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%'e reply to the criticism of our method for the analysis of doorway fine structure.

[NUCLEAR REACTIONS Analysis of doorway fine structure. j

MacDonald' has made criticisms of our earlier
work' in the course of proposing a method for the
analysis of doorway fine structure. While we ac-
cept MacDonald's results, we reject the implica-
tion that they discount our 1974 method. The ob-
jective that MacDonald sets himself is different
from ours; his claim that our method does not at-
tain his objective is true, but in no way detracts
from the success of our method in attaining o~n"

objective.
Our objective was the analysis of actual doorway

fine-structure data taking account of the imPerfec-
tions of such data: errors on widths, misassigned
levels, truncated sequences. Since these short-
comings are worse in the wings (where one has al-
so the complication of background contributions),
we used a method that upweights the central levels
of a distribution. Necessarily this was not an
elegant, analytical procedure, but a simple prac-
tical recipe for handling imperfect data, and ex-
tracting a best-fit value of W=2v(M')/(D). This
was explicitly discussed below Eq. (2V) of our
paper.

In contrast, MacDonald's method pays no atten-
tion to shortcomings of data, especially in the
wings, and proceeds as if ideal data were pro-
vided. This leads to an analysis whose spirit is
essentially different from ours. To appreciate
this difference more fully, let us note that S' has
two essentially independent roles in the line-

broadening situation. First, it determines the
degree of spreading of the original pure doorway
state; in fact, in strong-coupling situations, W is
the width of the distribution. Second, it deter-
mines the normalization of the distribution; for
instance, in the wings, the strength function
equals Wyo'l2m(&o —8)', where yo' is the door-
way width, equal to the sum of the widths of the
fine-structure levels (in the absence of background
strength). Given ideal data, one can immediately
determine W from its normalization role by fitting
the strength function in the wings. In this sense,
given ideal data, determination of W is trivial,
and requires no detailed analysis of the kind pro-
posed by MacDonald. With actual data, with its
imperfections in the wings and the presence of
background strength, the situation is very different
for two reasons: (i) The wing strength function is
uncertain because of the imperfections; (ii) the
presence of background strength causes a double
uncertainty, viz. , in the separation of background
and nonbackground strength functions, and also in
the determination of yD' as the total of all nonback-
ground widths.

It follows that, when confronted with actual data
rather than ideal data, one needs a method which
focuses more on the width role of W and less on
its normalization role, i.e. , it should upweight the
central levels of the distribution and downgrade
the wings. The suitability of a method of analysis

20 1979 The American Physical Society



2436 A. M. LANE, J. E. LYNN, AND J. D. MOSES

depends on the extent to zohich it dounf, mades the
wings Lo a LeveL commensurate with the iraperfec
tions of data in the wings. There is no doubt that
our method upweights the central levels more than
MacDonald's; in the weak-coupling situation
W= 1.57(D), his evaluations of W from computer-
produced distributions (without background) have
a spread of only 4% of the mean value, while ours
have 40%. Thus his method focuses on the nor-
malization role of W, as revealed in the wings,
while ours focuses on the width role of W, as re-
vealed by the central levels (with their statistical
fluctuations which cause the large spread).

For data as they exist at present, it is not clear
which of the methods is better. MacDonald's
method possibly errs on the side of insufficient
downgrading of the wings, and produces overop-
timistic errors in best-fit W, while ours possibly
errs on the side of excessive downgrading, with
consequent overpessimistic errors. Only a de-
tailed comparative numerical study of fitting actual
data with the two methods can settle the issue. Of
course if there were the prospect of a new genera-
tion of much more accurate data, then our method
would become less appropriate. However, as we

have seen, for ideal data, all methods become
unnecessary since the determination of W be-
comes trivial.

1s

R(E) = N-Q R (E) .

The lineshape of the superposed distribution is
v ' ImR(E+iq), where ((M')/D)» e»D/N, (M'),
D being the mean square matrix element and level
spacing. In the case of strong coupling (M')»D',
we know that the individual ImR (E+ ig) are Lo-
rentzian, so it follows that ImR(E+ ie) also has
this property. Thus we look at weak coupling
(M')«D', implying «&D.

Let us note that the quantity defined by

has a smooth strength function, even in weak
coupling, viz. ,

(R(E+ iq) = (E —E —i w (M )/D)

It follows that the theorem is proved if we have

6t(E+ i&) R(E+ i~) = 0.
This can be shown to be so, using the same
arguments of randomness as in Ref. 3. Expand-
ing g and R in orders of M &

', the terms first
order in M; ' cancel directly. Those of second
order contain

APPENDIX: PROOF OF ENSEMBLE THEOREM N m —N rn

In Ref. 2, it was proposed, without proof, that
a certain theorem was valid, applying to the en-
semble of all mixing patterns with the same mean
level spacing and mean square mixing matrix ele-
ment, viz. , that if all members of the ensemble
are superposed, the resulting lineshape is Lorent-
zian. We now give the missing proof. This uses
the same assumptions of randomness of levels and

matrix elements as in recent reaction theory. '
Let us denote a particular member of the en-

semble by n; then its R function is

~„iz)=-(z„-z-p '.' )',
where E, is the energy of the doorway state (taken
to be the same for all n), and i label the levels
of member o.. E; are the energies, and M; are
the coupling matrix elements to the doorway.

If there are N(» 1) members of the ensemble;
then the R function of the superposed distribution

where

with p, q real. The randomness assumption
gives

(
2

Q p =Q p =vN(M )/2qD,

q =mN M D,

Q q~ =N(s(M )/D) + zN(M ) /2sD,

From these results, it follows that the second or-
der term vanishes as N-~. The vanishing of
higher-order terms can be shown similarly.
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