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Effect of unbounded operators on variational calculations in truncated bases
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The validity of the results of finite basis, constrained variational calculations with unbounded operators has
remained unquestioned despite the mathematical difficulties in an infinite basis pointed out by Fonte and
Schiffrer. It will be shown here that the difficulties associated with unbounded operators are not restricted to
infinite bases and that, in fact, the consequences are equally severe in finite bases. The demonstration will
be made both for a one dimensional, one body model and in a full three dimensional, many body calculation
typical of those currently being employed in nuclear physics. The correct procedure for imposing such
constraints, e.g. the quadrupole constraint, and the validity of previous calculations remain open questions.

~a

NUCLEAR STRUCTURE Nonconvergence of variational calculations studied in
finite bases.

INTRODUCTION

In many areas of physics, variational calcula-
tions play a dominant role because direct solutions
of the relevant equation, such as the many-body
Schrodinger equation, are unobtainable. It is often
of interest to impose constraints upon these calcu-
lations so that the expectation value of some opera-
tor or set of operators will have some prescribed
value. Certain operators which are naturally of
interest, such as the various multipole operators,
have the feature that they are unbounded, either
from. above, below, or both,

' i.e. , the representa-
tion of the operator becomes infinite. Although
such operators have been extensively used in
variational calculations in truncated, finite bases,
Fonte and Schiffrer' have shown that the equations
solved have no solution in an infinite basis. This
certainly casts some doubt on the validity of the
finite basis result's.

Some light was shed on the situation by the
theorem proven by Bassichis et al. ' According
to this .theorem the energy of a wave function with
a constrained value of an unbounded operator can
be made arbitrarily close to the energy of the
ground state. In addition, when a simple, one-
body, one-dimensional problem was considered it
was shown that the unboundedness of the constrain-
ed operator had consequences even in finite basis
calculations. It was found, for example, that the
compressibility, the resistance of this system to
a change in size, was a strong function of the size
of the basis employed. In accordance with the
theorem, the compressibility decreased by a factor
of 2 when the basis was increased from 3 to 5
states and decreased by another factor of 2 with an
increase from 5 to 12 states. This dependence
was quite consistent with the zero compressibility

predicted for an infinite basis.
In spite of these results, constrained variational

calculations with unbounded operators continue
to be performed in finite bases. Indeed certain
results obtained in finite basis, many-body cal-
culations seem to show no evidence whatsoever
of this unboundedness difficulty. 4

Here the simple one-body, one-dimensional
model will be considered in detail in order to
isolate the source of the difficulties associated
with unbounded operators even in finite bases.
'Thus guided, the many-body calculations will be
repeated and shown to exhibit the same features
as.the simple model. It is hoped that this investi-
gation of the difficulties will lead to a solution to
the problem of imposing such constraints in varia-
tional calculations.

. THE SOURCE OF THE DIFFICULTY

T' he one-dimensional problem considered ear-
lier' (henceforth referred to as I) consisted of a
single particle moving in a Gaussian field

H=-, —Voe
2ppl 4x

One may solve this problem by numerical inte-
gration and obtain the quantities of interest here;
the ground state energy and the expectation value
of x' in the ground state g. Alternatively one may
perform a variational calculation by writing

g =BC„&„(x),

where the P„are known functions and the coeffi-
cients, C„, are determined by minimizing (H).

he difficulty painted out by Fonte and Schiffrer'
arises when one imposes on the variational calcu-
lation, using the method of I agrange multipliers,
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the constraint that the expectation value of x' has
some value different from that at the ground state.
Then the quantity to be minimized is

-O.OI-

-0.008-
N=5 =-0.006

i]2
~/avP„(x)=,), „

i
H„(yx)e '~" *' (4)

and since only even parity states were considered,
N is the maximum n divided by 2.

The strength of the potential V„ its range P, and
the other constants can be combined with the os-
cillator constant y to yield a single parameter in
terms of which everything can be expressed

~ = ay/(2m V,P)'~'

The calculations whose results are shown in Fig. 1

0.340—

0.345—

E(vev)

and since x' is unbounded as x goes to infinity,
H —Xx' has a continuous spectrum extending to
-~ for positive values of A. . Thus E„has no mini-
mum and no solution is possible in an infinite
basis. Fonte and Schiffrer thus claim that there is
no content to solutions of this minimization pro-
blem obtained in finite bases.

In I it was shown that the difficulty was not
peculiar to the method of Lagrange multipliers but
that the unboundedness of the operator itself im-
plied that the constrained energy, E~+X(x'), could
be made arbitrarily close to the ground state
energy, E„by constructing wave functions in a
particular way. Furthermore it was shown that
in this one-dimensional model, the consequences
of this theorem were apparent for even small
basis calculations. This is shown in Fig. 1. The
states used as a basis were the usual harmonic
oscillator wave functions
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FlG. 2. (4X-0.34-E&) vs ~ with N = 5 and various fixed
A, . Here it is seen that there is a local minimum in EN
for some values of X.

were all carried out with v held fixed at the value
which minimized the energy for X = 0. (Since V, and

P simply set the scale, they will henceforth both
be set eilual to one. )

If, instead, one treats ~ as a parameter and
carries out the calculations varying v then, as was
also shown in I, there will only be local minima
in E„ for negative values of X and if A, is taken
sufficiently negative, even these local minima
disappear. This is shown for N= 5 in Fig. 2. It is
this lack of an absolute minimum in E„ that renders
the problem insoluble according to Fonte and
Schiff rer.

In finite basis calculations, however, solutions
a@ill be obtained for a fixed (d and since the con-
strained energy &~+X(x') is the real iluantity of
interest the lack of a minimum in E„may go un-
noticed. This is especially true since one normal-
ly determines the optimum value of & with ~ = 0 and
then uses this value in the constrained calcula-
tions. ' This, however, is not a valid procedure in
a finite basis because w should be treated as a
variational parameter. This becomes more evi-
dent if one considers the matrix elements of the
unbounded operator x' in the harmonic oscillator
basis:

0.350—
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I.O 1.5 2.0 2.5
I

3.0

[(n'+ 1)(n'+ 2)]' ' if n = n'+ 2,

(n Ix'In') = x& (2n'+1) if n=n',e
2m cd

]I [n'(n' —I)]' ' if n =n' —2.

(X &

FIG. l. E vs (x2) with various fixed N Correspondin. g
to the common practice in many-body calculations, the
oscillator parameter ~.is held fixed at the value deter-
mined in the unconstrained calculation.

Clearly all. the matrix elements of x' go to infinity
as ~-0. Thus the unboundedness of this operator
manifests itself .in any finite basis, no matter how

small. This was also pointed out by Fonte and
Schiff rer.
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'This is not peculiar to the operator x2. The one-
dimensional analog of any multipole operator,
namely x for any positive even integer ~, will
have matrix elements that go to infinity as (d-0.
'This can be seen easily by writing

(y„(x)~x ~y„(x))

/2 1
H„' yX X e " d

-0.3500-

E (MeV)

-0.3520-

Ns5

w =0.415

/ ~ w.-.0.4

l~ w=0.39

w =0.38

m i(2 ~ H g e d

1„I,x (a number independent of e).

If, on the other hand, one deals with abounded
operator then these matrix elements will not go
to infinity. 'This results from the scale change.
Consider, for example, x'e '" with c very small. '
The matrix elements will then be

2 y2e 9 e CP /V d
mOO

'The factor now multiplying y
' goes to zero ex-

ponentially as y goes to zero so that in this limit
the matrix elements go to zero. A similar demon-
stration can be made for any technique for cutting
off the operator.

It is therefore apparent that the difficulty with

unbounded operators should be evident even in
finite basis calculations. There it is crucial to
consider all values of the oscillator parameter,
or its analog in some other basis, particularly
in the neighborhood of that value for which the
matrix elements go to infinity. 'This will now be
carried out in detail for the one-dimensional
model.

In Fig. 3 is shown the constrained energy E,
+X(x') as a function of (x') for various values of

These were obtained using a range of Lagrange
multipliers for, each case. Clearly the value of +
which minimizes the energy without constraint is
not the optimum value for significantly larger
values of (x').

This is also shown in Fig. 4 where the constrained
energy is shown, as a function of (x'), for various
fixed values of the Lagrange multiplier. The curve
with (d fixed at its unconstrained optimum value is
included for comparison. For fixed e there is a
maximum value that (x') can achieve, correspond-
ing to having the wave function purely in that state
Q, for which the matrix element of x' is a maxi-
mum. Thus obviously, for values of (x') exceeding
this maximum, different values of co must be em-
ployed. The significance of the results displayed

-0.3540-
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,'FIG. 3. E vs (x ) with various fixed co and N= 5. The
value of & which gives the lowest unconstrained energy
is 0.415. It is seen that this is not the optimum & for
(x2) significantly larger than the unconstrained value.
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FIG. 4. E vs (x2) with various fixed X and N= 5. The
curve with cu fixed at its optimum value m=0.415 is in-
cluded for comparison.

is that energies quite close to the unconstrained
ground state energy can be obtained even for these
extremely large values of (x') by taking sufficiently
small Lagrange multipliers. The increasingly
large values correspond to decreasingly small
va, lues of co.

For values of (x') in the neighborhood of the
unconstrained value it is also possible to reach
constrained energies well below these obtained
with the v which minimizes the unconstrained
energy. In Fig. 5 the constrained energy is shown
as a function of (x'); in the region near the mini-
mum, for various values of the Lagrange multi-
plier. The curve with fixed ~ is again included.
The dependence of the energy on the Lagrange
multiplier for fixed (x') is not monotonic. Energies
are, however, attainable which are much closer
to the ground state energy than would be obtained
with fixed e. 'This is shown also in Fig. 6 where
the region near the minimum is considered with
various fixed values of co.
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FIG. 5. E vs (x ) with various fixed X and N= 5 near
minimum. The constrained energy is shown as a' func-
tion of {x2) in the region near the minimum for various
values of the Lagrange multiplier. The curve with fixed
m is again included.
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FIG. 6. E vs (x ) with various fixed values of a& near
minimum. The value of w which minimizes the energy
without constraint is not the optimum value even near
the minimum.

From these results it is clear that the difficulty
associated with unbounded operators in an infinite
basis is also present in finite basis calculations.
One can obtain constrained energies very close to
the ground state even for values of the constrained
quantity much different than at the minimum. 'The

results of calculations with v fixed from uncon-
strained calculations are totally specious. In
searching for the lowest energy at a particular
value of the expectation value of the constrained
operator the oscillator parameter must be varied.
If one uses values of the parameter in the vicinity
of where the matrix elements of the unbounded
operator go to infinity then energies can be obtained
which are quite close to the ground state energy.

This effect will now be considered in a full,
three-dimensiona& many-body calculation.

CONSTRAINED HARTREE-FOCK CALCULATIONS

'The Hartree-Fock method has proven useful in
many areas of many-body physics. In nuclear
physics the method has been used, with constraints
added, to calculate moments of inertia, ' nuclear
compressibility, ~ and resistance to quadrupole
deformations. ' In the latter two cases, the opera-
tors whose expectation values are constrained
are unbounded and thus the variational equations
have no solutions if the calculations are carried
out in coordinate space, i.e. , in an infinite basis.
In general, however, such calculations are com-
putationally not feasible and one thus resorts to
finite basis calculations. Since the results obtain-
ed in the previous section did not explicitly depend
on the single-particle or one-dimensional aspects
of the problem it would seem apparent that results
of such variational calculations with unbounded
operators would also be meaningless. However,
the equations to be solved are now nonlinear and
must be solved by an iteration procedure. It
might therefore seem possible for the self-con-
sistent nature of the one-body potential to eliminate
the difficulties associated with such operators. It
is therefore desirable to examine these calcula-
tions in detail.

In early calculations using either a spherical' or
a deformed' harmonic oscillator basis, the effect
of the unbounded, constrained operator was not
noticed because the optimization of the oscillator
parameters was carried out only for the uncon-
strained solutions. These optimum parameters
were then held fixed when the constraint was in-
troduced. 'The insensitivity of the unconstrained
ener'gy to variations in the oscillator constants,
in these large basis calculations, gave credence
to the incorrect assumption that it was not nec-
essary to optimize the oscillator constant for each
value of the Lagrange multiplier. Such assump-
tions were mandated by the large amount of com-
puter time required for each calculation when
complicated, realistic, two-body interactions are
employed.

Most recent calculations employ density-depen-
dent, 5 function interactions which have the great
advantage of computational simplicity. ' With these
forces much larger bases could be used and the
interesting question of fission barriers of heavy
nuclei could be addressed. 4 Because large de-
formations must be considered it is natural to use
a deformed harmonic oscillator basis, so that
there are two parameters to be optimized. 'The
scope of the calculations is so large, however,
that the computer time involved becomes quite
large even with 5 function forces. 'The optimiza-
tion was, therefore, not done with sufficient care
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and the effects of the unbounded constrained opera-
tor were not detected. In fact, as will be shown

later, 8 was certainly not found to be a flat func-
tion of the constrained quadrupole moment and, in
fact, the function is steeper, in the vicinity of the
minimum, in the larger basis. These results
certainly seem to contradict the theorem proven
in I.

'The solution to the constrained Hartree-Fock
problem involves the diagonalization of the matrix

&flblj&=&tlflj&+g &fI" Il'. Ij»

(n+ lmn, Iq Inmn. )

1 5
(n + l)(n +

I
m

I
+ l)

(Nmm, +2[qfemm)=, ' (" +')(""')

1/2

+-'Z &»I«»««pl»&-&&flqlj&

where V„ is taken to be the density-dependent 5
function interaction of Skyrme, " and A is the
Lagrange multiplier associated with the constrain-
ed quadrupole moment. Because q is unbounded,
going to + ~ in some directions and —~ in others,
as x goes to infinity, no solution to the equation

(It —Aq}$„=e„P„

can be found in an infinite basis. One might expect
that this difficulty would not be present in a finite
basis because, although

(rlq I1') 600 r

the truncated operator, whose matrix elements
enter (i

I
It

Ij), is

Since the harmonic oscillator wave functions, for
finite N, fall off exponentially as

I
r

I

- ~, this
truncated operator would appear to be bounded.
'This is, however, misleading. 'The nonzero ma-
trix elements of r'F20 in a deformed harmonic
oscillator basis, nmn„are given by

'The definitions of d and b are clear from the ex-
pression for the wave functions in this basis:

p„„„(r,p, s}=Nb'tI" 'e " 'L„(g}

xe g H ((}eEm4

where

1/2 y 1/2

(a+m)!) (w'!'2" n, t)

$= gb'/d' ', and 'q=r'd'~'b'.

One sees that there exist regions in the para-
meter space d and b where the matrix elements
(t'Iq Ij) themselves go to infinity. Then the matrix
elements of the Hartree-Fock Hamiltonian will
also be infinite and the expectation value of H —XQ

will be unbounded from below.
'To examine this numerically, constrained

Hartree-Fock calculations were carried out for
"C. The calculations were essentially the same as
those used to study heavy nuclei4 with the following
exceptions: First, the advantage of using these
simple forces is negated if one includes the Cou-
lomb force properly. One would then have all the
usual difficulties in calculating this part of the
potential matrix elements for all the oscillator
parameters considered and one might just as well
use a more complicated nuclear part. Thus the
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FIG. 7. E vs (Q) with d = 0.82, b = 0.591, iV = 3, and varying X. This is an example of the traditional "energy deforma-
tion surface" obtained with the parameters as determined at the minimum.
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Coulomb force is treated approximately in these
types of calculations. " Such an approximation
will, of course, destroy the relationship between
the energy as calculated from

&=(H) =(T)+(P
and that calculated from the eigenvalues of the
Hartree-Fock matrix, e,

E = —g [(X
~

f
( X) + E~] ——' g (p, y

~
$„gdp'/dp

~
p y)

Xgy

Calculation of these two quantities, without any
approximation, would supply a useful measure of
the degree of convergence of the iteration proce-
dure. Thus in the test calculations reported here,
the Coulomb force was entirely neglected.

A second approximation normally made involves
pairing effects. Because pairing is known to be
important in nuclei one would like to somehow
take it into account. A completely self-consistent
treatment including pairing, called the Hartree-
Bogoliubov method, " is not feasible for heavy
nuclei. Thus one carries out an approximate
calculation, where, for example, a constant pair-
ing gap is assumed, and this again destroys the
exact relationship satisfied by the Hartree-Fock
quantities. 'To avoid these approximations, pairing
will also be neglected entirely in these test calcu-
lations.

The first oscillator basis considered utilized only
three harmonic oscillator shells, which at spher-
icity correspond to the s, /, shell, the P, /, -P3/
shell, and the s-d shell. When the basis was made
spherical only one minimum was obtained, namely
a spherical solution. This is quite different from

the results obtained with other interactions where
there are prolate and oblate minima for spherical
basis calculations' but this is just al peculiarity
of this interaction. When the basis was deformed
a minimum was located with negative quadrupole
moment as in earlier calculations with this force. 4

A variation of the oscillator parameters was
carried out and optimum values determined for
this oblate minimum. One then obtains a "typical"
energy deformation surface as is shown in Fig. 7.
These are obtained by introducing a I agrange
multiplier X and solving the variational problem

0(0 I(& —&Q) Itt)

l

for a variety of X's. With the resulting g's one
calculates the expectation value of Q and the ener-
gy

for g normalized.
According to the theorem of Bassichis et al. ,

however, one should be able to obtain wave func-
tions whose energy is arbitrarily close to the
ground states, with any value of the quadrupole
moment. 'To obtain such states one needs the
appropriate Lagrange multiplier and the correct
values of the oscillator parameters. 'Thus in
Fig. 8 one sees that by keeping X fixed and varying
5 and d one may indeed obtain curves much flatter
than the "traditional" curve.
'

A similar situation exists if one considers larger
bases. The results for a, space which includes the
fourth oscillator shell, the p-f shell, is shown in
Fig. 9. Again one finds regions in which the ap-

N=3 b = 059I
X s0.04——— —— x =005—
)I, =O.OI
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FIG. 8. E vs (Q) with b = 0.891, N= 8, and various fixed values of X. It is apparent that by varying d for various fixed
values of X one may indeed obtain curves much flatter than the, "traditional" curve.
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FIG. 9. E vs (Q) with various fixed values of d and
%=4. The curve with d fixed at its optimum value d
= 0.695is included for comparison. In each case b was
fixed at 0.675 and again one obtains a curve much flatter
than the traditional curve.

propriate A. , b, and d will yield wave functions with
quadrupole moments having diverse values while
the energies are quite close to that of the ground
state.

'The importance of optimizing the oscillator para-
meters has been stressed in recent work' and a
systematic approach was taken to insure optimiza-
tion for each Lagrange multiplier. (A quadratic
constraint is employed here but this makes no
essential difference. ) Six sets of b's and d's were
used, in the neighborhood of the unconstrained
optimum values, and from the subsequent results
the optimum set was obtained. 'These calculations
of a heavy nucleus were carried out using an ap-
proximate Coulomb interaction and an approximate
treatment of pairing. The resulting energy de-
formation curve is shown in Fig. 10 for two diffe-
rent bases, N =8 and 10. There are two striking
features of this curve in the present context.
First, the curve has structure, one does not ob-
tain a flat line. Second, there is no apparent
flattening as the space is enlarged. Instead the
curvature near the minimum seems to be larger
for the larger space. 'This illustrates that the
problem of determining the optimum parameters
is not as simple as it would appear. It must be
born in mind that the equations being solved are
nonlinear and questions of stability are nontrivial.

'To this point the unboundedness of the operator
being constrairied has been used to determine the
direction in harmonic oscillator space to search
in order to find wave functions with energies close
to that of the ground state. Because of the apparent
discrepancy with the results for the heavier nu-
cleus it was considered worthwhjle to seek other
effects of the unboundedness. It was found that,
in fact, thepe are consequences in these finite

-l090
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I

IOOO
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2000

FIG. 10. E vs (q) and N= 8, 10. These are the results
for 583 Ce obtained by Flocard et al, (Ref. 4). There are
two striking features of these curves: the curve is def-
initely not a flat line, and there is no apparent flattening
as the space is enlarged, in fact, near the minimum it
becomes steeper.

bases which have a drastic effect on any such
calculations.

The fact that has been overlooked up until now
is that the quantity which must be minimized is

and the Aq term

The regions of interest are those where the eigen-
values of the matrix go to negative infinity. From

The procedure traditionally followed is to mini-
mize E, with respect to some variations in the
wave functions, .namely the expansion coefficients
of the single-particle wave functions. Then one
minimizes the expectation value of 0 itself with
respect to variations with the oscillator para-
meters. This is not consistent. One must, ac-
cording to the variational theorem, minimize the
expectation value of some quantity and when con-
straints are present, that quantity is E,.

It is when one follows this correct procedure that
the Fonte and Schiffrer difficulties appear. One
may learn about the behavior of E, as a function
of the oscillator parameters by considering the
first matrix element of the Hartree-Fock Hamil-
tonian. The two critical components are the kine-
tic energy
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the Aq term it is seen that for X negative this
occurs when d is less than one and either d or b

approaches zero. Since the kinetic energy goes
to infinity faster than the Aq term goes to negative
infinity when d goes to zero, the only interesting
region is when b-0.

%hen X is positive the region of interest is when
d is greater than one and when d goes to infinity
or b goes to zero. In either case the Xq term
dominates the kinetic energy. 'These cases were
chosen for study.

First, d was set equal to 2 and X = 0.5. Since the
minimum in the energy was found at b= 0.591 one
might just take a point at a larger b and at a
smaller b and if both lead to larger energies as-
sume, quite naturally, that this is the optimum
b. In fact there is a local minimum in E, in this
region but the function is not single valued. If one
starts with b =O.V and decreases it in small steps,
each time beginning with the previous solution,
one obtains the solid curve in Fig. 11 which has a
rather flat region and then rises to very large
values for small increases in b. If one starts with
smaller values of b, such as 0.3 and increases b

in small steps, one instead obtains the dotted curve
in Fig. 11, The reason for the two branches on the
curve is that different single-particle orbitals are
being filled. If one begins with the 2, —,', and

levels occupied, as will happen with large
enough b, these levels will remain the lowest as
b is decreased until b=0.3 is reached. If instead,

-60-
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IOO-

l50-

"175"

2000

FIG. 12. E~ vs g with 1=1, 5 = 0.6, and N = 3. The two
branches of the function correspond to two configurations
of filled single-particle orbitals. Again there is a local
minimum but no real solution.

one begins with b=0.3, the —,', -', , and —,
"levels

will be occupied and they will remain the lowest
as b is increased until b = 0.6. Because of this
complicated structure the curve seems to display
a E, minimum near b=0.6. %hat is significant,
however, is that no matter how one starts, E,
goes to —~ as b goes to zero and if one performs
a thorough search for the minimum in E„ instead
of just checking a few points, one can only con-
clude that the equations have no solution. Larger
and larger negative &, will be obtained for smaller

80 N"- 5

X=05 d=2

-40

"l00-

-l20- E, (uev)
-100

I40- - I20

-l40

-I80 0.2 04 0,5 0.7
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FIG. 11. E~ vs b with X= 0.5, d =-2, and N = 3. The
solid curve corresponds to the filling of one set of sin-
gle-particle orbitals, the dotted curve to another. There
is an apparent minimum near the accepted value of 5 if
one starts with the latter configuration and a small 5 and
increases b.

I I I I I I I

IOO 200 300 400 500 600 700 800
d~

FIG. 13. E~ vs d with X= 0.05, 5 = 0.4, and N = 3. For
this very small Lagrange multiplier one must go to very
large values to 4 before E~ tends to negative infinity.
On the way a number of local minima are encountered.
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and smaller b's until the limits of the computer
are exceeded.

A similar phenomenon exists when one studies
E, as a function of d. With a relatively large
value of A. , A. = 1, and b = 0.6 there is again a local
minimum for a value of d near that which mini-
mizes the energy. Again it corresponds to the
crossover in two branches of a function, as is
shown in Fig. 12. There it is again seen that any
search for a minimum in E, wvuld yield no solu-
tion.

Finally, in Fig. 13 the results are shown when a
typical Lagrange multiplier is used instead of the
large one just employed. Here one has to go to
huge values of d bef ore E, tends towards negative
infinity. There is quite @bit of structure, maxima
and minima, in the region between d = 1 and 2,
which does not show on this graph. What can be
seen is sufficient to demonstrate the difficulty.
Even if one correctly minimized E, instead of E
one might incorrectly conclude that there were a
solution to the problem. One has to know what

region to look in, in order to see that the Fonte
and Schiffrer difficulty indeed exists.

eONnUSIONS

It has been demonstrated that the unbounded na-
ture of a constrained operator will have profound
effects on the results of variational calculations
even in finite bases. If one carries out the mini-
mization in the traditional manner, optimizing
the expansion coefficients by E, but the oscillator

parameters according to E, the effect demonstrat-
ed is a flattening of the energy deformation curve.
Although one cannot obtain the totally flat curve
predicted for an infinite basis, one can get points
well below the'usual curve. More severe is the
result of a consistent minimization of the con-
strained Hamiltonian's expectation value. Then it
has been demonstrated that for any Lagrange
multiplier there is no solution to the optimization
problem. Instead there is some direction in the
space of oscillator parameters for which E, goes
to negative infinity.

The source of the difficulty in finite basis calcu-
lations is that the matrix elements of an unbounded
operator are themselves unbounded. The obvious
solution to this mathematical dilemma. is to insert
a factor which artificially puts a bound on the
operator in coordinate space, such as e " . This
would put a bound on the matrix elements and
would then have a minimum. The results would
be meaningless, however, unless they were in-
dependent of P. This was not so for the one-
dimensional case. Instead the solution must be
in constraining some other operator besides the
quadrupole, or other multipoles. One possibility
is to employ just the angulax part of the va, rious
multipole operators. This is, in fact, more com-
plicated, computationally, than using the full
operator and, in effect, corresponds to a parti-
cular form of cutoff for which there is no physical
significance. 'The correct procedure seems,
therefore, to be still an open question.
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