the Sn isotopes with
a pairing force and the relevant coefficients of FP.

E(exact) E(BCS) E(IBA)

6
8

10
12
14
16
18
20
22
24
26

-2.62
-3.26
-3.42
-3.08
-2.21
-0.70

2.16
5,70
9.83

14.50
19.67
25.32

-2.27
-2.78
-2.85
-2.45
-1.49
0.21
2.93
6.43

10.52
15.14
20.24
25.80

-2.62
-3.27'

-3.48
-3.25
-2.54
-1.38
-0.13
1.60
3.95
6.96

10.56
14.84

-1.53
-1.52
-1.50
-1.47
-1.42
-1.38
-1.41
-1.45
-1.47
-1.49
-1.50
-1.50

0.87
0.85
0.84
0.82
0.80
0.79
0.80
0.81
0.83
0.85
0.86
0.88

The energies of these states are also given in
Table I. For the sake of completeness, we also
give in Table II the results obtained with a pure
pairing force and the parameters used in Ref. 12
compared to the exact calculations which are pos-
sible in this case."'"

It is clear that, although the IBA works very well
for the lighter isotopes, the binding energy of the
ground state and the. excitation energy of the first
2' state are seriously overestimated in the heavier
isotopes. It is interesting to note that the structure
of the s boson remains roughly independent of neu-
tron number, even though the occupation amplitudes
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v change, but that the structure of the d boson
does change quite markedly.

One is then led to conclude that the truncation of
II~ at fourth order is not a sufficiently good approx-
imation when using a relatively large number of
bosons. Relatively small empirical changes in the
calculated boson interactions can very decidedly
improve the IBA results, but the justification of
such changes remains a problem. The quasiboson
approach (which gives up particle number conser-
vation by using q~ as the boson operator) should

have an advantage over the IBA at least for vibra-
tional nuclei away from closed shells where a small
number of quasibosons is expected to be sufficient.
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